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RNA kecil (sRNA) mengawalatur adaptasi terhadap suhu lampau Geobacillus 

thermoleovorans yang dipencil dari mata air panas Malaysia  

 

Abstrak 

RNA kecil (sRNA) telah ditunjukkan memainkan peranan penting dalam 

pengawalan gen dalam eukariot (juga dikenali sebagai microRNA) dan prokariot. 

Dalam bakteria, sRNA mengawalatur pembentukan biofilem, penderian korum, 

kevirulenan dan gerak balas stres persekitaran. Antara pelbagai gerak balas stres, 

tindak balas kejutan suhu telah banyak dikaji dalam bakteria patogen dan extremofil. 

sRNA telah dipostulatkan terlibat dalam adaptasi bakteria terhadap suhu lampau 

melalui rangkaian pengawalaturan stres sejagat. Fokus kajian ini adalah terhadap 

sRNA yang terlibat dalam perkembangan bakteria thermofil, Geobacillus 

thermoleovorans CCB_US3_UF5 pada suhu 60°C dan 70°C. sRNA daripada 

pertumbuhan pada suhu lampau ini telah dilakukan proses transcripsi berbalik 

kepada cDNA dan dijujuk. Data penjujukan mengenalpasti 83 sRNA putatif yang 

diklasifikasikan sebagai antisense, kawasan di antara gen, kawasan tidak bertranslasi 

atau bukan pengkodan. Daripada jumlah ini, 44 calon sRNA adalah spesifik terhadap 

pertumbuhan pada suhu tinggi. Kajian ini mendemostrasikan satu alir kerja lengkap 

analisis sRNA untuk bakteria thermofil dengan mengabungkan satu protokol 

pengklonan sRNA dan salur pipa menganalisis data penjujukan truput tinggi. Secara 

keseluruhannya, keputusan ini dapat digunakan untuk kajian masa hadapan untuk 

memahami dengan lebih terperinci pengawalaturan adaptasi bakteria termofil pada 

suhu lampau oleh sRNA. 
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Small RNA (sRNA) regulates extreme temperature adaptation of Geobacillus 

thermoleovorans isolated from a Malaysian hot spring 

 

Abstract 

Small RNA (sRNA) has been shown to play important gene regulatory roles 

in both eukaryotes (commonly known as microRNA) and prokaryotes. In bacteria, 

sRNAs regulate biofilm formation, quorum sensing, virulence, and environmental 

stress response. Of the various stress responses, the heat shock response has been 

extensively studied in many pathogenic bacteria and extremophiles. The focus of this 

study is to identify the sRNAs that may be involved in the adaptation to 60°C and 

70°C of a thermophilic bacterium, Geobacillus thermoleovorans CCB_US3_UF5. 

The sRNAs from these extreme high temperature growths were reverse transcribed to 

cDNA and sequenced. Sequencing data identified 83 putative sRNAs classified as 

antisense, intergenic region, untranslated region, or non-coding. Out of this total, 44 

sRNA candidates were specific to growth at elevated temperature. This study 

demonstrated a complete sRNA analysis workflow for a thermophilic bacteria by 

combining a sRNA cloning protocol and high-throughput sequencing data analysis 

pipeline. Collectively, these results can be used for future studies to better understand 

the detailed sRNA regulation of extreme temperature adaptation in thermophilic 

bacteria.  
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Why small RNA? 

I have always been fascinated by the ability of bacteria to survive in any known 

environment in our planet. How do the bacteria know what type of environment they 

are in? How do they cope with a stressful environment? How do they regulate their 

cell machinery in an efficient and coordinated manner for survival? These are some 

of the fundamental questions that have intrigued me for a long time. Over the years, 

many studies have elucidated some of these questions. Proteins had been extensively 

studied for their role in regulatory networks probably because they are the end 

product in a cell, signifying its functional role at the particular environment. In the 

last decade, RNA and DNA have been receiving more attention and they began to 

connect the missing link in the bacterial regulatory network. 

Despite being short in length and usually not coding for any proteins, the 

regulatory capability of small RNAs (sRNAs) enabled bacteria to respond to 

changing environmental signals rapidly. The underlying mechanisms of gene 

regulation by these small RNA drive my interest to study these small RNA. 
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CHAPTER 1 

INTRODUCTION 

1.1 Extremophiles 

Microorganisms can be found in almost every part of the world. They are 

very versatile and are able to adapt under many different environmental conditions. 

Among many different types of microbes, one group can live in harsh environments. 

They are known as the extremophiles. These extreme-loving microbes can live in 

very high or low temperature, extreme pH, salinity and some may even tolerate high 

dosage of gamma radiation.  

In Malaysia, hot springs are one of the most prominent features of extreme 

environments. The Ulu Slim hot spring was reported to be one of the hottest hot 

springs in Malaysia. Two thermophilic or heat-loving bacteria have been isolated 

from this hot spring and one of them is Geobacillus thermoleovorans 

CCB_US3_UF5. 

In order to cope with heat stimuli, there are two major responses in bacteria 

depending upon when the heat stress is applied. The heat shock response (HSR) 

occurs when there is a sudden increase in temperature. In contrast the high 

temperature response (HTR) that occurs when the bacteria is already growing at a 

constant elevated temperature. High temperature response genes have to be 

expressed if any of these conditions occur. The expression of these genes is highly 

regulated and involves regulatory proteins and RNAs. One of the RNA regulators in 

bacteria is small RNA.  
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1.2 Small RNA 

Small RNA or sRNA is a type of regulatory RNA. The role of sRNA is to 

regulate physiological changes in bacteria in response to environmental stimuli. It is 

generally 20-550 nucleotides (nt) in length. It is single-stranded and able to form a 

stem loop that confers greater structural stability. sRNAs exert their effect at the 

post-transcriptional level of gene expression. This causes either activation or 

deactivation of the target mRNA expression.  

sRNA regulates its target via two major mechanisms. One is by base-pairing with 

its target mRNA while the other is by direct binding to regulatory proteins. Among 

these two mechanisms, the base-pairing mechanism has been extensively studied and 

the sRNAs that fall into this category can be further divided into two classes. The 

basis of the classification is dependent on the location where the sRNA is encoded in 

the genome. One is known as the trans-encoded sRNA while the other is known as 

cis-encoded sRNA. Further discussions on these sRNAs are covered in the literature 

review. 

1.3 Rationale of the study 

HSR is triggered upon sudden temperature elevation. In contrast, HTR 

involves survival and growth at a higher temperature that the cells have accustomed 

to over a few generations. Acute phase and chronic phase are part of the adaptation 

process. In the initial acute phase, rapid responses are needed to help the cell survive 

in their new environment. In the chronic phase, the cells have survived and begin to 

grow exponentially in the new environment with possibly a new growth rate. 

Interestingly the group of genes that are involved in the acute phase are different 

from those involved in the chronic phase (Gunasekera et al., 2008).  
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Regardless of whether the HSR or HTR system is used, sRNAs play a vital 

role in both. Almost every environmental stress factor involves a specific pathway 

that may require sRNAs to regulate their genes. The only sRNA that has been 

reported so far that responds to a temperature shift is DsrA in E. coli (Narberhaus 

and Vogel, 2009). However, DsrA regulates its target during low temperature 

(Sledjeski et al., 1996). None have been reported at high temperature. In addition, no 

sRNAs have been reported from thermophilic bacteria that are involved in HTR or 

HSR.  

I am intrigued to know which sRNAs are specifically induced during high 

temperature growth (HTR) in vitro by using a thermophilic bacterium, G. 

thermoleovorans CCB_US3_UF5 as our model organism. To achieve this goal, I will 

be cloning and sequencing the sRNAs from this bacterium. 

One of the major challenges in cloning sRNA from bacteria is the presence of 

tRNA and 5S rRNA in the size region of sRNA (20-550 nt). tRNA have an average 

length of 80 nt while 5S rRNA is usually 125 nt. Since both tRNA and 5S rRNA are 

in abundance and may reduce the probability of obtaining sRNA sequences during 

high throughput sequencing, they have to be depleted from the sRNA that will be 

cloned. Recently, a method for tRNA and 5S rRNA depletion has been performed for 

sRNA samples from Vibrio cholera (Liu et al., 2009). This method will be adapted 

for the use in cloning sRNA from Geobacillus thermoleovorans CCB_US3_UF5. 

1.4 Objectives 

1.4.1 To establish an sRNA cloning system that enriches sRNA in bacteria. 

1.4.2 To identify sRNAs expressed during extreme temperature adaptation. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Extremophiles 

Extreme environments are often considered to be either physically or 

geochemically extreme for the survival of most life forms on earth. pH and salinity 

are considered as geochemical extremities while radiation, pressure and temperature 

are classified as physical extremities (van den Burg, 2003). Organisms that survive 

and thrive in these harsh conditions are known as extremophiles.  

These extremophiles have been found in seven most extreme conditions in this 

planet. Table 2.1 summarizes the different types of extremophiles. Many 

extremophiles are tolerant of more than one geochemical or physical extremity. For 

example, Thermoplasma acidophilum is both thermophilic and acidophilic since it 

has the ability to survive at high temperature (59°C) and acidic conditions (pH 2) 

(Ruepp et al., 2000). 
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Table 2.1 Classes of extremophiles and their extreme habitats (Pikuta et al., 2007). 

Geochemical/

Physical 

Parameter 

Type of 

extremophily 

Habitat Description 

Temperature Thermophile Hydrothermal vent, hot springs Grows at 60°C and 

above 

Psychrophile Polar ice sheets, permafrost, 

deep sea floor, snow cap, sea ice  

Inability to grow at 

15°C and above 

pH Acidophile Hydrothermal springs, Acidic 

mine drainage 

Grows at pH 3 or below 

Alkalidophile Can be found in acidic or neutral 

soil (interesting characteristic 

compared to other 

extremophiles), soda lake 

Requires at least pH 8 

or above to grow  (up to 

pH 13) 

Pressure Barophile Hydrothermal vents, Deep ocean 

floors, deep oil reserves 

Grows optimally 

growth at pressures 

more than 40 MPa 

Salinity Halophile Hypersaline lake, salt springs Does not depend on 

high salt concentration 

to survive but can 

tolerate up to 15% 

salinity  

Radiation Radiotolerant Food sterilization process, hot 

spring 

Able to withstand high 

doses of radioactive 

radiation. 

Highest: 800 kGy in 

Deinococcus 

radiodurans 

Lowest: 0.82 kGy in 

Lactobacillus sakei 

 

In Malaysia, we can find hot geological environments such as hot springs. For 

example, thermophilic bacteria have been isolated from local hot springs (Akanbi et 

al., 2010). One of the thermophiles that was isolated from Malaysian soil is 

Geobacillus zalihae which can thrive at 60°C (Abd Rahman et al., 2007). 

2.2 Geobacillus spp. 

Geobacillus spp. are rod shaped, spore-forming, thermophilic bacilli. The 

genus Geobacillus was proposed in 2001 (Nazina et al., 2001) by reclassifying 

thermophilic bacilli in phylogenetic group 5 of the Bacillus genus (Ash et al., 1991). 
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The name Geobacillus carries the meaning earth or soil Bacillus. Members of this 

genus are listed in Table 2.2.  

Table 2.2 Members of Geobacillus genus 

Geobacillus stearothermophilus (Logan and Berkeley, 1984; Priest et al., 

1988) 

Geobacillus thermocatenulatus (Nazina et al., 2001; Nazina et al., 2004) 

Geobacillus vulcani (Caccamo et al., 2000; Nazina et al., 

2004) 

Geobacillus gargensis (Nazina et al., 2004) 

Geobacillus kaustrophilus (Priest et al., 1988; White et al., 1993) 

Geobacillus thermoglucosidasius (Priest et al., 1988; White et al., 1993) 

Geobacillus thermodenitrificans (Manachini et al., 2000) 

Geobacillus subterranues (Nazina et al., 2001) 

Geobacillus uzenensis (Nazina et al., 2001) 

Geobacillus caldoxylosilyticus (Fortina et al., 2001) 

Geobacillus toebii (Sung et al., 2002) 

Geobacillus jurassicius (Nazina et al., 2005) 

Geobacillus zalihae (Abd Rahman et al., 2007) 

Geobacillus thermoleovorans (Nazina et al., 2001) 

 

The Geobacillus genus has been known for their special physiological 

characteristics that have biotechnological importance. One of the widely studied 

properties of this genus is their thermostable enzymes such as proteases, amylases, 

lipases and pullanases (McMullan et al., 2004). In a recent publication, Geobacillus 

spp. (M-7) was reported to produce volatile antibiotics capable of inhibiting test 

organisms including a human lung pathogen (Aspergillus fumigates) and other plant 

pathogens (Geotrichum candidum, Botrytis cinerea, Ventricillum dahlia) (Ren et al., 

2010). Its potential application of exopolysaccharides for industrial usage have also 

been discussed (Schiano Moriello et al., 2003). Two strains of G. thermoleovorans 

have been found to produce bacteriocins that cause lytic activity on other G. 
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thermoleovorans strains and human pathogens including Salmonella typhimurium 

(Novotny and Perry, 1992). Different strains of G. thermoleovorans have been 

shown to degrade different types of compounds such as naphthalene, phenol, cresol, 

xylan, and olive oil (Deflaun et al., 2007). 

Geobacillus are able to grow aerobically in temperatures ranging from 35°C 

to 78°C (Nazina et al., 2001) and are widely found in different geographical areas on 

Earth (White et al., 1993). This group of thermophilic bacilli had been isolated from 

hot springs (Markossian et al., 2000) and deep-sea hydrothermal vents (Maugeri et 

al., 2002). They can also be found in high-temperature petroleum reservoirs (Nazina 

et al., 2001) and temperate soil (Marchant et al., 2002a). There are also reports of 

their isolation from man-made environments such as hot water pipelines, waste 

treatment plants and coal burning plants (Maugeri et al., 2001; Obojska et al., 2002). 

Although Geobacillus have been mostly found in hot environments, they have been 

isolated from cool environments as well such as soil samples from northern Ireland 

that have never reached more than 40°C (Marchant et al., 2002a; Marchant et al., 

2002b). 

2.3 Heat stress response in bacteria 

Thermophiles that thrive in hot environments must constantly monitor the 

fluctuating environmental temperature for survival. This is because exposure to high 

temperature will cause many cellular stresses such as oxidative stress, protein 

denaturation, and may lead to lethal effects in the cell. 

Apart from extremely high temperature, there are many biological processes in 

cells that are induced and controlled by temperature shift, including the cold shock 

response and expression of virulence genes (Narberhaus et al., 2006). Microbial cells 
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have developed a wide array of thermosensors ranging from DNA to RNA to protein  

(Klinkert and Narberhaus, 2009). 

There are two major heat stress responses in bacteria, depending on the induction 

mechanism (Table 2.3): the heat shock response (HSR) and the high temperature 

response (HTR) (Schumann, 2007). A classical example of HSR is the transfer of E. 

coli growing at 30°C to 42°C and Bacillus subtilis from 37°C to 48°C. HSR genes 

are upregulated by many folds upon temperature shift (Schumann, 2007). However, 

the expression of HSR genes is transient. There is a negative feedback loop (about 10 

minutes after induction) in the expression of HSR genes ensuring that these genes are 

expressed only at two- to three-fold higher than the basal level of uninduced cell. 

HTR genes, on the contrary, are constitutively expressed as long as the cells are 

exposed to the elevated temperature.   

Table 2.3: Summary of heat stress responses (adapted from Schumann, 2007). 

Heat shock response High temperature response 

1. Response to sudden temperature 

increase 

Response to absolute temperature 

2. Temporary expression (Negative 

feedback loop) 

Constitutive expression (Absent of 

feedback loop) 

3. Expression of heat shock genes Expression of high temperature genes 

 

2.3.1 Heat shock response 

Heat shock response has been extensively studied in E. coli (Guisbert et al., 

2008). This response induces the expression of a set of proteins called the heat shock 

proteins. The alternative sigma factor, σ
32

 drives the HSR gene expression rapidly to 

achieve a new steady-state level characteristic of the new temperature (Straus et al., 

1987). The majority of heat shock proteins consist of chaperones and proteases 

which help in the quality control of the proteins produced under stress (Gottesman et 
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al., 1997). Chaperones help to refold incorrectly folded proteins, while proteases 

degrade proteins that are severely misfolded or damaged (Bukau, 1993; Tomoyasu et 

al., 2001).  

Upon exposure to sudden temperature change, the HSR transcripts rapidly 

increase to its peak and are further maintained for another 10 to 15 minutes. The 

transcripts level then decreases to a new steady-state level for the new temperature, 

even though the cells are still subjected to continuous heat stress (Tomoyasu et al., 

1998). The “titration” model was proposed to explain this phenomenon. According to 

this model, since unfolded or misfolded proteins are the substrate for chaperones and 

proteases, the level of HSR is regulated based on the amount of these damaged 

proteins (Straus et al., 1990; Tomoyasu et al., 1998; Guisbert et al., 2004). The 

downregulation of HSR after a short period of induction is crucial for the growth of 

the cells. Severe growth inhibition was observed when HSR genes are overexpressed 

(Herman et al., 1995; Guisbert et al., 2004). 

In hyperthermophilic bacteria Thermotoga maritima, heat shock response was 

evident when the cells were subjected to temperature shift from 80°C to 90°C. It has 

a similar response to mesophilic bacteria although the heat stress regulatory 

strategies may be different (Pysz et al., 2004). 

2.3.2 High temperature response 

The adaptation process to environmental stresses involves two main stages: the 

acute phase and chronic stage. During the acute phase, an immediate response is 

required for survival.  In the chronic phase, the focus is shifted to support 

exponential growth once the cells have adjusted to the new environment (Gunasekera 

et al., 2008). 
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In contrast to HSR that plays its role during the acute phase (sudden exposure), 

HTR deals with the chronic phase (continuous exposure) of the heat stress response. 

HSR is commonly found in mammalian pathogenic bacteria. The host temperature is 

controlled at about 37°C, which is higher than the environmental temperature but not 

lethal to mesophilic pathogens. Upon entry into the host, pathogenic bacteria need a 

signal (in this case the temperature of the host body) to indicate successful invasion 

of the warm-blooded mammal and virulence genes can then be expressed (Konkel 

and Tilly, 2000). 

In a recent study of continuous osmotic and heat stress in E. coli (Gunasekera et 

al., 2008), it was found that there is a poor correlation between the genes that are 

expressed during HSR and HTR. Genes that were classically found to be highly 

expressed during HSR (dnaK, dnaJ, grpE, groEL, groES, clpB) (Richmond et al., 

1999) were found to be only moderately expressed (~1.6 fold) during continuous 

heat stress. Instead, the genes that are involved in sulfur metabolism were highly 

upregulated (at least 4-fold) due to HTR. This study provides further support to 

distinguish the two different heat stress responses (HSR and HTR). 

As mentioned earlier, the process of regulating both responses require highly 

coordinated gene expression. In order to accomplish this, they must be able to sense 

and respond rapidly to the heat stimuli. How can this regulation be accomplished? 

The next section will discuss the roles of RNA as regulators of gene expression. 

2.4 Overview of regulatory RNAs in bacteria 

Bacteria are very versatile and adaptive microorganisms. In order to cope with 

the dynamic environment they live in, different groups of regulator RNAs are used to 

adjust their physiological state. 
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Riboswitches are one group of regulatory RNA that modulates gene expression in 

response to small molecules in the environment. They are part of the mRNA that 

they regulate. The leader sequence of a riboswitch folds into structures that change 

when small molecules are bound to them. This enables them to sense nutrient 

availability around the cell (Grundy and Henkin, 2006). Extensive review for 

riboswitches have been published (Coppins et al., 2007; Winkler and Breaker, 2005) 

Another class of regulatory RNA is the recently discovered CRISPR (clustered 

regularly interspaced short palindromic repeats). These RNAs confer resistance to 

bacteriophage infection (Sorek et al., 2008) and interfere in plasmid conjugation 

(Marraffini and Sontheimer, 2008). CRISPR sequences are highly variable DNA 

regions with homology to bacteriophage and plasmid sequences. They consist of an 

approximately 550 bp leader sequence and a series of repeat-spacer units 

downstream of the leader sequence. About 40% of CRISPR sequences have been 

found in bacteria while as much as 90% have been detected in archaea, thus 

emphasizing its potential broad range importance (Sorek et al., 2008). 

Finally, one of the most extensively studied subset of regulatory RNAs is the 

small RNA (sRNA). This group of regulators exerts their effect most commonly by 

base pairing with RNAs. There are also sRNAs that modulate gene expression by 

interacting directly with proteins (protein-binding sRNA). The next two sections will 

discuss the mechanisms and functions of sRNAs in detail. 

2.5 Characteristics of sRNA 

The first bacterial sRNA, RNAI, was discovered in 1981. RNAI is 108 

nucleotides long and was found to block ColE1 plasmid replication in E. coli by the 

base-pairing mechanism (Stougaard et al., 1981; Tomizawa et al., 1981). The first 
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chromosomally-encoded sRNA was discovered in 1984. It is MicF RNA (174 

nucleotides) from E. coli. This sRNA blocks the translation of the ompF gene that 

encodes the outer membrane porin (Mizuno et al., 1984). Both of these sRNAs and 

many other early sRNAs were serendipitously discovered due to their abundance in 

the cell (Wassarman et al., 1999) or by accident when studying other things. A few 

examples of sRNAs discovered in this manner are MicF, DsrA, and CsrB.  

Small RNAs have been found to exist in both eukaryotes (Brodersen and Voinnet, 

2009) and prokaryotes (Waters and Storz, 2009). Although small RNAs play similar 

roles in modulating gene expression in both types of cells, the nomenclature of this 

class of regulatory RNA has remained non-uniform (Storz and Haas, 2007). In 

eukaryotes, the term non-coding RNA (ncRNA) has been the predominant form of 

naming small RNA although there are papers (Gottesman, 2005; Toledo-Arana et al., 

2007; Repoila and Darfeuille, 2009) that used this term to describe bacterial small 

RNA. MicroRNA (miRNA) is also used widely to denote eukaryotic small RNA. 

Another common term used to describe bacterial regulatory RNA is “sRNA”. 

However, there are bacterial RNAs that act as regulators, are capable of encoding 

proteins and are also not very small such as RNAIII (514 nt) in Staphylococcus 

aureus (Novick and Geisinger, 2008). Therefore, by definition it is neither non-

coding nor small in size. Nevertheless, since the term sRNA has been widely used in 

recent bacterial literature (Storz and Haas, 2007), this term will be used in this thesis 

to denote regulatory small RNAs in bacteria. 

The length of sRNAs is equally ambiguous with many different authors giving 

variable size ranges in their publications (Frohlich and Vogel, 2009; Gottesman, 

2005; Majdalani et al., 2005; Liu et al., 2009). However, it can be summarized as a 

broad range between 20 nt to 550 nt.  
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As of 2009, no three-dimensional structures have been solved for bacterial sRNAs 

(Waters and Storz, 2009). sRNAs that have been experimentally probed for 

secondary structure are also limited. The general sRNA secondary structure begins 

with sequences that are able to fold into a stem-loop and end with a rho-independent 

transcription terminator. These structures help to stabilize the sRNA and it has been 

shown via in vivo stability tests that sRNAs are significantly more stable than 

mRNAs (Vogel et al., 2003; Masse et al., 2003). 

sRNA, just like any other RNA, has to be synthesized in order for it to act. The 

bacterial sRNA transcripts are generally not processed as they do not undergo further 

post-transcriptional modification after being synthesized. These highly structured 

sRNAs usually use the same promoter as other bacterial genes and are ready to be 

used upon synthesis (Gottesman, 2005). Synthesis of miRNA in eukaryotes, on the 

contrary, requires preprocessing and export into the cytoplasm. It is then further 

processed by a ribonuclease known as the Dicer ribonuclease to generate the active 

form (approximately 22 nt) before it is functional in the cells. In some cases, multiple 

miRNA are produced by a single transcript (Xu et al., 2004). sRNA is expressed as 

part of the well-known stress response systems such as iron limitation, oxidative 

stress, low temperature, and carbon metabolism. sRNAs are also synthesized to 

modulate virulence and pathogenesis, biofilm formation, outer membrane synthesis, 

and quorum sensing. Due to its wide array of regulatory functions, it was postulated 

that all major stress responses will involve at least one sRNA as part of its regulatory 

pathway (Gottesman, 2005). Figure 2.1 summarizes the involvement of sRNAs in 

some of the major stress responses in bacteria. 
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Figure 2.1 sRNAs involved in some of the major stress responses in bacteria. Figure 

from (Gottesman, 2005) (Figure 2, Page 401, GOTTESMAN, S. 2005. 

Micros for microbes: non-coding regulatory RNAs in bacteria. Trends 

Genet, 21, 399-404) 
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2.6 Regulatory mechanisms of sRNA 

2.6.1 Levels of gene regulation by sRNA 

There are two major regulatory mechanisms that are used by sRNAs to 

modulate gene expression in cells. They can either base-pair to target messenger 

RNA (mRNA), forming an RNA duplex and affecting the fate of the mRNA, or bind 

to proteins and modify their activity. sRNAs can exert their effect at the post-

transcriptional, translation, and post-translational level. The sRNA-mRNA pairing 

can result in either gene expression activation (transcription initiation, translation 

initiation) or gene expression repression (mRNA degradation, transcription 

termination, translation blockage). Figure 2.2A (cis) and 2.2B (trans) illustrates the 

level of gene regulation by sRNAs.  

 

 

 

 

 

 

 

 

Figure 2.2 Regulation mechanism by sRNA via base-pairing with target mRNA. (A) 

Regulation by cis-encoded sRNA. (B) Regulation by trans-encoded 

sRNA. RBS: Ribosomal binding site. Figure from Waters et al., 2009 

(Figure 2, Page 618, WATERS, L. S. & STORZ, G. 2009. Regulatory 

RNAs in bacteria. Cell, 136, 615-28). 
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2.6.2 sRNA regulation via base-pairing mechanism 

Base-pairing is the most common form of regulation by sRNA (Storz et al., 2005). 

sRNAs in this group can further be separated into two classes based on the location 

they are found. The cis-encoded sRNAs have extensive base-pairing (at least 75 nt) 

with its target mRNA (Brantl, 2007; Wagner et al., 2002), while the trans-encoded 

sRNAs have limited complimentarity with its target and may require the help of an 

RNA chaperone, Hfq, for its action (Aiba, 2007; Gottesman, 2005). 

2.6.2.1 cis-encoded sRNA 

cis-encoded sRNAs are encoded on the same gene locus as the target mRNA 

but is transcribed in the opposite direction as discrete RNA species. This enables it to 

maintain a perfect complementarity to their targets. This RNA species is diffusible 

and highly structured with one to four stem-loops (Brantl, 2007). In the eukaryotic 

system, small interfering RNA (siRNA) is analogous to this class of bacterial sRNA 

(Storz et al., 2005). These sRNAs are approximately 21-25 nucleotides in length, 

derived from exogenous double-stranded RNA (Meister and Tuschl, 2004). They 

have been proposed to confer resistance against foreign RNA (Montgomery, 2004). 

The majority of cis-encoded sRNAs are located at mobile genetic elements 

such as plasmids, transposons, and bacteriophages (Brantl, 2002). This enables the 

sRNA to maintain the appropriate copy number of mobile genetic elements via 

inhibition of primer replication or transposase translation (Brantl, 2007). Plasmid 

encoded sRNAs are expressed constitutively while chromosomally-encoded cis-

encoded sRNAs are expressed only under specific conditions. For example, GadY is 

expressed during stationary phase in E. coli (Opdyke et al., 2004) and IsrR in 

Synechocystis during iron depletion conditions (Duhring et al., 2006). Chromosomal 
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versions of this sRNA are also being discovered but their physiological roles are still 

less understood (Waters and Storz, 2009; Brantl, 2007).  

Another group of cis-encoded sRNAs acts as an antitoxin, repressing the 

translation of toxic proteins that kill when they lose their mobile elements. In E. coli 

the hok/sok loci are present in plasmids (plasmid R1 and F plasmid) (Gerdes et al., 

1990)  and the chromosome (Pedersen and Gerdes, 1999). The expression of hok 

(host killing) mRNA is suppressed by Sok RNA (suppressor of killer). The loss of 

plasmid expressing the Sok RNA has been shown to kill the cells, but the effect of 

losing chromosomally-encoded sRNA remains a debatable subject. One proposed 

model of chromosomally-encoded sRNA is that the toxin-antitoxin module promotes 

slow growth of cells that are under stress, giving them time to recover and adjust to 

the new environment (Unoson and Wagner, 2008; Kawano et al., 2007). Another 

proposed model is that the chromosomal copy serves as a defense against plasmids 

that are homologous to it, inhibiting the expression of the toxin encoded by the 

plasmid. 

There are also cis-encoded sRNAs that control the expression of genes within 

an operon. They are encoded at sequences between two ORFs with complementary 

sequences. In E. coli, GadY sRNA (stationary phase induced) is encoded between the 

gadX and gadW genes. GadY sRNA has complementary sequence to gadXW mRNA 

and causes the cleavage of gadXW to gadX and gadW, increasing gadW levels in the 

cell during stationary phase (Opdyke et al., 2004; Tramonti et al., 2008). 
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2.6.2.2 trans-encoded sRNA 

trans-encoded sRNAs are encoded at distinct chromosomal locations relative 

to their target mRNA.  As described earlier, they only have partial complementarity 

with their targets. The function of many chromosomal trans-encoded sRNAs have 

been elucidated. The function of micro RNA (miRNA) in eukaryotes has been said to 

be analogous to bacterial trans-encoded sRNA (Waters and Storz, 2009; Aiba, 2007; 

Gottesman, 2005). They are approximately 22 nucleotides in length, being cleaved 

from longer stem-loop RNAs by the same enzymes that produce siRNA (cis-encoded 

RNA) (He and Hannon, 2004; Bartel, 2004; Nelson et al., 2003; Storz et al., 2005). 

The locations of the target mRNA and trans-encoded sRNA have very little 

correlation. Each trans-encoded sRNA is capable of base-pairing with multiple 

mRNAs (Papenfort and Vogel, 2009). This capability can be explained by the fact 

that trans-encoded sRNAs require a limited amount of direct contact with the target 

mRNA. In contrast to cis-encoded sRNAs which require perfect complementation 

with the target mRNA, trans-encoded sRNAs use a discontinuous patch of 

complementary sequence to exert its effect. As little as 10 to 25 nucleotides are 

required for successful interaction with target mRNA, but much less nucleotides are 

actually used in regulating the target mRNA. In E. coli’s SgrS sRNA, which 

represses ptsG in glucose metabolism, it has a 23 nucleotide base-pair potential with 

ptsG. However, only 4 single nucleotide mutations in SgrS are significant in the 

downregulation of ptsG (Kawamoto et al., 2006). The fact that a single sRNA can 

modulate a global response for a specific physiological response makes it similar to 

transcription factor but acts at the posttranscriptional level (Valentin-Hansen et al., 

2007; Masse et al., 2007; Bejerano-Sagie and Xavier, 2007).  
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The majority of trans-encoded sRNAs are transiently synthesized under very 

specific growth phase or environmental conditions (Repoila and Darfeuille, 2009). 

This is in contrast to cis-encoded sRNAs that are mostly expressed constitutively. 

The involvement of trans-encoded sRNAs in specific environmental conditions is 

discussed in section 2.6.4.1. 

2.6.3 Facultative requirement of Hfq protein (RNA chaperone) 

Hfq (host factor required for phage Qβ RNA replication) protein is a RNA 

chaperone that facilitates the base-pairing between sRNAs and their mRNA targets. 

This hexameric protein is often required in trans-encoded sRNA regulation of 

mRNA to facilitate the limited complementarity between the sRNA and target 

mRNA (Aiba, 2007; Brennan and Link, 2007; Valentin-Hansen et al., 2004). Hfq 

belongs to the Sm proteins family in eukaryotes which are used in splicing and 

mRNA decay (Sun et al., 2002; Schumacher et al., 2002). It functions by remodeling 

RNAs bound to it and melting secondary structures. 

Almost 50% of the sequenced bacterial genomes contain Hfq homologs (Sun 

et al., 2002). Although many bacteria have the homolog of this protein, the 

requirement of Hfq for sRNA regulation is not compulsory. Jousselin and collegues 

proposed that the need of Hfq is dependent on the overall GC content of bacterial 

genomes, the free energy for sRNA-mRNA pairing, the genome size, and the 

structural variation among Hfq proteins (Jousselin et al., 2009).  

E. coli requires Hfq protein for its trans-encoded sRNA-mRNA interaction. 

A minimum of 22 sRNAs have been reported to require Hfq to function (Majdalani 

et al., 2005). In a hfq deletion strain, sRNAs that require Hfq have a shorter half-life 

compared to wild type (Urban and Vogel, 2007). RNase E is also linked to Hfq. It is 
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recruited for rapid target mRNA degradation or translation repression but the sRNA 

is protected from degradation (Morita et al., 2005). This could probably be due to the 

fact that Hfq binding sites on the sRNA is shared by the RNase E cleavage sites 

(Moll et al., 2003). Hence, Hfq might shelter the sRNA from endonucleolytic attack 

and increases its half-life (Urban and Vogel, 2007). Recently it has been reported that 

the requirement for Hfq can be bypassed in rpoS mRNA regulation by sRNA in E. 

coli if the stability of the sRNA-mRNA complex is high (Soper et al., 2010). This is 

contrary to a previous study (Sledjeski et al., 2001) that shows that Hfq is a must for 

rpoS mRNA regulation.  

In the pathogens Vibrio cholerae, Vibrio harveyi, and Listeria 

monocytogenes, Hfq requirement is facultative. Four sRNAs in V. cholerae (Qrr1-

Qrr4), which affects gene expression during high cell density (Lenz et al., 2004), 

requires Hfq to function (Hammer and Bassler, 2007). However, V. harveyi VrrA, 

which downregulates ompA porin mRNA, functions in the absence of Hfq in vivo 

(Song et al., 2008). In L. monocytogenes, co-immunoprecipitation with Hfq reveals 

three sRNAs (LhrA-LhrC), indicating that Hfq is required for this sRNA to function 

(Christiansen et al., 2006). However, there are sRNAs (RliB, RliE, RliI) from this 

bacterium that regulate their targets in vivo without the need of Hfq (Mandin et al., 

2007). 

In some Gram-positive bacteria, Hfq requirement by sRNA-mediated gene 

regulation is facultative.  Relative to the abundance of Hfq protein in E. coli, the hfq 

gene is present at very low level in S. aureus, a low GC Gram-positive bacterium 

(Bohn et al., 2007). The hfq deletion mutant did not show any significant phenotypic 

differences when cultured at 1000 different conditions as compared to wild type. In 

B. subtilis, an Hfq homolog is encoded by the ymaH gene (Silvaggi et al., 2005). 
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Two experimentally studied sRNAs, SR1 (Heidrich et al., 2006) and FsrA (Gaballa 

et al., 2008), do not require YmaH for their function. These findings suggest that Hfq 

is not compulsory in sRNA-mRNA regulation (Bohn et al., 2007). 

2.6.4 Positive and negative regulation by sRNA base-pairing 

2.6.4.1 Negative regulation 

trans-encoded sRNA gene regulation mostly results in downregulation of its 

target mRNA. This negative regulation could be achieved by translational inhibition, 

mRNA degradation, or a combination of both mechanisms (Waters and Storz, 2009; 

Aiba, 2007; Gottesman, 2005).  

Translational inhibition is achieved by the binding of sRNA to the 5’ 

untranslated region (5’ UTR) of the target mRNA, which blocks the binding of 

ribosome to the ribosome binding site (RBS). There are sRNAs that bind far 

upstream from the start codon but manage to repress the translation of its target 

mRNA, such as GcvB and RyhB sRNA. 

2.6.4.2 Positive regulation 

Although most of the sRNA-mRNA base-pairing involves negative 

regulation, there are 2 direct base-pairing mechanisms known to date that enable 

sRNA to positively regulate its target mRNA. They are the “anti-antisense 

mechanism” and 3’ transcript stabilization (Frohlich and Vogel, 2009). There is also 

an indirect regulation mechanism that uses RNA mimicry, such as GlmYZ sRNA 

(described in section 2.6.5) and MicM sRNA, that activates the gene expression 

(Rasmussen et al., 2009). Figure 2.3 summarizes all of these mechanisms. 


