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Abstrak 
 

Pengenalan: Kecederaan saraf brakial adalah sesuatu kecederaan yang 

memudaratkan. Kecederaan tersebut melibatkan 5% kes-kes politrauma yang 

diakibatkan oleh kemalangan trafik. Matlamat utama rawatan kecederaan saraf brakial 

adalah pemulihan tenaga motor. Perawatan kecederaan saraf brakial secara 

pemindahan graf saraf boleh memberikan perlindungan kepada saraf motor. Namun 

begitu kesan rawatan pembedahan adalah sangat terhad. Rawatan secara perubatan 

perlu diberikan untuk mengekalkan fungsi yang wujud pada saraf motor. Minocycline 

sudah terbukti untuk membekalkan perlindungan kepada sel-sel saraf dalam penyakit 

angin ahmar dan penyakit  pengelupasan selaput saraf. Minocycline adalah antibiotik 

yang mudah didapati, ekonomik, dan berupaya untuk merawat radangan dan 

kerosakan sel sel saraf. Literasi saintifik telah menunjukkan bahawa Minocycline 

berupaya untuk menghasilkan kesan perlindungan kepada sel-sel saraf motor dengan 

prencatan sel microglia dan Nitric Oxide Synthase. Kedua-dua kesan terapiutik ini 

dapat mengurangkan radangan dan degenerasi saraf setelah mendapat kecederaan 

‘avulsion’ saraf brakial.   

 

Objektif: Kajian ini adalah untuk mengkaji kesan Minocycline yang selama ini 

digunakan sebagai antibiotik kepada hayat sel saraf motor dan juga penghasilan sel 

Microglia.  

 

Metodologi: Kajian eksperimental ini menggunakan tikus dewasa Sprague Dawley di 

mana urat saraf segmen C7 tikus ditarik sehingga putus daripada saraf tunjang. 

Transeksi fizikal ini akan dipastikan untuk berlaku sebelum ganglion saraf. Untuk 

mendapatkan validasi saintifik, saraf yang terputus telah diperhatikan di bawah 
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Mikroskop untuk memastikan akar-akar saraf dicabut bersama-sama dengan 

tangkainya. Tikus yang mana transeksi saraf berlaku selepas ganglion telah 

dikecualikan daripada kajian ini. Tikus-tikus yang mempunyai kecederaan saraf 

brakial telah dirawat dengan ‘intraperitoneal’ dan ‘intrathecal’ Minocycline 50mg/kg 

untuk seminggu dan 25mg/kg untuk seminggu yang selanjutnya untuk pemulihan sel 

saraf motor. Selepas enam minggu, saraf tunjang tikus tersebut akan diambil dan 

ujikaji histokimia dijalankan untuk mengira sel saraf motor dan sel Microglia. 

 

Keputusan: Kajian ini menunjukkan bahawa hayat sel saraf motor telah berkurang 

dan penghasilan sel Microglia bertambah selepas tikus Sprague Dawley mendapat 

kecederaan saraf brakial. Kajian ini juga mendapati bahawa Minocycline berupaya 

untuk mengurangkan bilangan sel Microglia. Rawatan secara ‘intraperitoneal’ telah 

mendatangkan kesan yang bermanfaat dari segi perlindungan sel saraf motor melalui 

perencatan aktiviti sel microglia. Namun begitu apabila ubat tersebut telah disuntik 

secara ‘intrathecal’, bukan sahaja ia mengancam kehidupan sel saraf motor, malah ia 

juga mendatangkan kesan negatif lain yang memudaratkan. 

 

Kesimpulan: Penggunaan Minocycline mempunyai dua implikasi. Pengurangan sel 

Microglia dengan menggunakan Minocyline dalam dos yang optimal dapat 

mengurangkan kematian sel saraf selepas kecederaan saraf brakial. Namun, apabila 

keberkesanan dan konsentrasi ubat Minocycline ditingkatkan, ubat ini boleh meracuni 

sel-sel saraf motor melalui perencatan tindak balas sel glia dan degenerasi walerian. 
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Abstract 

 

Introduction: Brachial plexus injuries are debilitating injury affecting young 

population, which comprise 5 % of all polytraumas caused by road traffic accidents. 

Currently the primary aim for the management of root avulsion of the brachial plexus 

is motor recovery.  However, immediate repair or nerve grafting offers some degree 

of protection to the motoneurons but is clinically limited, so there remains a need for 

medical approaches to maintain the viability of the injured motor neurons. 

Minocycline has been proven to show its neuroprotective effect in stroke and 

demyelination disease. It is a widely available, cost effective antibiotic with anti-

inflammatory and anti-apoptotic properties. Literatures have shown that Minocycline 

exert its neuronal protection effect primarily via Migroglial inhibition and Nitric 

Oxide Synthase downregulation. Both of the effects are key therapeutic means to 

ameliorate neuroinflammatory and degenerative process following secondary 

traumatic avulsion injury.  

 

Objective: To study the Neuroprotective effect of Minocycline in adult Sprague 

Dawley mouse that suffer from Brachial Plexus Injury.  

 

Methods: The C7 nerve root was avulsed via anterior extravertebral approach. The 

traction force transected the ventral motor nerve roots at the preganglionic level. The 

avulsed rootles can be seen under the microscope for validation of the avulsion rodent 

model in which the avulsion is properly done at the preganglionic level. The rodents 

in which the transection takes place distal to the rootlets were excluded from the study 

Intraperitoneal and intrathecal Minocycline 50mg/kg for the first week and (25mg/kg 
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for the seconda week) was administered to promote motor healing. The spinal cord 

was harvested at 6 weeks after the injury to analyze the structural changes following 

avulsion injury and the pharmacological intervention.  

 

Results: Motor neuron death and microglial proliferation was observed following 

traumatic avulsion injury of the ventral nerve root. The administration of Minocycline 

to treat rodents suffering from avulsion injury was capable to suppress the Microglial 

proliferation. Intraperitoneal administration of Minocycline shows some degree of 

beneficial effect to prolong the motor neuron survival by inhibiting the Microglia 

activation and proliferation, thus hampering apoptosis of the motor neuron. However 

when Minocycline was administered via intrathecal route to increase the 

bioavailability of the therapeutic agent, not only that it compromises the motor neuron 

survival, some other deleterious effect were also demonstrated.  

 

Conclusion: Microglial suppression via Minocycline can have double effect. 

Moderate dosage of Minocycline may be beneficial towards motor neuron survival. 

On the other hand, high concentration of Minocycline ( similar drug dosage with 

increased potency via targeted drug delivery) could be neurotoxic by causing 

impairment of the Glial response and Wallerian degeneration, which is a pre-requisite 

to regeneration.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of study 

Brachial plexus injuries comprise 5% polytraumas caused by motor vehicle accidents 

in European country (Radek et al., 2014).  The exact incidence figure of brachial 

plexus injury in Asia is not available. It is a mutilating injury as it commonly affects 

young men in their productive age. It cripples the function of one, or even two limbs at 

rare occasions, leaving a devastating effect on the unfortunate patient. It results in loss 

of neurological function, dependence in daily living, employment, depression and 

even suicidal tendency. Brachial plexus injury has a serious socioeconomic impact 

since they affect the function and quality of regular life to a great extent. Injuries 

resulting nerve transection only produce minimal or even undetectable motor neuron 

degeneration (Thatte et al, 2013).  In contrast, a ventral root avulsion injury occurred 

during brachial plexus injury, with the separation of motor axons from the surface of 

the spinal cord is followed by a progressive and marked loss of the vast majority of 

axotomized motoneurons over several weeks after the lesion in rat models (Brabizan et 

al., 2013, Hoang, 2003). Ventral root avulsion injury in the Rhesus Macaque resulted 

in a marked loss of axotomized motoneurons and an astroglial reaction in the ventral 

horn (Marcus, 2013).  

 

Non-Astrocyte Glial cells were discovered by a Spanish neuroanatomist called Ramon 

y Cajal and identified it as the “third element” of the central nervous system in 
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distinction from the “first element” (neurons) and “second element” (astrocytes) (Del 

Rio-Hortega, 1919). After a century after his great discovery, recent researches and 

studies in microglia have centered not only on understanding their basic biological 

functions but also on their therapeutic potential during pathological conditions. Recent 

evidence indicates the potential promise of microglia as targets for therapeutic 

intervention during pathology. Eyo and Dailey (2013) summarized recent evidence 

suggesting that microglia perform critical functions during development of the nervous 

system, including roles in angiogenesis, induction of apoptosis, phagocytic clearance 

of dead cells, and synapse remodeling (Eyo & Dailey, 2013).  In cases of Brachial 

Plexus Injury, the ventral root avulsion injury triggers an activation of microglia 

within the motor nuclei (Novikov et al., 2000). A robust inflammatory response, 

which involves the activation of glia and neurons as well as cerebral accumulation of 

leukocytes, following traumatic injury is well known and contributes toward the 

development of the secondary injury. Microglial cells respond to traumatic injury to 

the nervous system with proliferation and migration toward the affected area. 

However, nobody is sure of the microglial response to axonal growth. Several reports 

suggest that glial cells might act as a double-edged sword being either detrimental or 

protective depending on the context (Biber, 2007).  For instance, activated microglia 

synthesize potentially neurotoxic molecules such as reactive oxygen species, and 

inflammatory cytokines. Conversely, microglia release some neuroprotective 

molecules in specific conditions (Graeber, 2010). They released chemokines that 

trigger the Glial response, in which the activated astrocytes also release a wide variety 

of neuroprotective and/or neurotoxic mediators (Sofroniew, 2010). Reactive microglia 
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may affect axonal regeneration in a variety of ways. They produce a proregenerative 

factors such as insulin-like growth factor-1 (IGF-1) (Aldskogius, 2001) and a 

neurotoxic compounds such as free radicals (Boje & Arora, 1992) and glutamate 

(Giulian et al., 1993).  

 

Minocycline hydrochloride is a semi-synthetic derivative of tetracycline. It is a potent 

neuroprotective agent, act by inhibiting microglial activation (Stirling et al., 2004). 

Minocycline alleviates the degree of neuropathology in animal models in stroke, spinal 

cord injury, multiple sclerosis, and neurodegenerative diseases (Parkinson’s Disease 

and ALS) (Yrjanheikki et al., 1998; Arvin et al., 2002). Using a lumbosacral ventral 

root avulsion model for cauda equina injury, Huong et al. (2008) demonstrated 

significant protection of the drug to axotomized motoneurons against retrograde 

degeneration and death.  

 

Minocycline may also attenuate the development of hyperesthesia and allodynia after 

spinal nerve transection injury in the rat (Raghavendra et al., 2003). By inhibiting the 

microglial activation, and also recruitment of T-cell, it was proven to reduce graft 

rejection & promote survival of neuronal transplants in rat model (Michel-Monigadon 

et al., 2010). Havton and Carlstedt (2009) suggested that minocycline can be used to 

improve functional recovery after nerve reimplantation following proximal nerve root 

injury. In some studies, minocycline has failed to show beneficial effect, especially in 

neurodegenerative diseases (Smith et al., 2003; Fernandez-Gomez et al., 2005).  
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Mechanism of Minocycline is not fully understood. However, it crosses blood brain 

barrier readily. It has a strong anti-inflammatory effect and has a good safety record. It 

has been approved by FDA to use to suppress apoptotic pathway (Stirling et al., 2004), 

to reduce the activation of microglia after a peripheral nerve injury, in part by 

inhibiting the expression of p38 mitogen activated protein kinase (MAPK) (Piao et al., 

2006) and to reduce pro-nerve growth factor in microglia and thereby reduce death of 

oligodendrocytes after a traumatic spinal cord injury (Yune et al., 2007). 
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1.2 Problem Statement 

Previous studies showed controversial effect of migroglial cells towards axonal 

regeneration. Therefore, we are still not sure of the effect of microglial activation to 

the axonal growth. Previous studies had shown the beneficial effects of minocycline 

(Raghavendra et al., 2003; Stirling et al., 2004; Piao et al., 2006; Yune et al., 2007; 

Havton & Carlstedt, 2009; Michael-Monigadon et al., 2010). However, there were 

also few studies that failed to show the beneficial effects of minocycline (Smith et al., 

2003; Fernandez-Gomez et al., 2005). Therefore, the beneficial effects of minocycline 

on the avulsion injury are still controversial. Study of Chan et al (2001) showed that 

injured neonatal motoneurons can survive and reinnervate peripheral muscle targets 

following inhibition of caspases which is another effect of Minocycline but it is still 

unsure whether Minocycline can be used to promote axonal regeneration in the 

cervical area. 
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1.3 Research objectives 

General objective: To determine the neuroprotective effect of minocycline in rodent 

spinal root avulsion injury. 

Specific objectives: 

1. To confirm the microglial cell activation following avulsion injury. 

2. To observe the effect of microglial cells activation towards motor neuron 

(axonal growth). 

3. To determine the effect of minocycline towards motor neuron (axonal growth). 

4. To determine the effect of minocycline towards microglial cells. 

5. To determine the effect of minocycline towards nitric oxide expression.  
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1.4 Research Questions 

1. Are the microglial cells will be activated following avulsion injury? 

2. What are the effects of microglial cells activation towards motor neuron 

(axonal growth)? 

3. What are the effects of minocycline towards motor neuron (axonal growth)? 

4. What are the effects of minocycline towards microglial cells? 

5. What are the effects of minocycline towards nitric oxide expression? 
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1.5 Research Hypotheses 

 

Hypothesis 1 

HO: The number of motor neurons (axonal growth) are same between the treatment 

groups (minocycline) and control group (normal saline).  

HA: The number of motor neurons (axonal growth) are different between the 

treatment groups (minocycline) and control group (normal saline). 

 

Hypothesis 2 

HO: The number of microglial cells are same between the treatment groups 

(minocycline) and control group (normal saline).  

HA: The number of microglial cells are different between the treatment groups 

(minocycline) and control group (normal saline). 

 

Hypothesis 3 

HO: The number of nitric oxide expression are same between the treatment groups 

(minocycline) and control group (normal saline).  

HA: The number of nitric oxide expression are different between the treatment groups 

(minocycline) and control group (normal saline). 
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1.6 Significance of study 

 

By knowing the effect of microglial activation to the axonal growth, a therapeutic 

agent to promote or inhibit microglial cells can be applied to promote axonal growth 

following avulsion injury. Data from extensive series of researches showed good 

regenerative result from nerve reimplantation. If the promotional effect of 

Minocycline towards axonal growth can be determine and assured, then a combination 

of both Minocycline & nerve reimplantation can be performed to achieve better result. 

The anti-inflammatory effect of Minocycline can also reduce the rate of graft rejection. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Brachial plexus anatomy and spinal root avulsion injures  

Brachial plexus is a network of nerves formed by the anterior rami of the lower four 

cervical nerves (C5-8) and the first thoracic nerve (T1). It exits the spine and descend 

through the cervicoaxillary canal of the neck to reach the armpit, arm and hands. It is 

divided into roots, trunks, divisions, cords and branches of peripheral nerves. There 

are 5 terminal branches, and other collateral branches that leave the plexus at various 

points. Figure 1 show the schematic diagram of the human brachial plexus anatomy. 

Spinal root avulsion injures are the injuries to the axons of motor and sensory neurons 

at the junction between the spinal cord and the ventral root. Brachial plexus avulsion 

can present as two main types: upper and lower (Carlstedt, 2009). Upper avulsions 

involving C5-C7 occurs from excessive lateral neck flexion away from the shoulder, 

leading to loss of rotation capacity in the shoulder muscles, arm flexors and hand 

extensor muscles and results in Erb’s palsy. Lower avulsions involving C8 and T1 

occurs through sudden traction force on the arm away from the shoulder with 

subsequent paralysis of intrinsic muscles of the hand and flexors of the wrist and 

fingers resulting in Klumpke’s palsy.  
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Figure 1. Schematic Diagram of human Brachial Plexus 

Figure 1 depicts the anatomical structure of human brachial plexus. It is divided into 
roots, trunks, divisions, cords and branches of peripheral nerves. There are 5 terminal 
branches, and other collateral branches that leave the plexus at various points. 
 
(Source:  Robert, 2013) 
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There are 2 types of brachial plexus injuries. In the first type, the nerve may be 

partially or totally ruptured distal to the intervertebral foramina (postganglionic 

injury). The second type (avulsion) refers to an injury in which a root or rootlets have 

been torn from the spinal cord (pre-ganglionic injury). Due to the anatomy, ruptures 

are more common in the superior part of the plexus (C5-C6) whereas avulsions are 

more frequent in the inferior part (C7-T1). Because of its proximity to the Ganglion 

Stellatum, the latter is often associated with Horner’s sign. An avulsion is one of the 

most severe nerve injuries that patients can experience, often with permanent loss of 

function and a majority of the patients reporting chronic and aggravating pain.  
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Figure 2. Pre-ganglionic (Avulsion) Injury of the Brachial Plexus Root (Figure 2a 
on top). Post-ganglionic transection injury of the Brachial Plexus ( Figure 2b ). 

There are two types of injury that can occur: avulsion injuries, as shown in figure 2, 

When the injury to the nerve is proximal to the DRG, it is called preganglionic, and 

when it is distal to the DRG, it is called postganglionic. (Adapted from Moran et al. 

2005) 

 
 Lesions proximal to the Dorsal Root Ganglion  (DRG) and on the rootlets from the 

anterior horn cell on the motor nerve are Pre-ganglionic injuries. The lesions distal to 

those structures are Post-ganglionic Injuries. Figure 2 illustrated the mechanisms that 

lead to both types of injuries. 

  

 

 

 

 

 

                       

 

Figure 2a 
 
Figure 2b 
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Adult brachial plexus injury remains a dilemma to many surgeons, especially when 

planning to reconstruct cases of total root avulsion.  Different degrees and different 

levels of injury require different approaches of reconstruction.  Chuang (2010) 

classified brachial plexus injury into 4 levels as shown in Table 1. 

 

 

Table 1. Chuang’s Classification of Brachial Plexus Injury 

Type of Injury Description 
Level 1 Preganglionic root injury including spinal cord, rootlets, and root 

injuries. 
 

Level 2 Postganglionic spinal nerve injury limiting the lesion to the 
interscalene space and proximal to the suprascapular nerve. 
 

Level 3 Preclavicular and retroclavicular BPI including trunks and 
divisions. 
 

Level 4 Infraclavicular BPI including cords and terminal branches 
proximal to the axillary fossa. 

 

 

Doi et al developed new Magnetic Resonance Imaging classification to 

demonstratestatus of cervical nerve roots in Brachial Plexus Injuries. He divided 

Brachial Plexus Injuries into 4 major categories, namely  

 

1. Normal Rootlets 

2. Injured Rootlets 

3. Avulsion 

4. Meningoceles 
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The radiological classification provides valuable information to assess the nerve 

rootlets and decide whether or not to proceed for surgical exploration, primary nerve 

repair and reconstruction ( Doi et al, 2002).  

 

Electrophysiological tests are essentially important to confirm the diagnosis, site of 

lesion, and determine the severity of the injury. Both Nerve Conduction Study, and 

Electromyography (EMG) should be performed three to four weeks after the injury 

when the impulse transmission is lost owing to Wallerian degeneration. Compound 

Muscle Action Potential (CMAP) is generally low in Brachial Plexus Injury and it is 

related to the amount of functional muscles. Sensory Nerve Action Potential (SNAP) 

is usually normal in Pre-ganglionic lesion simply due to its cell body location at the 

distally located Dorsal Root Ganglion. Therefore a normal SNAP with an insensate 

dermatome and low CMAP denotes Preganglionic lesion with less favourable 

outcome. Denervation ( Fibrillation potential) is seen as early as 2 weeks in proximal 

muscles, and 3-6 weeks in distal muscles. It carries unfavorable prognosis for the 

patient. Historically, the Seddon classification system has been used to describe the 

peripheral nerve injuries. The Neurophysiological parameters, i.e. Conduction 

Velocity, CMAP, SNAP, and Denervation are incorporated into the Sedon’s system 

for prognostication and decision making for surgeon. Three groups of Brachial Plexus 

Injuries were described, namely Neuropraxia, Axonotmesis and Neurotnomesis. 

Neuropraxia defined presence of conductional dysfunction of the nerve in the absence 

of macroscopic lesion. Neuronal transmission is temporarily interrupted at site of 

lesion. Conduction velocity is normal. CMAP can be normal or reduced. SNAP is 
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reduced. Denervation evidence in EMG is absent. Axonotmesis described axon 

transection with intact perineurium and epineurium. Conduction velocity is normal or 

reduced. CMAP is reduced. SNAP is reduced. Neuronotmesis is the transection of the 

axon, together with all covering layers of the nerve (Sedon, 1943). All NCS 

parameters (Conduction velocity, CMAP and SNAP) are absent with presence of 

spontaneous fibrillation in EMG denoting denervation. 

 

How motor neurons respond to avulsion injury is not fully understood and there is not 

a cure for such injury. However, previous study showed that spinal root avulsion but 

not the distal axotomy results dramatic motor neuron degeneration. Both necrosis and 

apoptosis are involved in the degeneration of injured motor neurons. Axonal injury of 

motor neurons also results in changes of intracellular molecules as detected by cDNA 

microarray.  

 

Chai et al. (2000) studied the morphological and biochemical changes of motor 

neurons in response to root avulsion injury and also the regeneration and functional 

recovery of motor neurons after root avulsion. They had found that root avulsion in 

adult rats results in dramatic motor neuron loss which is coincident with the de novo 

expression of neuronal nitric oxide synthase (NOS).  Avulsion induced motor neuron 

death occurs between 2-6 weeks post-injury. Chai et al. (2000) had concluded that 

spinal motor neurons die quickly following root avulsion and re-implantation of 

avulsed ventral root allowed the regeneration of motor neurons into their axons into 

the original ventral root after root avulsion. Study conducted by Li et al. (1995) also 
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showed that injuring adult motoneuron axons at the exit point of the nerve from the 

spinal cord (avulsion) resulted in a 70% loss of motoneurons by 3 weeks following 

surgery and a complete loss by 6 weeks.  

 

Besides motor neuron degeneration, the ventral root avulsion injury also triggers an 

activation of microglia within the motor nuclei (Novikov et al., 2000). Microglial cells 

respond to traumatic injury to the nervous system with proliferation and migration 

toward the affected area. Wu et al. (2008) studied the late effects of chronic 

experimental autoimmune encephalomyelitis in C57BL/6 mice on the spinal cord gray 

matter. Autoimmune encephalomyelitis (EAE) results in inflammatory white matter 

lesions in the central nervous system. Their findings showed that EAE induced marked 

astrocytic, microglial, and macrophage activation in the ventral horn gray matter. 
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2.2. Brachial Plexus Anatomy in Rat Models 

Most of the experimental studies on spinal cord and peripheral nerve injuries were 

using rats sample.  Although there was a clear homology with the elements of the 

brachial plexus in the rat and in man, the origin of the different terminal and collateral 

branches were found to be different in these two species (Pais et al., 2010).  The rat’s 

spinal cord is made up of 34 segments: 8 cervical (named C1 to C8), 13 thoracic (T1 

to T13), 6 lumbar (L1 to L6), 4 sacral (S1 to S4), and 3 coccygeal (Co1 to Co3).  A 

brachial plexus morphology study in 30 rats by Angelica-Almeida et al. (2013) 

demonstrated that brachial plexus was composed of branches originating from the 

ventral aspect of C4 to C8 and T1.  In 57% of cases, the ventral aspect of T2 

established an anastomosis with the ventral aspect of T1, thus contributing to the 

formation of the brachial plexus.  This branch from T2, as well as the branch from C4 

to the brachial plexus, was smaller than the remaining branches that formed the roots 

of the plexus.  The brachial plexus roots emerged between the anterior and middle 

scalene muscles, forming a flattened plexus below the clavicle.  The lateral, medial 

and posterior cords of the plexus were not clearly seen compared to those in human.  

The median nerve was the thickest terminal branch of the brachial plexus in rats, and 

almost always originated from three different roots.  A branch from the second and/or 

the third intercostal nerve to the medial brachial and medial antebrachial cutaneous 

nerves was found in 87% of cases.  The rat’s brachial plexus anatomy and the arterial 

supply is demonstrated in Figure 3.  
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Figure 3. Right Brachial plexus and the arterial supply in rat 

Ventral aspect of a right forepaw dissection showing several of the terminal and 

collateral branches of the brachial plexus, and their association with several major 

arterial trunks (4X magnification).  1- Axillary nerve; 2- Musculocutaneous nerve; 3- 

Radial nerve; 4- Median nerve; 5- Ulnar nerve; 6- Medial brachial cutaneous nerve; 8- 

Dorsal scapular nerve; 9- Suprascapular nerve; 10- Nerve to subclavius muscle; 11- 

Upper subscapular nerve; 12- Lower subscapular nerve; 15- Lateral pectoral nerve; 

16- Medial pectoral nerve; 18- Axillary artery; 19- Brachial artery; 20- Acromial 

arterial trunk.  

(Angelica-Almeida et al., 2013) 
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Ventral aspect of a right forepaw dissection showing several of the terminal and 

collateral branches of the brachial plexus, and their association with several major 

arterial trunks (4X magnification).  1- Axillary nerve; 2- Musculocutaneous nerve; 3- 

Radial nerve; 4- Median nerve; 5- Ulnar nerve; 6- Medial brachial cutaneous nerve; 8- 

Dorsal scapular nerve; 9- Suprascapular nerve; 10- Nerve to subclavius muscle; 11- 

Upper subscapular nerve; 12- Lower subscapular nerve; 15- Lateral pectoral nerve; 

16- Medial pectoral nerve; 18- Axillary artery; 19- Brachial artery; 20- Acromial 

arterial trunk. 

 

The spinal cord is divided into spinal cord segments.  Each segment gives rise to 

paired spinal nerves.  Ventra and dorsal spinal roots arise as a series of rootlets (Figure 

4).  A spinal ganglion is present distally on each dorsal root.  Each ventral root (also 

named the anterior root, radix anterior, radix ventralis, or radix motoria) is attached to 

the spinal cord by a series of rootles that emerge from the ventrolateral sulcus of the 

spinal cord.  Unlike the dorsal root fibers that are arranged in a neat line at their 

emergence from the spinal cord, ventral root fibers form an elliptical area named the 

anterior root exit zone (AREZ).  The ventral roots predominantly consist of efferent 

somatic motor fibers (thick alpha motor axons and medium-sized gamma motor axons 

derived from nerve cells of the ventral column (Watson et al., 2009). 

 

Each dorsal root (also known as the posterior root, radix posterior, radis dorsalis or 

radiz sensoria) is attached to the dorsolateral sulcus of the spinal cord by a series of 

rootlets arranged in a line, the dorsal root entry zone (DREZ).  In the experimental 
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study using rat model, the avulsion surgery was done by separating both the ventral 

and dorsal roots at the junction between their attachment to the spinal cord, which 

were the AREZ and DREZ (Watson et al., 2009). Figure 4 demonstrated the cut  

dissection showing the ventral surface of the spinal cord, as well as the ventral and 

dorsal rootlets.  Figure 5 showed the histological section of the rat’s spinal cord. The 

junction between spinal cord and spinal roots is circled (blue, dorsal root entry zone, 

DREZ; red = anterior root exit zone, AREZ). Figure 6 showed the relationship 

between the spine and the brachial plexus in which every spinal nerve root comes from 

the intervertebral foramen above its synonymous lamina.  
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Figure 4.  Dorsal and ventral roots of spinal nerves 

(Watson et al., 2009) 

 

This is a dissection showing the ventral surface of the spinal cord and the ventral and 

dorsal rootlets.  Groups of rootlets form the dorsal and ventral roots of each spinal 

nerve.  The dura and arachnoid have been removed to expose the spinal cord.  The 

junction between spinal cord and ventral root (anterior root exit zone, AREZ) is 

labeled **. 

 

*
* 
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Figure 5. Histological section of a spinal cord in rat  

(Watson et al., 2009) 

 

 

The junction between spinal cord and spinal roots is circled (blue, dorsal root entry 

zone, DREZ; red = anterior root exit zone, AREZ). 
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Figure 6. The relationship between the spine and the brachial plexus: Every 
spinal nerve root comes from the intervertebral foramen above its synonymous 
lamina. The cervical plexus is also illustrated. T, thoracic; C, cervical; a, fifth 
cervical nerve root; b, sixth cervical nerve root; c, seventh cervical nerve root; d, 
eighth cervical nerve root; e, first thoracic nerve root; f, subclavicular artery; g, 
first rib; h, second rib; i, cranium; f, spinal cord. 
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