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TRANSESTERIFIKASI MINYAK MASAK KELAPA SAWIT BARU DAN 
SISA MENGGUNAKAN PEMANGKIN KALSIUM OKSIDA DISOKONG 

OLEH KARBON TERAKTIF  
 

ABSTRAK 

 

Dalam penyelidikan ini, metil ester (ME) telah dihasilkan daripada minyak 

masak kelapa sawit yang baru (VPO) dan sisa (WPO) dengan menggunakan sejenis 

pemangkin yang baru dijana iaitu kalsium oksida disokong oleh karbon teraktif 

(CaO/AC) sebagai pemangkin heterogen. Kaedah permukaan sambutan (RSM) 

berdasarkan rekabentuk komposit berpusat (CCD) telah digunakan untuk 

mengoptimumkan aktiviti pemangkin dengan cara mengkaji kesan parameter iaitu 

jumlah CaO yang dimuatkan di atas karbon teraktif, suhu dan masa kalsinasi. 

Keadaan yang optimum untuk aktiviti pemangkin dalam proses transesterifikasi VPO 

adalah seperti berikut: 13.18 peratusan berat CaO dimuatkan di atas karbon teraktif, 

suhu 540 °C dan tempoh masa 2 jam untuk proses kalsinasi yang telah menghasilkan 

kandungan ME sebanyak 77.35%. Kajian tentang keadaan yang optimum untuk 

proses transesterifikasi VPO dan WPO telah dijalankan menggunakan kaedah RSM. 

Keadaan yang optimum untuk proses transesterifikasi VPO yang dicapai adalah: 1 

jam 21 minit masa tindakbalas, 15:1 nisbah molar metanol kepada minyak, 190 °C 

suhu tindakbalas dan 5.5 jumlah peratusan pemangkin berdasarkan berat minyak. 

Manakala, keadaan yang optimum untuk proses transesterifikasi WPO yang dicapai 

adalah: 2 jam 22 minit masa tindakbalas, 15:1 nisbah molar metanol kepada minyak, 

170 °C suhu tindakbalas dan 5.5 jumlah peratusan pemangkin berdasarkan berat 

minyak. Keputusan menunjukkan jumlah kandungan ME adalah 80.98% bagi VPO 

dan 77.32% bagi WPO. Kajian tentang kebolehan untuk diguna semula pemangkin 

yang terpakai telah menunjukkan penurunan daripada segi aktiviti pemangkin di 

 xvi



mana kandungan ME adalah 79.80%, 57.92% dan 41.17% untuk kitaran yang 

pertama, kedua dan ketiga bagi transesterifikasi VPO. Corak yang serupa telah 

ditunjukkan dalam transesterifikasi WPO dengan penurunan kandungan ME kepada 

76.30%, 43.98% dan 31.26% bagi kitaran yang pertama, kedua dan ketiga. Kajian 

tentang penjanaan semula pemangkin telah menunjukkan bahawa pencapaian 

pemangkin dapat dikekalkan selepas dua kitaran proses transesterifikasi VPO di 

mana kandungan ME adalah 80.98%, 80.91% dan 65.32% bagi setiap kitaran. 

Manakala penurunan aktiviti pemangkin yang ketara telah dilihat dalam 

transesterifikasi WPO dengan penurunan kandungan ME dari 77.32%, 57.02% dan 

52.48% bagi setiap kitaran. Hasil kajian transesterifikasi VPO dan WPO 

menggunakan pemangkin CaO/AC telah menunjukkan bahawa pemangkin in 

mempunyai potensi yang bagus untuk digunakan di dalam penghasilan biodiesel. 

Kajian juga menunjukkan ME yang diperolehi dari transesterifikasi VPO dan WPO 

mempunyai ciri-ciri bahan bakar yang mencapai standard ASTM D6751 dari segi 

kelikatan dan ketumpatan. Kaedah penghasilan pemangkin yang ringkas, kos bahan 

mentah yang murah, pemisahan produk dan pemangkin yang mudah dan warna ME 

yang cerah serta glycerol tanpa warna yang dihasilkan adalah antara kelebihan 

pemangkin heterogen yang telah dihasilkan di dalam kajian ini.          
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TRANSESTERIFICATION OF VIRGIN AND WASTE COOKING PALM 
OIL USING CALCIUM OXIDE CATALYST SUPPORTED ON ACTIVATED 

CARBON 
 

ABSTRACT 

 

In this present study, methyl ester (ME) was produced by transesterification 

of virgin cooking palm oil (VPO) and waste cooking palm oil (WPO) using newly 

developed calcium oxide catalyst supported on activated carbon (CaO/AC) as a 

heterogeneous catalyst. Response surface methodology (RSM) based on central 

composite design (CCD) was used to optimize the catalytic activity by investigating 

the effect of CaO loading amount on AC, calcination temperature and calcination 

time. The optimum conditions for catalyst activity in VPO transesterification was 

obtained as follows: 13.18 wt% of CaO precursor on AC, 540 ºC calcination 

temperature and 2 h calcination time which produce the ME content of 77.35%. The 

study on the optimum conditions for transesterification of VPO and WPO were 

conducted using RSM. The optimum conditions for VPO transesterification are: 1 h 

21 min reaction time, 15:1 methanol to oil molar ratio, 190 °C reaction temperature 

and 5.5 wt% catalyst amount. On the other hand, the optimum conditions for WPO 

transesterification are: 2 h 22 min reaction time, 15:1 methanol to oil molar ratio, 170 

°C temperature, 5.5 wt% catalyst amount. The results show the ME content was 

80.98 % for VPO and 77.32 % for WPO. Catalyst reusability studies indicated a 

reduction in catalytic activity with ME content of 79.80%, 57.92% and 41.17% in the 

first, second and third cycles respectively for VPO transesterification. Similar trend 

was observed for WPO transesterification with ME content of 76.30%, 43.98% and 

31.26% in the first, second and third cycles respectively. Catalyst regeneration 

studies indicated that the catalyst performance was sustained for two cycles in the 

 xviii
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VPO transesterification with ME content of 80.98%, 80.91% and 65.32% 

respectively for each cycle. However, significant catalyst deactivation was observed 

in the WPO transesterification with reduction in ME content of 77.32%, 57.02% and 

52.48% respectively for each cycle. The studies on the transesterification of VPO 

and WPO using CaO/AC have discovered a good potential for this heterogeneous 

catalyst in biodiesel production. The ME obtained from VPO and WPO 

transesterification meet the selected fuel properties of ASTM Biodiesel Standard 

D6751 in terms of viscosity and density. The simple method of catalyst preparation, 

comparatively low cost of raw materials, ease of catalyst separation from the 

products and the light colored ME and colorless glycerol obtained are among the 

advantages of the heterogeneous catalyst developed in this study. 



CHAPTER 1 
 

INTRODUCTION 
 

 
1.1  Energy Demand 
 

The use of energy is crucial for human to pursue economic growth and 

maintain standard of living. Energy resources play a critical role in human lives and 

the future of our planet. Most of human energy needs are supplied by finite sources 

such as petroleum, coal and natural gases. These sources will eventually be depleted 

particularly due to the tremendous increase of worldwide energy consumption in the 

last century (Srivastava and Prasad, 2000). Fossil fuels remain the largest contributor 

to meet the global energy demand (Kulkarni and Dalai, 2006). In 2006, more than 

83% of the world total primary energy productions are contributed from these 

sources, whereas remaining 17% from other sources such as nuclear and 

hydroelectric (EIA, 2008). In Malaysia, 95% of total primary energy productions are 

contributed from fossil fuels. The trend is expected to continue for the next 20 years 

as Malaysia is a rapidly developing country (IEA, 2006).   

 

As the demand for energy grown, the adverse environmental effect of its 

production also increases. The main causes of atmospheric pollution are due to CO2, 

SO2 and NOx emission from fossil fuels combustion. The effects of these greenhouse 

gases are predicted to cause disastrous global consequences to life on this planet such 

as drastic climate changes, acid rain and smog (Jegannathan et al., 2009). It is 

predicted that the total world emissions of greenhouse gases by fossil fuels will 

increase from 29 billion metric tonnes in 2006 to projections of 40.4 billion metric 

tonnes by 2030 (Lim and Teong, 2010). The total CO2 emissions from fossil fuels in 

Malaysia have increase over 37% from 1998 to 2006 (EIA, 2006). It is also reported 
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that total CO2 emissions from coal fired power plants are projected to grow at 4.1% 

per year to reach 98 million tonnes in 2020 (Othman et al., 2009). In addition, 

detrimental effects to our ecology system are the results of energy intensive activities 

such as harvesting, processing and distributing fossil fuels (Lim and Teong, 2010) 

 

1.2  Renewable Energy 
 

As well known, the world today is confronted with the crisis of fossil fuel 

depletion and environmental degradation. Biofuel is an alternative source of energy 

that is sustainable and environmental friendly. This renewable energy can be 

produced from vegetable oils, sugar beets and organic wastes that can be obtained 

locally, therefore reduce dependency on fuel imports (Malca et al, 2006). Global 

biofuel production has tremendous growth from 4.8 billion gallons in 2000 to 16 

billion gallons in 2007, for which the U.S and Brazil contributed 75% of world’s 

productions (Licht, 2006). The three main biofuel technologies are biodiesel, 

bioethanol and biogas. There are several drawbacks in the production of biogas and 

bioethanol. The biogas technology is a relatively slow and unstable process, which 

requires large volumes of digester that are costly (Yadvika et al., 2004), whereas 

bioethanol technology requires high temperature process, generates toxic wastewater 

and produces fuel that is corrosive. Biodiesel has been touted as the most likely 

technology capable of large-scale production in a controlled and cost effective 

manner (Jegannathan, 2009). 

 

Renewable energy from biodiesel has become important in recent decades as 

the most promising alternative for petroleum-derived fuel. It has physical properties 

and energy content close to those of petroleum diesel therefore it can function 
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efficiently in diesel engine without modification. Biodiesel production capacity 

continues to increase around the world. The world biodiesel production output is 

about 11 million metric tonnes in 2008 and estimated by 2010, the production can be 

as high as 20 million tonnes (Lim and Teong, 2010).  

 

Biodiesel is a clean-burning fuel that is nontoxic and biodegradable. It has 

low emission of unburned hydrocarbons, carbon monoxide, sulfur and particulate 

matter which makes it suitable for use in marine areas, national parks and heavily 

polluted cities. Biodiesel has higher flash point than diesel fuel thereby making it 

safe during storage and transportation. In addition, it serves as a better lubricant, 

which increases engine performance and life span (Vasudevan and Briggs, 2008).  

 

Biodiesel is defined as a fuel comprised of mono-alkyl esters of long chain 

fatty acids derived from vegetable oils or animal fats. ASTM D 6751 standard covers 

pure biodiesel (B100) intended for blending with petrodiesel up to 20% by volume 

(B20). ASTM (American Society for Testing and Materials) is an international 

standards organization that develops and publishes technical standards for a wide 

range of materials, products, systems, and services. Biodiesel that meets the ASTM 

standards is assured to have trouble free engine operation. From the studies, there 

have been over 45 million miles of successful, trouble-free, real-world operation with 

B20 blends in various type of engines, climates, and applications (Van Gerpen et al., 

2007; NBB, 2008).  
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1.3  Biodiesel Industry in Malaysia 
 

Vegetable oil has been the major feedstock for biodiesel production. As one 

of the main palm oil producer in the world, Malaysia is looked upon as the pioneer 

palm biofuel producer. Malaysia contributes about 51% of world palm oil production 

and 62% of world exports. Malaysia has undertaken research and development on 

palm based biofuel since 1982. Since then it has successfully established the use of 

palm methyl esters and the blend of processed palm oil (5%) with petroleum diesel 

(95%) as a suitable fuel for the transport and industrial sectors. In 1992, research on 

palm oil biodiesel has successfully developed winter-grade biodiesel production 

technology that enabled its usage under cold condition and near freezing 

temperature. The palm oil biodiesel from Malaysia meet the international biodiesel 

standard ASTM D 6751 (MPOC, 2008). 

 

In domestic production, there are currently 10 active biodiesel plants with a 

total annual biodiesel installed capacity of 1.2 million tonnes. To date, there are 91 

biodiesel licenses that have been issued by Malaysia’s Ministry of Plantation 

Industries and Commodities, which implies a tremendous potential in biodiesel 

industries. Exports of biodiesel increased by 24.9% to 0.23 million tonnes in 2009 

compared to 0.18 million tonnes recorded in 2008. The EU is the largest biodiesel 

export market, which accounts for 52.4% of total biodiesel exports, followed by 

U.S.A with 17.4% (MPOB, 2009).  

 

The Malaysia National Biofuel Policy was launched in 2006. The primary 

aim is to reduce the country’s dependency on fossil fuels by focusing on alternative 

energy sources, which are environmentally friendly, sustainable and to promote palm 

 4



oil demand. The short term policy implementation includes establishing the 

Malaysian standard specification for B5 diesel and utilizing it on selected 

government department vehicle. The medium term plans include establishing 

Malaysian standard specification on palm oil based biodiesel for domestic use and 

export, implementation of legislation to mandate the use of biodiesel in transport 

vehicle and pioneering the establishment of palm biodiesel plants. The long term 

plans are to gradually increase the proportion of processed palm oil in the diesel 

blend and to promote greater uptake of biofuels technology by Malaysian and foreign 

companies (MPOC, 2006).  

 

Foreign investments have been remarkable in ensuring continuous growth of 

biodiesel industries in Malaysia. Among them are Middle East Dubai Group USD 

49.5 million investments in Malaysia’s biodiesel company, Japanese Yanmar 

biodiesel research facility in Malaysia and Carotech Bio-Fuel Sdn. Bhd.’s USD 57 

million contract with Swiss-based company to supply 60,000 to 84,000 tonnes of 

biodiesel a year to Europe. In addition, a venture involving Malaysia, Uganda and 

Libya had been secured to construct a 250,000 tonne-capacity plant in Negeri 

Sembilan to be completed in late 2010 (Lim and Teong, 2010).  

 

1.4  Waste Cooking Oil 
 

The Malaysian government is faced with several challenges to advocate the 

development of palm biodiesel to a greater height.  High cost feedstocks, 

controversial issues on fuel versus food debate, limited land availability, and 

clearance of rainforests are among the challenges. The high cost of virgin vegetable 

oils significantly impacts the process profitability due to at least 75% of the 
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production cost is from the feedstock cost (Vasudevan and Briggs, 2008). The price 

of crude palm oil has been on increasing trend from RM996/tonnes in year 2000 to 

RM2777/tonnes in 2008 (MPOB, 2008). 

 

Low cost feedstock such as waste cooking oil and animal fats are some of the 

alternatives to reduce the production cost. Huge quantities of these waste are 

available throughout the world. In the U.S.A, it is estimated that some 100 million 

gallons of waste cooking oil is produced per day. The U.K. produces over 200,000 

tonnes per year of waste cooking oil (Chhetri et al., 2008). 

 

The waste cooking oils are cheap and abundant but are disposed of 

inadequately.  Malaysia and most countries are lack of proper waste oil collection 

process from restaurants and households. Most of uncollected waste oil is being 

dumped into sewage system, drain system or landfill sites thereby generating 

additional waste disposal problem. Utilizing waste cooking oil in the production of 

biodiesel contributes to the lower production cost and most importantly helps to save 

the environment from health and environmental hazards. Waste cooking oil and 

grease poured down the drains can build up in pipes causing blockage at home, 

streets and the storm drain system which resulted in overflows and therefore 

pollution (Kulkarni and Dalai, 2006; EBMUD, 2010). 

 

However, the production process poses many challenges such as the need to 

handle a wider range of process parameters and impurities to produce high quality 

biodiesel which meets international standards such as ASTM D6751 and EN 14214. 

Low cost feedstock contains high free fatty acids and water content that results in 
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soap formation. Additional steps required in the purification process that causes an 

increase in the production cost (Meng et al., 2008). 

 

1.5  Heterogeneous Catalytic Transesterification 
 

At present, biodiesel are commonly produced by transesterification of 

triglyceride with mono-alkyl alcohols, such as methanol and in the presence of 

homogeneous base or acid catalysts. The base catalysts are most often used 

commercially due to higher catalytic activity compared to acid catalysts, which are 

also more corrosive. Nevertheless, the purification process for homogeneous 

catalyzed process is costly and produces a large amount of toxic wastewater due to 

its high basicity (Xie and Li., 2006). The development of effective heterogeneous 

catalyzed process can simplify the downstream purification process by removing the 

neutralization and washing steps, thus more environmental friendly. 

 

Advantages of heterogeneous or solid catalysts are their reusability, better 

product separation and eco-friendly nature (Venkat et al., 2006). A lot of studies 

have been conducted in search for ideal solid catalysts with high stability, strong 

active sites, mesoporous and low cost (Lotero et al., 2005). The development of solid 

catalysts loaded on support or carrier is very promising and has shown good 

conversion results in transesterification of vegetable oils. Previous researches include 

KNO3/Al2O3 (Vyas et al., 2009), La2O3/ZrO2 (Sun et al., 2010), K2CO3 on 

alumina/silica support ( Lukic et al., 2009) and KNO3/KL zeolite and KNO3/ZrO2 

(Jitputti et al., 2006).  Basically, porous materials are favored as the catalyst support 

due to their high surface area per volume. CaO is one of the most attractive catalyst 
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among the alkali earth metal oxides because of its high transesterification activity 

(Granados et al., 2007; Ngamcharussrivichai et al., 2008; Kawashima et al, 2009).  

 

1.6 Problem Statement 

The world today is faced with the problems of diminishing fossil fuel 

reserves, growing emissions of combustion-generated pollutants and environmental 

degradation. Biodiesel can be a viable alternative because of its many benefits such 

as its renewability, reduction of green house gas emissions and it offers the same 

performance and engine durability as petroleum diesel fuel.  

 

The limiting factors of biodiesel industry are feedstock prices, production 

costs and crude oil prices. The high price of biodiesel is largely due to the high price 

of feedstock. Biodiesel can cost more than twice the petroleum diesel and this can 

varies depending on the geographic area, variability in crop production between 

seasons, the price of crude petroleum and other factors (Demirbas, 2009). Low cost 

feedstock such as waste cooking oil is one of the most economical choices to 

produce biodiesel. In addition, waste cooking oils are abundant and contribute to 

environmental hazards without proper disposal process.  

 

The use of conventional homogeneous base and acid catalysts in the 

transesterification of vegetable oils poses several problems such as its solubility in 

reaction mixture that contributes to costly separation and purification process and 

environmental hazards (Xie et al., 2006b). Various side reactions are formed with 

feedstocks contain high free fatty acid (FFA) and water that lead to soap formation, 

thus complicates the products separation. Heterogeneous catalyzed process is more 
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promising due to its many benefits such as catalyst reusability, lower operation cost 

and environmental friendly (Yan et al., 2010). 

 

In this present study, the potential of activated carbon as catalyst support for 

biodiesel production is explored. Activated carbon has porous structure that contains 

large specific surface area and widely used in industrial and environmental 

applications for purifying and decolorizing products due to its strong adsorption 

capabilities such as gas purification, water purification and food decolorization 

(Adinata et al., 2007). Activated carbon was also found to be highly effective 

catalyst support in the production of Dipropyl carbonate (Fan and Zhang, 2007). In 

addition, activated carbon structure is stable at high temperature (above 1000 K) and 

the cost of activated carbon supports is usually lower than conventional supports 

such as alumina and silica (Hameed et al., 2009a).  

 

CaO is a type of alkaline earth metal oxides that have been selected as active 

species for biodiesel production in previous research (Zhu et al., 2006; Liu et al., 

2008a; Gotch et al., 2009). It possesses basicity as high as barium and strontium 

oxide and its sources such as calcium carbonate and calcium nitrate are cheaper and 

less toxic (Zabeti et al., 2009a). CaO has shown low solubility in methanol and less 

corrosion compared to alkali metals such as sodium and potassium that makes it 

suitable as heterogeneous catalyst. It also showed a high tolerance to water and free 

fatty acid that is present in waste oil feedstocks (Yan et al., 2010).  However, CaO 

existed in the reaction mixture in a form of suspensoid due to its poor mechanical 

strength, which can be resolved by supporting it onto carriers (Yan et al., 2008).    

  

 9



Hence, in this research, the potential of activated carbon loaded with CaO 

catalysts will be examined for the transesterification of virgin cooking palm oil and 

waste cooking palm oil.  

 

1.7  Research Objectives 
 

The purpose of this research is to study the transesterification of virgin 

cooking palm oil (VPO) and waste cooking palm oil (WPO) using the synthesized 

calcium oxide catalyst supported on activated carbon (CaO/AC) for methyl ester 

(ME) production. The objectives are: 

 

1. To prepare CaO/AC catalyst and optimise the effect of catalyst preparation 

variables, such as catalyst loading amount on support, calcination time and 

calcination temperature. 

 

2. To characterize the synthesized solid catalyst in terms of surface morphology, 

elemental compositions, surface area, pore volume, pore size and functional 

groups. 

 

3. To study the effects of transesterification reaction variables (reaction time, 

methanol to oil molar ratio, reaction temperature and catalyst amount) of 

VPO and WPO using the synthesized catalyst and to characterize the methyl 

ester obtained. 

 

4. To investigate the reusability and regeneration of the used catalyst in the 

transesterification of VPO and WPO. 
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1.8  Research Scope 
 

This study focused on the development of CaO/AC as the heterogeneous 

catalyst for ME production from VPO and WPO. The effect of catalyst preparation 

conditions such CaO loading amount on AC, calcination temperature and calcination 

time on the catalyst performance was investigated. The characterization of the 

developed catalyst was performed using SEM, EDX, BET and FTIR. The process 

optimization for transesterification of VPO and WPO was also investigated by 

studying the effect of reaction time, molar ratio of methanol to oil, reaction 

temperature and catalyst amount. Additionally, the characterization of ME obtained 

from VPO and WPO transesterification was performed based on selected fuel 

properties given in ASTM D6751 specifications. Finally, the stability of the solid 

catalyst was investigated by performing reusability studies and regeneration studies 

on the used catalyst in the transesterification of VPO and WPO.  

 

1.9  Organization of Thesis 
 

This thesis is organized into five chapters as follows; 

 

Chapter 1 describes overview on global energy demand, renewable energy, palm oil 

and biodiesel industries in Malaysia, waste cooking oil and heterogeneous catalyzed 

transesterification process. This chapter also discusses the problem statement, scope 

and objectives of the research.  

 

Chapter 2 describes literature review from other researches and references on the 

topic of vegetable oils, biodiesels, transesterification of vegetable oils, homogeneous 

and heterogeneous catalysts, effect of variables in catalyst preparation and 
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transesterification process. It also discusses biodiesel feedstocks such as palm oil and 

waste cooking oil and statistical design of experiment using response surface 

methodology (RSM). 

 

Chapter 3 describes the methods and analysis required for the catalyst preparation 

and transesterification process, the chemical requirements and equipments used 

throughout this study. 

 

Chapter 4 presents the result obtained from each experimental runs and discusses 

the findings. 

 

Chapter 5 presents the conclusion of this research and provides the recommendation 

for improvement in future research. 

 

 
 

 



CHAPTER 2 
 

LITERATURE REVIEW 
 
 
2.0 Introduction 
 

This chapter provides the literature review of vegetable oil and biodiesel in 

terms of its composition, properties and performance as diesel fuel. Biodiesel 

feedstocks such as palm oil and waste cooking oil are also discussed. Next, the 

various methods for biodiesel production particularly transesterification process are 

presented. The following section reviews various homogeneous and heterogeneous 

catalysts used in transesterification of vegetable oils. The study of variables affecting 

transesterification reaction such as reaction time, alcohol to oil molar ratio, reaction 

temperature and amount of catalyst are also presented. Various types of 

heterogeneous catalysts for biodiesel production are reviewed. Next, the effect of 

catalyst preparation variables affecting transesterification reaction such as 

calcinations time, calcinations temperature and loading amount of catalyst on support 

are discussed. Finally, literature review on the statistical tools to perform design of 

experiment and data analysis is also presented followed by a summary. 

 

2.1 Vegetable Oil 

The use of vegetable oils as diesel substitute has long been discovered. As 

early as 1900, Rudolf Diesel demonstrated a prototype engine that used peanut oil at 

the World's Exhibition in Paris. By 1920’s petroleum diesel becomes the fuel of 

choice over vegetable oil due to cheaper price, higher availability and government 

subsidies. The higher market demand for petroleum diesel led to the alteration of 

diesel engine by manufacturers in order to utilize the lower viscosity petroleum 

diesel.  However, in the late 1970’s during the OPEC oil embargo, the fuel shortages 
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have revived interests in research and development for alternative petroleum diesel. 

The ASAE’s (American Society of Agricultural Engineers) conference in 1982 has 

published a 400-page proceeding which were contributed by leading researches 

around the world in which many of the articles discussed potential of raw oils as fuel 

(Van Gerpen et al, 2007). 

 

Many researches of vegetables oils as diesel fuel were reported since the 

1980s. In the United States, the use of sunflower oil, soybean oil, peanut oil and used 

frying oil as diesel fuel in agricultural vehicle and public transportation were 

reported. Vegetable oil has become more attractive in recent decades due to many 

advantages such as its availability, renewability, lower sulfur and aromatic content 

and biodegradability (Demirbas, 2009).  

 

2.1.1 Composition of Vegetable Oil 

The main component of vegetable oil is triglyceride, which is an ester 

composed of a glycerol bound to three molecules of fatty acids. The fatty acids vary 

in their carbon chain length and the number of double bonds. The chemical structure 

is shown in Figure 2.1 (Barnwal and Sharma, 2005).  

 

 

Figure 2.1: Chemical structure of triglycerides 
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Vegetable oil also contains some minor components such as mono- and 

diglycerides, free fatty acids, phosphatides and pigments. The free fatty acid content 

of vegetable oil varies widely based on the source (Karmakar et al., 2010).  Table 2.1 

shows the composition of various fatty acids present in vegetable oils. 

 

Table 2.1: Fatty acid composition of various oil sources (Ma and Hanna, 1999)  

Fatty acid Formula Soybean Cottonseed Palm Coconut 
Lauric C12H24O2 0.1 0.1 0.1 46.5 
Myristic C14H28O2 0.1 0.7 1.0 19.2 
Palmitic C16H32O2 10.2 20.1 42.8 9.8 
Stearic C18H36O2 3.7 2.6 4.5 3.0 
Oleic C18H34O2 22.8 19.2 40.5 6.9 
Linoleic C18H32O2 53.7 55.2 10.1 2.2 
Linolenic C18H30O2 8.6 0.6 0.2 0.0 

 

 

Chemically, the oil consists of 90-98% triglycerides which contains 

substantial amount of oxygen in their structures. Simple triglycerides are the ones 

with three fatty acids that are identical, whereas mixed triglycerides are those with 

fatty acids which are not identical. Mixed triglycerides fatty acids can be fully 

saturated with hydrogen and may not contain double bonds.  Monounsaturated fatty 

acids may have only one double bond or triple bond per molecule. Polyunsaturated 

fatty acids have more than one double or triple bond per molecule. Fully saturated 

triglycerides lead to excessive carbon deposits in engines (Demirbas, 2003; Singh 

and Singh, 2010). 
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2.1.2 Properties and Performance of Vegetable Oil as fuel 

Table 2.2 listed the fuel properties for various types of vegetable oils 

compared to pure diesel. 

 

Table 2.2: Fuel properties of vegetable oils (Barnwal and Sharma, 2005) 

Vegetable 
oil 

Kinematic 
viscosity, 

38oC   
(mm2s-1) 

Heating 
value 

(MJkg-1) 

Cloud 
point 
(oC) 

Pour 
point 
(oC) 

Flash 
point 
(oC) 

Density 
(kgL-1) 

Corn 34.9 39.5 -1.1 -40 277 0.9095 
Cottonseed 33.5 39.5 1.7 -15 234 0.9148 
Linseed 27.2 39.3 1.7 -15 241 0.9236 
Peanut 39.6 39.8 12.8 -6.7 271 0.9026 
Rapeseed 37.0 39.7 -3.9 -31.7 246 0.9115 
Safflower 31.3 39.5 18.3 -6.7 260 0.9144 
Sesame 35.5 39.3 -3.9 -9.4 260 0.9133 
Soya bean 32.6 39.6 -3.9 -12.2 254 0.9138 
Sunflower 33.9 39.6 7.2 -15.0 274 0.9161 
Palm 39.6 NA 31.0 NA 267 0.9180 
Pure 
Diesel 

3.06 43.8 NA -16 76 0.8550 

NA- not available 

 

All vegetable oils are extremely viscous with viscosities ranging from 10-13 

times greater than diesel fuel. The higher viscosity is due to their larger molecular 

mass ranging from 600-900 depending on the oil source, which is about 20 times 

greater than diesel fuel. The flash point of vegetable oil is higher, about 3 times 

greater than diesel fuel whereas the heating value is about 10% lower than diesel fuel 

(Barnwal and Sharma, 2005). 

 

The use of vegetable oils in conventional diesel engine leads to many short 

term and long term problems as obtained from engine tests conducted by earlier 

researchers. The high viscosity of vegetable oil intervenes with the injection process 
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which led to poor fuel atomization. The inefficient mixing of fuel and air causes 

incomplete combustion. The high flash point and lower volatility of vegetable oil 

contributes to carbon deposit formation, ring sticking, lubricating oil thickening and 

degradation. The high viscosity and low volatility of vegetable oil also causes poor 

cold engine start up and ignition delay. Polyunsaturated fatty acids are very 

susceptible to polymerization and gum formation caused by oxidation during storage. 

It can also caused by complex oxidative and thermal polymerization at higher 

temperature and pressure of combustion (Srivastava and Prasad, 2000). 

 

2.2 Biodiesel 

Biodiesel is defined as the mono alkyl esters (methyl and ethyl esters) of long 

chain fatty acids derived from vegetable oils or animal fats. Biodiesel can be a viable 

alternative to petroleum diesel fuel because of its many benefits. It is produced from 

renewable resources such as vegetable oils and animal fats.  Biodiesel is also cleaner 

for the environment compared to diesel fuel as it is biodegradable, non toxic and free 

of sulfur and aromatics (Fukuda et al., 2001). 

 

The use of biodiesel or its blends would results in a less offensive exhaust 

odor and reduction of pollutants such as carbon dioxide. Studies on the lifecycle 

production and use of biodiesel showed that it produces between 80-100% less 

carbon dioxide and close to 100% less sulphur dioxide emissions. Biodiesel also 

provides significant reduction in particulates and carbon monoxide than petroleum 

diesel fuel (The Mill Biofuels, 2008). 
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Biodiesel has many advantages in the fuel injection engines.  It can run in a 

conventional unmodified diesel engine and can be used alone or blends with 

petroleum diesel.  Biodiesel is able to extend engine life because of its excellent 

lubricating properties. In terms of safety, biodiesel has a higher flash point of about 

125 °C compared to 76 °C for petroleum diesel making it safe to handle and 

transports (Al-Zuhair, 2007; The Mill Biofuels, 2008). 

 

Vegetable oil has been the major feedstock for biodiesel production. Various 

oil were used in biodiesel production includes soybean oil (Kim et al., 2004; Suppes 

et al., 2004; Furuta et al., 2004; Xie and Li, 2006), sunflower oil (Ramos et al., 2008; 

Granados et al., 2007), canola oil (D'Cruz et al., 2007), rapeseed oil (MacLeod et al., 

2008), coconut oil (Jitputti et al., 2006) and palm oil (Zabeti et al., 2009b). Malaysia 

has the potential to be one of the main producers of biodiesel in the world.  Malaysia 

currently contributes 51% of world palm oil production and 62% of world exports 

(MPOB, 2008). 

 

2.2.1 Properties of Biodiesel 

The properties of biodiesel are close to diesel fuel therefore it is suitable to 

replace diesel fuel if the need arises. The fuel properties of biodiesel are dependent 

on the amount of each fatty acid present in the feedstock. The free fatty acid (FFA) 

content is the amount of fatty acid in oil which is not connected to triglyceride 

molecule. Heating of oil can cause breakage of long carbon chain and leads to 

formation of FFAs (Karmakar, 2010). The properties of biodiesel from various oil 

sources and diesel fuels are compared in Table 2.3.  
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Table 2.3: Properties of biodiesel and diesel fuel (Barnwal and Sharma, 2005) 

Vegetable 
oil methyl 

ester 
(biodiesel) 

Kinematic 
viscosity 
(mm2/s) 

 Heating 
value 
(MJ/kg) 

Cloud 
point 
(oC) 

Pour 
point 
(oC) 

Flash 
point 
(oC) 

 
Cetane 

no. 
Density 
(kg/L) 

Peanut 4.9 33.6 5 NA 176 54 0.883 
Soya bean 4.5 33.5 1 -7 178 45 0.885 
Babassu 3.6 31.8 4 NA 127 63 0.875 
Palm 5.7 33.5 13 NA 164 62 0.880 
Sunflower 4.6 33.5 1 NA 183 49 0.860 
Tallow NA NA 12 9 96 NA NA 
Pure 
Diesel 3.06 43.8 NA -16 76 50 0.855 

20% 
biodiesel 
blend 

3.2 43.2 NA -16 128 
 

51 0.859 

NA- not available 

 

 The kinematic viscosity of biodiesel is close to diesel fuel. By converting 

triglycerides to methyl esters through transesterification process, it reduces the 

molecular weight to one-third of the triglyceride, and reduces its viscosity. Biodiesel 

contains 10 to 11 % oxygen by weight, which encourages more combustion than 

hydrocarbon based fuels in an engine. Biodiesel has about 12% lower volumetric 

heating value but higher cetane number and flash point compared to diesel fuel 

(Barnwal and Sharma, 2005; Srivastava and Prasad, 2000). The heating value is a 

measure of energy content of the oil. Fuels with greater saturation have higher 

energy content (Singh and Singh, 2010). 

  

Biodiesel have pour point that is 8 to 25 °C higher than diesel fuel, thereby 

less suitable to be used in cold climate. The pour point is the temperature below 

which the fuel unable to flow therefore filters will clog and stop the engine unless 

changes made to the fuel to prevent gelling. Addition of anti-gel additives or a fuel 

line heater can be done to increase the temperature (Biodiesel in Winter, 2010).  
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2.2.2 Palm Oil as Biodiesel Feedstocks  

In Malaysia, biodiesel production is synonymous to palm oil. The thriving 

plantation of palm oil is the main driving force towards developing biodiesel 

production and technology. In comparison with other countries such as U.S.A, the 

main source is soybean oil whereas Europe utilizes rapeseed oil. The advantage of 

using oil-palm plant is that it produces high yield of vegetable oil. One hectare of oil 

palm can produce approximately five tonnes of palm oil, which is about 5 times and 

10 times higher yield than rapeseed and soybean respectively with the same area of 

land (Lim and Teong, 2010). Palm oil is known to be an efficient biodiesel source in 

which, the average yield of approximately 6000 liter of palm oil per hectare can 

produce 4800 liter of biodiesel (Karmakar, 2010).   

 

2.2.2.1 Properties of Palm Oil 

Palm oil, which is from the fibrous mesocarp consists mainly of triglycerides, 

mono and diglycerides. It also contains free fatty acids, moisture, dirt and 

unsaponifiable matter (non oil fatty matter).  Palmitic acid (saturated) and oleic acid 

(unsaturated) are the two major fatty acids in palm oil. In the palm oil refinery, the 

oil is fractionated into liquid and solid components. The liquid fraction is palm olein 

whereas the solid fraction is palm stearin. Palm olein is widely used as cooking oil 

especially for frying food because it has good resistance to oxidation and formation 

of breakdown products which are undesirable due to its harmful health effects.  It is 

known that palm olein is one of the most widely used frying oil and considered the 

gold standard in frying.  Palm stearin, which is the solid fraction, is widely used as 

natural hard fact component for products such as shortening and margarines (MPOC, 

2008). The typical fatty acid compositions of palm oil are summarized in Table 2.4. 
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