

CRASH RECOVERY SUPPORT FOR VARIABLE

STRENGTH T-WAY TEST GENERATION

STRATEGY

SYAHRUL AFZAL BIN CHE ABDULLAH

UNIVERSITI SAINS MALAYSIA

2016

CRASH RECOVERY SUPPORT FOR VARIABLE STRENGTH T-

WAY TEST GENERATION STRATEGY

by

SYAHRUL AFZAL BIN CHE ABDULLAH

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

June 2016

ii

ACKNOWLEDGEMENT

 بسم الله الرحمن الرحيم

Firstly, I would like to express my sincere appreciation and heartfelt thanks to

my supervisor Prof. Dr. Kamal Zuhairi Zamli, for his guidance throughout this

research work. For the record, the work was partially funded by “Investigating t-way

Test Data Reduction Strategy using Particle Swarm Optimization Technique” grant

from Ministry of Higher Education (MOHE), Malaysia and also Research Intensive

Faculty (RIF) grant – “Integrating Seamless Crash Recovery Support for t-way Test

Generation Strategy” (Kod: 600-RMI/DANA 5/3/RIF (304/2012)) from Research

Management Institute (RMI), Universiti Teknologi MARA (UiTM), Malaysia.

Secondly, I would like to thank all staff of Universiti Sains Malaysia (USM)

especially staff of the School of Electrical & Electronic Engineering for their kind

help and support.

Thirdly, I would like to thank all staff of Universiti Teknologi MARA

(UiTM) especially staff of the Faculty of Electrical Engineering for their kind help

and support.

Lastly, I would like to thank my wife, my family and my colleague, Dr.

Zainal Hisham Che Soh for being there for me.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

ABSTRAK xiii

ABSTRACT xvi

CHAPTER ONE : INTRODUCTION

1.1 Overview of Software Testing 20

1.2 Problem Statements 27

1.3 Thesis Aim and Objectives 31

1.4 Scope of Research 31

1.5 Thesis Outline 32

CHAPTER TWO : LITERATURE REVIEW

2.1 Test design strategies 35

2.1.1 Boundary value analysis 36

2.1.2 Equivalence partitioning 37

iv

2.1.3 Cause-effect graphing 37

2.2 Orthogonal Arrays and Covering Arrays 39

2.3 Notation 42

2.4 Example of t-way test generation strategy 43

2.5 Example of variable strength t-way test generation strategy 53

2.6 Analysis of empirical evidence in t-way test generation strategies 57

2.7 Related work on t-way test generation strategies 61

2.8 Summary 69

CHAPTER THREE : DEVELOPMENT OF VARIABLE STRENGTH

T-WAY TEST GENERATION STRATEGY

3.1 Methodology of variable strength t-way test generation strategy 70

3.2 The TSGCR strategy 72

3.2.1 Uncovered t-way sets (interaction elements) generator 74

3.2.2 Test case selector 80

3.2.3 Crash recovery 87

3.3 Implementation Issues 91

3.3.1 Justification of using Java™ SE Development Kit 7 92

3.3.2 Justification of using OTAAT design technique 92

3.3.3 Justification of using NoSQL database called Redis® 93

3.4 Summary 98

v

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1 Evaluation of TSGCR strategy 100

4.1.1 Demonstration of the crash recovery support 100

4.1.2 Performance overhead of the crash recovery support 104

4.1.3 Comparison between fixed interval checkpoints with dynamic

 checkpoints

4.1.4 Comparison with existing variable strength t-way test generation

 strategies

4.1.5 Estimated lower bound 124

4.2 Discussion 125

4.3 Summary 128

CHAPTER FIVE : CONCLUSION

5.1 Overview 129

5.2 Conclusion and Research Contribution 131

5.3 Suggestions for Future Work 133

REFERENCES 134

APPENDICES

LIST OF PUBLICATIONS

GLOSSARY

107

107

 vi

LIST OF TABLES

 Page

Table 2.1 Experiments for four (4) input parameters with three (3)

values using Orthogonal Array

40

Table 2.2 Input parameters of order page in an online shopping mall

system

44

Table 2.3 Optimal total number of test cases (i.e. unique

combinations) for the online shopping mall system (when t

is varied)

47

Table 2.4 Interaction elements for the online shopping mall system at t

= 2 constructed according to the group

48

Table 2.5 Interaction elements covered by the first test case and the

second test case

50

Table 2.6 Example of one of optimal test suite for the online shopping

mall system at t = 2

51

Table 2.7 Optimal total number of test cases (i.e. unique

combinations) for the online shopping mall system (when t

is varied and mixed t)

54

Table 2.8 Changing the input parameters of order page in the online

shopping mall system

55

Table 2.9 Optimal total number of test cases (i.e. unique

combinations) for the online shopping mall system (when t

is varied and mixed t)

56

 vii

Table 2.10 Summary of empirical evidence to justify stronger

interaction strength, t in t-way testing (arranged in

chronological order)

59

Table 2.11 Summary of design techniques used by the strategies and

their features

67

Table 3.1 The truth table contains lists of Boolean true and false for t =

2

74

Table 3.2 Data structure for uncovered interaction elements of TCAS

module

77

Table 3.3 Subset of [T, T, T, T, F, F, F, F, F, F, F, F] of TCAS module

at t = 2

79

Table 4.1 The average time taken using fixed interval checkpoints

(after the specified time has elapsed)

105

Table 4.2 The average time taken using fixed interval checkpoints

(after Nth test case)

106

Table 4.3 The average time taken using dynamic checkpoints

107

Table 4.4 Estimated lower bound for TCAS module

111

Table 4.5 Sizes of VS interactional test suites for Set 1,

𝑉𝑆𝐶𝐴 (𝑁: 2, 315, {𝐶})

113

Table 4.6 Sizes of VS interactional test suites for Set 2,

𝑉𝑆𝐶𝐴 (𝑁: 3, 315, {𝐶})

114

 viii

Table 4.7 Summary of result for Table 4.5 and Table 4.6

116

Table 4.8 Sizes of VS interactional test suites for Set 3,

𝑉𝑆𝐶𝐴 (𝑁: 2, 435362, 𝐶)

117

Table 4.9 Sizes of VS interactional test suites for Set 4,

𝑉𝑆𝐶𝐴 (𝑁: 2, 320102, 𝐶)

119

Table 4.10 Sizes of VS interactional test suites for Set 5,

𝑉𝑆𝐶𝐴 (𝑁: 3, 413722, 𝐶)

120

Table 4.11 Sizes of VS interactional test suites for Set 6,

𝑉𝑆𝐶𝐴 (𝑁: 2, 1019181716151413121, 𝐶)

121

Table 4.12 Summary of results for Table 4.8, 4.9, 4.10 and 4.11

122

Table 4.13 Summary of comparison of TSGCR with VS-PSTG

124

 ix

LIST OF FIGURES

 Page

Figure 1.1 A Deming Cycle (Moen and Norman, 2010)

21

Figure 1.2 Software Testing Cycle (Zamli et al., 2009)

22

Figure 1.3 Most common challenges faced by software tester

(EUROSTAR, 2013)

24

Figure 2.1 The “Image Properties” option dialog in Microsoft Paint

36

Figure 2.2 Pop-up message in Microsoft Paint

38

Figure 2.3 Orthogonal Array, L9(34)

40

Figure 2.4 Code snippets to depict 2-way interaction failure detected

only when the aforementioned conditions are met

46

Figure 2.5 Covering Array, CA (9: 2, 34)

52

Figure 3.1 Research methodology on developed variable strength t-way

test generation strategy

71

Figure 3.2 Overview of the software architecture of TSGCR strategy

73

Figure 3.3 Matching using set interaction operation

76

Figure 3.4 The Greedy Algorithm template (Cohen, 2004)

81

Figure 3.5 Illustrative steps for creating a test configuration candidate

82

Figure 3.6 Illustrating steps in crash recovery

88

 x

Figure 3.7 Pseudo code to depict fixed interval checkpoints (after Nth

test case)

90

Figure 3.8 Pseudo code snippets to depict fixed checkpoints (after the

specified time has elapsed)

91

Figure 3.9 Code snippets to depict dynamics checkpoints

91

Figure 3.10 The number of different systems per category (Andlinger,

2013)

95

Figure 4.1 Snapshot of TSGCR application during a normal operation

101

Figure 4.2 Snapshot of TSGCR application after restarting from the

crash

102

Figure 4.3 Snapshot of TSGCR application after gracefully recovered

from the failure and resume its normal operation

103

 xi

LIST OF ABBREVIATIONS

Abbreviation

Meaning

ACA Ant Colony Algorithm

ACID Atomicity, Consistency, Isolation and Durability

ACS Ant Colony System

AETG Automatic Efficient Test Generator

AI Artificial Intelligence

AOF Append-Only File

API Application Programming Interface

ASIC Application-Specific Integrated Circuit (ASIC)

AUT Application Under Test

CA / CAs Covering Array / Covering Arrays

CPU Central Processing Unit

DBMS Database Management Systems

DOE Design of Experiments

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GUI Graphical User Interface

HDL Hardware Description Language

IDE Integrated Desktop Environment

IPO Input Parameter Order

IPOG Input Parameter Order Generalized

ISTQB International Software Testing Qualifications Board

ITCH IBM’s Intelligent Test Case Handler

JDK Java Development Kit

 xii

Abbreviation

Meaning

JVM Java Virtual Machine

MCA Mixed Covering Array

NIST National Institute of Standards and Technology

NP Nondeterministic Polynomial time

OA / OAs Orthogonal Array / Orthogonal Arrays

OPAAT One Parameter At a Time

OTAAT One Test At a Time

PDCA Plan-Do-Check-Act

POJO Plain Old Java Object

PSO Particle Swarm Optimization

PSTG Particle Swarm Test Generator

RAM Random Access Memory

RDBMS Relational Database Management Systems

SA Simulated Annealing

SDR Software-defined Radio

TCAS Traffic Collision Avoidance System

TCG Test Case Generator

TSGCR Test Suite Generator with Crash Recovery support

TVG Test Vector Generator

VS Variable Strength

VS-PSTG Variable-Strength Particle Swarm Test Generator

WHITCH IBM Intelligent Test Case Handler

 xiii

SOKONGAN PEMULIHAN KEGAGALAN UNTUK STRATEGI

PENJANAAN UJIAN HALA-T DENGAN KEKUATAN BOLEH UBAH

ABSTRAK

Selalunya, cabaran terbesar dalam pengujian perisian berkait dengan hakikat bahawa

ia tidak boleh dilaksanakan untuk menguji kesemua parameter-parameter input

kerana kekangan-kekangan seperti kos, sumber dan masa. Mempertimbangkan

faktor-faktor ini, penguji-penguji perisian perlu melakukan pilihan kes-kes ujian

yang sesuai supaya sumber-sumber yang sedia ada digunakan dengan cara yang

terbaik. Dalam konteks Ujian Kombinasi, penguji-penguji sering mengambil

pendekatan strategi penjanaan ujian hala-t (di mana t menunjukkan kekuatan

interaksi). Bukti empirikal dalam literatur menunjukkan bahawa strategi penjanaan

ujian hala-t telah berjaya mengurangkan kes-kes ujian dengan ketara sambil

mengekalkan keupayaan pengesanan kecacatan daripada proses pengujian. Banyak

kemajuan yang berguna sudah dicapai berkenaan dengan pembangunan strategi

penjanaan ujian hala-t. Walau bagaimanapun, beberapa isu masih kekal terutamanya

dalam konteks menangani kerumitan dan saiz perisian (iaitu baris-baris kod) yang

semakin meningkat mengakibatkan jumlah interaksi antara parameter-parameter

input yang tinggi. Pertamanya, penjanaan ujian boleh mengambil jangka masa yang

panjang, sebarang gangguan adalah mahal kerana keseluruhan penjanaan perlu

dimulakan semula dari awal. Masa dan usaha-usaha akan menjadi sia-sia. Keduanya,

strategi sedia ada melakukan pemilihan terlalu awal pada nilai terbaik parameter-

parameter input apabila melakukan pensampelan kes-kes ujian. Atas sebab ini,

strategi-strategi ini kurang mencukupi dari segi menjana saiz sut ujian yang

optimum. Di sini, untuk meningkatkan keupayaan ujian hala-t, terdapat juga

 xiv

keperluan untuk mempertimbangkan strategi kekuatan interaksi boleh ubah.

Pendekatan ini sering disukai kerana kompromi dari segi saiz sut ujian kerana

strategi ini memberi tumpuan pengujian di mana ia mempunyai nilai yang paling

berpotensi yang biasanya dikaitkan dengan analisis risiko dan keutamaan. Untuk

menangani isu-isu ini, kajian ini membangunkan strategi penjanaan data ujian

dengan kekuatan interaksi boleh ubah, yang dikenali sebagai Penjana Sut Ujian

dengan sokongan Pemulihan Kegagalan (TSGCR). Tidak seperti strategi-strategi

yang sedia ada, TSGCR menggunakan algoritma tamak bertingkat, yang lewat

memilih nilai yang terbaik sehingga ia memenuhi peraturan tertentu. Untuk

menyediakan operasi yang boleh diharap, TSGCR juga membenarkan sokongan

pemulihan kegagalan bersepadu sebagai sebahagian daripada strategi itu sendiri.

Kerana potensi proses penjanaan data ujian yang akan mengambil jangka masa yang

panjang (iaitu disebabkan oleh pemilihan parameter-parameter input dan nilai-nilai

yang agak besar), TSGCR boleh menghadapi kegagalan transaksi secara paksaan

(contohnya seperti kegagalan kuasa atau kesilapan sistem) atau penggantungan

pelaksanaan penjanaan secara sukarela (contohnya untuk memberi ruang untuk

pengiraan yang lain) membolehkan pemulihan status dan data ke status lepas yang

konsisten. Untuk menilai kedayasaingan TSGCR, penjanaan ujian diuji dengan

paramater-parameter input yang seragam dan campuran dan prestasi (dari segi saiz

sut ujian yang dihasilkan) dibandingkan dengan strategi-strategi penjanaan ujian

dengan kekuatan hala-t yang berubah-ubah yang sedia ada dengan menggunakan

konfigurasi penanda aras piawaian yang terkenal (berdasarkan enam set eksperimen).

Hasil kajian penanda arasan menunjukkan bahawa bagi konfigurasi interaksi VS

untuk parameter input seragam, TSGCR mendapat tujuh Δ dengan nilai 0, iaitu sama

nilai seperti penyelesaian terbaik yang diperolehi dengan strategi-strategi yang lain,

 xv

tujuh Δ dengan nilai + ve, iaitu mampu untuk mendapatkan penyelesaian yang

terbaik; iaitu empat belas daripada empat puluh empat keputusan eksperimen.

Manakala bagi konfigurasi interaksi VS untuk parameter input campuran, TSGCR

mendapat dua puluh tujuh Δ dengan nilai 0, lapan Δ dengan nilai + ve; iaitu tiga

puluh lima daripada empat puluh satu keputusan eksperimen. Oleh itu, hasil

keputusan menunjukkan bahawa TSGCR menghasilkan keputusan yang kompetitif

berbanding kebanyakan strategi-strategi yang sedia ada.

 xvi

CRASH RECOVERY SUPPORT FOR VARIABLE STRENGTH T-WAY

TEST GENERATION STRATEGY

ABSTRACT

Often, the biggest challenge in software testing relates to the fact that it is not

feasible to test for all the input parameters exhaustively owing to constraints in costs,

resources and time. Considering these factors, software testers must appropriately

sample the test cases in order to best utilize the resources at hand. Within the context

of Combinatorial Testing, testers often resort to t-way test generation strategy (where

t indicates the strength of interaction). Empirical evidence in the literature indicated

that t-way test generation strategy has managed to minimize the test cases

significantly whilst maintaining the fault detection capability of the testing process.

Much useful progress has been achieved as far as the development of t-way test

generation strategy is concerned. Nevertheless, some issues remain especially in the

context of addressing ever increasing complexity and size of software (i.e. lines of

code) resulting into high number of interaction among input parameters. Firstly, the

test generation can be painstakingly long, interruption is expensive as the whole

generation process needs to be restarted from scratch. Time and efforts will also be

wasted. Secondly, existing strategies commit too early on selection of the best value

of input parameters when sampling of the test cases. For this reason, these strategies

were less sufficient in terms of generating optimal test suite size. Here, to enhance

the t-way testing capability, there is also a need to consider variable-strength

strategy. This approach is often favored because of the compromise in terms of test

suite size as the strategy focuses testing where it has the most potential value which

usually is associated with a risk analysis and priority. In order to address these issues,

 xvii

this research develops a variable-strength (VS) interaction t-way test generation

strategy, called Test Suite Generator with Crash Recovery support (TSGCR). Unlike

existing strategies, TSGCR adopts Multilevel Greedy algorithm, which delays

choosing the best value until it satisfies certain rules. To provide a reliable operation,

TSGCR also permits crash recovery support integrated as part of the strategy itself.

As the test generation can potentially be long lasting processes (i.e. due to large

selection of input parameters and values), TSGCR tolerates involuntary transaction

failures (e.g. such as power failure or system errors) or voluntary execution

suspension (e.g. to give ways for other computations) enabling restoration of state

and data to the last consistent state. To evaluate the competitiveness of TSGCR, the

test generator is tested with uniform and mixed input parameters and the

performance (in terms of the generated test suite size) is compared with existing

variable strength t-way test generation strategies using well-known standard

benchmark configurations (based on six sets of experiments). Benchmarking results

showed that for VS interaction configurations for uniform input parameters, TSGCR

is able to get seven ∆ with 0 value, i.e. similar value to the best solution obtained by

other strategies, seven ∆ with +ve values, i.e. able to get the best solution; from

fourteen out of forty four experimental results. While for VS interaction

configurations for mixed input parameters, TSGCR is able to get twenty seven ∆

with 0 value, eight ∆ with +ve values; from thirty five out of forty one experimental

results. Hence, the results demonstrated that TSGCR produces competitive results as

far as the size of the test suite is concerned against most existing strategies.

 18

CHAPTER ONE

CHAPTER 1 -

INTRODUCTION

Nowadays, people have the tendency to increasingly rely on electronic devices to

accommodate their daily life, e.g. automobile, gadget and home appliances. By

combining various hardware and software technologies, these devices are providing

options to make our life better, i.e. for increasing comfort and efficiency. The

technologies inside these devices vary because of the differences in functionalities

and innovations.

 Typically, manufacturers or solution providers are inclined to replace most

hardware implementations with software for cost savings. The reason is quite

obvious; unlike hardware, software does not wear out. Moreover, software is

malleable and can be easily customized as the need arises, e.g. adding new

functionalities (Klaib et al., 2008) such as using a Field Programmable Gate Array

(FPGA) or implementing a Software-defined Radio (SDR).

FPGA contains an array of programmable logic blocks and a hierarchy of

reconfigurable interconnects that allow the blocks to be wired together using a

software programming language called Hardware Description Language (HDL)

(Sadrozinski and Wu, 2010). A soft-core processor, which is a HDL model of a

specific processor (CPU) can also be customized for a given application and

synthesized for FPGA (Tong et al., 2006). At the same time, FPGA can still be

configured by a designer even after manufacturing process.

 19

Likewise components in SDR, such as amplifiers, filters and mixers, in the

radio communication system which have been commonly implemented in hardware

but are instead implemented by means of software on a personal computer or

embedded system (Dillinger et al., 2003).

Because of the inclination to choose software-based solutions (e.g. FPGA,

SDR, etc.), the complexity and size of software (i.e. lines of code) is ever-increasing

while at the same time, testing the software has evolved from a routine quality

assurance activity into a sizeable and complex challenge in terms of manageability

and effectiveness (Geetha Devasena and Valarmathi, 2012).

 Software quality and reliability are the main criteria for success in the

software industry. If software is faulty, it is prone to do unexpected behavior

resulting into undesirable outcome. Considering that software is becoming more

complicated; software testing is becoming immensely important because statistical

data shows that it accounts as much as 50 percent of the total software development

cost and even more for mission safety critical system (Ammann and Offutt, 2008).

Besides, software testing adds considerably to the length of the development cycle.

 Lack of testing can lead to disastrous consequence if software is deployed in

mission safety critical life threatening application. For instance, in February 25,

1991, the Patriot battery at Dhahran, Saudi Arabia, failed to track and intercept an

incoming Iraqi Scud missile that later struck an army barrack, killing 28 Americans.

The software problem caused by an inaccurate tracking calculation that became

worse when the longer the system is in operation. In this incident, i.e. after 100

 20

hours, the inaccuracy was serious enough to cause the system to look in the wrong

place for the incoming Scud (Blair et al., 1992).

 As another illustration, consider a software that controls an airbag system of a

car (Montoya, 2013). Failure to accommodate certain conditions in the software,

such as while the owner of the car is in the middle of driving and attempting a drift,

an unwanted self-deployment of the airbag (since the airbag sensors predicted a

rollover is imminent) can prove fatal (Ireson, 2011).

All the aforementioned incidents have highlighted the importance of testing

the software thoroughly especially in life threatening applications. As such, the next

section will discuss the overview of how software testing is done.

1.1 Overview of Software Testing

Software testing relates to activities concerned with planning, preparation and

evaluation of software products in order to determine that they satisfy specified

requirements, to demonstrate that they are fit for purpose and to detect defects

(ISQTB, 2012).

To carry out the aforementioned activities, software testing communities have

provided a number of useful techniques that can be used to identify possible defects

and anomalies. If most of the defects and anomalies are detected, the risk for

software failure can indeed be minimized while establishing confidence that the

software is working like it was intended to do (Zamli et al., 2009, Bentley, 2005,

Harrold, 2000).

 21

Figure 1.1 depicts a Deming Cycle that is often used for the control and

continuous improvement of processes and products. The circle contains an iterative

four-step management method termed PDCA (Plan–Do–Check–Act) (Moen and

Norman, 2010).

Figure 1.1 : A Deming Cycle (Moen and Norman, 2010)

 The steps in each successive PDCA cycle are as follows:

(a) Plan, where the objectives and processes necessary to deliver results in

accordance with the expected output (the target or goals) are established,

(b) Do, where the processes are executed according to the aforementioned plan,

(c) Check, where the actual results are analyzed and compared against the

expected output to ascertain any differences. Any deviation in

implementation from the plan is studied for further actions, and

(d) Act, where the corrective actions are requested to close the gap between the

actual results versus the planned output. The differences are analyzed to

determine their root causes.

 22

 Figure 1.2 depicts a Software Testing Cycle proposed by Zamli et al., (2009).

The Software Testing Cycle has been designed based on the four steps adopted from

the Deming Cycle. Here, as shown in Figure 1.2, the software testing activities can

be categorized into three main stages.

Figure 1.2 : Software Testing Cycle (Zamli et al., 2009)

 By dissecting the activities into these stages, function of each stage can be

described separately and thus the whole software testing activities can be

comprehended clearly. Termed test cycle, these stages are Test Planning stage, Test

Execution stage, and Test Monitoring stage (which consists of the check and act

steps adopted from the Deming Cycle).

As the name suggests, Test Execution stage involves the activities to define

and execute the planned test cases (and observing the results) with the intention to

find bug/defect/error (e.g. a mistake in the specified requirement. Actually, the

 23

bug/defect/error can also be found in every phases of software development process

with different naming convention (terms), i.e. anomaly, crash, exception, failure,

fault, incident or side effect). Usually, the procedure of running and executing the

test cases are performed automatically using test scripts.

As depicted by Figure 1.2, software tester tests Application Under Test

(AUT) using test cases. The test cases are generated from base test data using

requirements specification and also include consideration on failure empirical data,

which is based on known problems with similar systems (i.e. many products or

systems, such as missiles and air bags, are considered one time/usage systems, hence

the failure empirical data is a good candidate for test data in testing these systems).

To test for a particular objective, such as to verify compliance with a specific

requirement, software tester uses the requirements specification in order to determine

what kind of input parameters and their values, execution pre-conditions, expected

results and execution post conditions for the test cases (ISTQB, 2012).

 Then, in the Test Monitoring stage, the results of the test execution will be

checked whether they conform to the specification or not, as well as analyzing the

test coverage (what gets tested, e.g. in Functional testing, a slice of functionality of

the whole software is tested) against the stopping criteria to determine either the

software testing process is done or not.

 To ensure success, both aforementioned test cycle requires a good planning.

As a result, we need to properly manage the testing by planning what we want to do

before and after test execution. Therefore, the Test Planning stage involves the

	Crash recovery support for variable strength t-way test generation strategy_Syahrul Afzal Che Abdullah_E3_2016_MJMS

