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and Magnification: 5,000) across the membrane surface at 

two different regions illustrating the Fe3O4 distribution 

pattern on 2500 ppm F-MNPs-PDDA-PSS-PES membrane 

(P5). 

139 

   

Plate 4.8 Membrane top surface area mapping under magnification of 

1,000, illustrating the Fe3O4 distribution pattern on (a) 100 

ppm F-MNPs (P3), (b) 1000 ppm F-MNPs (P4), and (c) 

2,500 ppm F-MNPs (P5) coated membranes. 
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Plate 4.9 FESEM micrographs (Accelerating Voltage: 5 kV and 

Magnification: 20,000) for top surface of neat MF PES 

membrane (P1) used to filter 50 mg L
-1

 HA solution for 48 
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hours (a) clear membrane and (b) fouled membrane.     

   

Plate 4.10 FESEM micrographs (Accelerating Voltage: 5 kV and 

Magnification: 20,000) for top surface of neat UF PES 

membrane used to filter 50 mg L
-1

 HA solution for 48 hours 

(a) clear membrane and (b) fouled membrane.   
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Plate 4.11 FESEM micrographs (Accelerating Voltage: 5 kV and 

Magnification: 20,000) for top surface of magnetophoretic 

actuation composite membrane (P5) used to filter 50 mg L
-1

 

HA solution for 48 hours (a) clear membrane and fouled 

membrane operated (b) without  and (c) with the oscillating 

magnetic field. 
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LIST OF ABBREVIATIONS 

 

AFM Atomic force microscopy 

BSA Bovine serum albumin 

CAB Cellulose acetate butyrate 

CIP Clean-in-place 

DBPs Disinfection by-products 

DI Deionized 

DLS Dynamic light scattering 

EC Electrocoagulation 

EDS Energy dispersive spectroscopy 

EO Electro-oxidation 

FA Fulvic acid 

FESEM Field emission scanning electron microscopy 

F-MNPs Functionalized-magnetite nanoparticles 

HA Humic acid 

HAAs Haloacetic acids 

HCl Hydrochloride acid 

HS Humic substance 

IR Infrared 

LCST Lower critical solution temperature 

MF Microfiltration 

MNPs Magnetite nanoparticles 

MWCO Molecular weight cut-off 

NaOH Sodium hydroxide 
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NF Nanofiltration 

NMP N-methyl-pyrrolidone 

NOM Natural organic matter 

P(St-AA-NVP) Poly(styrene-acrylic acid-N-vinylpyrrolidone) 

PA Polyamide 

PAI Polyamideimide 

PDDA Poly(diallyldimethylammonium chloride) 

PEM Polyelectrolyte multilayer 

PES Polyethersulfone 

PLC Programmable logic controller 

PMAA Poly(methacrylic acid) 

PNIPAAm Poly(N-isopropylacrylamide) 

PSS Poly(sodium-4-stryene sulfonate) 

PVDF Polyvinylidene fluoride 

PVP Poly(N-ethyl-4-vinylpyridinium bromide) 

QCM-D Quartz crystal microbalance with dissipation 

RO Reverse osmosis 

SDI Slit density index 

SSR Sum of squared residuals 

TEM Transmission electron microscopy 

TFC Thin film composite 

TGA Thermogravimetric analysis 

THMs Trihalomethanes  

TOC Total organic carbon 

TSP Trisodium phosphate 



xx 

 

UF Ultrafiltration  

UV Ultraviolet 

VSM Vibrating sample magnetometer 

WHO World health organization  

WM With external oscillating magnetic field 

WOM Without external oscillating magnetic field 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction  
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LIST OF SYMBOLS  

 

A Effective membrane area 

Ḁ Amplitude 

B Magnetic field strength 

C Mass sensitivity constant of the QCM-D 

Cp Permeate concentration 

CF Feed concentration 

Ccr Specific critical salt concentration 

D Dissipation factor 

∆D Change in the dissipation factor 

Edissipated Dissipated energy 

Estored Energy stored in the oscillating quartz crystal 

f Resonant frequency 

∆f Change in frequency  

h0 Thickness of the crystal  

h1 Film thickness 

Ha Hartmann number 

J Membrane flux at time t 

Jo Membrane initial flux 

k Fouling coefficient 

Kb Complete pore blocking coefficient  

Kc Cake filtration constant 

Ki Intermediate pore blocking coefficient  

Ks Standard pore blocking coefficient  



xxii 

 

L Characteristic length scale 

Ms Saturation magnetizations 

∆m Change in mass adsorbed per unit surface of the quartz crystal surface 

n Dimensionless filtration constant  

ɳ Overtone number 

η1 Film viscosity 

η3 Viscosity of the bulk liquid 

ρo Density of the crystal 

ρ1 Film density 

ρ3 Density of the bulk liquid 

R Rejection percentage 

Ra Mean roughness parameter 

Re Reynold number 

Rq Root mean square roughness parameter 

Rz Mean difference between five highest peaks and lowest valleys 

t Time 

τ Decay time 

UE Electrophoretic mobility 

µ Dynamic viscosity 

µ1 Film elasticity 

V Cumulative volume of filtrate 

Vmax Maximum volumetric capacity 

Ṿ Filtrate volume collected through an available membrane area 

ω Angular frequency of the oscillation  

𝛾̇ Shear rate 
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