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TINDAKBALAS LAMPAUGENTING METANOL (SCM) DAN 

LAMPAUPANAS WAP METANOL (SMV) TANPA MANGKIN UNTUK 

SINTESIS ASID LEMAK METIL ESTER (FAME) DARI MINYAK 

JATROPHA DAN LAUT MANGGA 

 

ABSTRAK 

  Projek penyelidikan ini dijalankan untuk menyiasat potensi tindakbalas 

transesterifikasi daripada minyak jatropha dan minyak laut mangga dalam satu 

langkah tanpa menggunakan mangkin untuk pengeluaran biodiesel atau asid lemak 

metil ester (FAME). Pada permulaannya, tindakbalas lampaugenting metanol (SCM) 

tanpa mangkin telah dijalankan dengan menggunakan minyak laut mangga sebagai 

sumber trigliserida (TG). Analisis statistik kaedah rekabentuk eksperimen (DOE) 

telah digunakan untuk menyelidik pengaruh masa tindakbalas, suhu tindakbalas dan 

nisbah molar metanol berbanding minyak dalam lingkungan 10 – 50 min, 320 – 400 

°C dan 20 – 60 mol/mol masing-masing. Keadaan optimum telah didapati pada 380 

°C, 40 min dan 45:1 mol/mol nisbah methanol berbanding minyak dengan 

menghasilkan biodiesel yang berkandungan 78 % w/w. Selepas itu, pembangunan 

matematik model berdasarkan mekanisme tindakbalas SCM telah dijalankan. Model 

pertama yang menggabungkan kedua-dua tindakbalas ulang alik transesterifikasi dan 

esterifikasi telah disahkan dengan menggunakan penyelesaian persamaan 

pembezaan biasa (ODE45). Tenaga pengaktifan yang tertinggi pada 40 kJ/mol dan 

pemalar kadar tindakbalas yang terendah 2.50 × 10
-5

 dm
3
/mol s telah mengesahkan 

bahawa tindakbalas pertama TG untuk menghasilkan diglyserida (DG) merupakan 

langkah yang mengehadkan kadar keseluruhan tindakbalas SCM. Selain itu, 

teknologi baru iaitu tindakbalas lampaupanas wap methanol (SMV) tanpa mangkin 



 xx 

telah dibangunkan untuk transesterifikasi dan esterifikasi sumber minyak. Dalam 

perkembangan awal, minyak jatropha curcas telah digunakan sebagai sumber TG 

dalam tindakbalas SMV. Pengaruh masa tindakbalas, suhu tindakbalas, kadar aliran 

metanol dan jisim minyak pada permulaan tindakbalas terhadap kandungan FAME 

dan kadar pengeluaran FAME telah diselidik dalam lingkungan 0 – 240 min, 260 – 

300 °C, 1 – 3 mL/min dan 40.0 – 70.0 g, masing-masing. Keputusan yang diperolehi 

menunjukkan bahawa penghasilan biodiesel tertinggi iaitu 71.54 % w/w dicapai 

pada suhu tindakbalas pada 290 °C, kadar aliran metanol pada 2 mL/min bagi jisim 

minyak permulaan pada 40.0 g dengan 88.81 % w/w FAME kandungan, 

menunjukkan teknologi SMV berpotensi tinggi dalam menghasilkan FAME. Di 

samping itu, keputusan telah menunjukkan bahawa kadar pengeluaran FAME yang 

tinggi boleh diperolehi apabila jisim minyak permulaan ditambahkan. Oleh itu, jisim 

minyak permulaan telah ditetapkan pada jumlah isipadu yang lebih tinggi iaitu 100 

mL dan sistem eksperimen telah diubahsuai dengan menggantikan preheater kepada 

relau pijar yang bersuhu tinggi dan memperkenalkan halangan ke dalam ruang 

tindakbalas. Minyak laut mangga telah digunakan sebagai sumber TG selepas 

pengubahsuaian telah dijalankan. Daripada keputusan, halangan yang merujuk 

kepada silinder cap dengan dua plat berlubang telah berjaya meningkatkan 

pengeluaran FAME (g). Kesan kadar aliran metanol dan suhu tindakbalas antara 

julat 1 – 4 mL/min dan 260 – 290 °C, masing-masing terhadap hasil FAME, 

pengeluaran FAME (g) dan kadar pengeluaran FAME (g/min) telah dikaji dengan 

isipadu minyak yang tetap iaitu 100 mL. Hasil kajian telah menunjukkan bahawa 

kadar aliran metanol lebih tinggi dan suhu tindakbalas dapat meningkatkan 

pengeluaran FAME. Selepas itu, matematik model sistem SMV yang 

menggabungkan kedua-dua tindakbalas ulang alik transesterifikasi dan esterifikasi 



 xxi

telah dibangunkan dan disahkan dengan menggunakan penyelesaian ODE45. Tenaga 

pengaktifan tertinggi pada 50 kJ/mol dan pemalar kadar tindakbalas yang rendah 

pada 1.62 × 10
-4 

dm
3
/mol min menyokongkan bahawa tindakbalas TG menghasilkan 

DG merupakan langkah yang mengehadkan kadar tindakbalas dalam sistem SMV. 

Kesimpulannya, tindak balas SMV telah menunjukkan potensi yang besar dalam 

pengeluaran biodiesel dengan menggunakan bahan mentah yang berkandungan FFA 

yang tinggi . 
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NON-CATALYTIC SUPERCRITICAL METHANOL (SCM) AND 

SUPERHEATED METHANOL VAPOUR (SMV) FOR FATTY ACID 

METHYL ESTERS (FAME) SYNTHESIS FROM JATROPHA AND SEA 

MANGO OILS 

 

ABSTRACT 

 This research project was carried out to investigate the potential of one-step 

non-catalytic transesterification reaction of jatropha curcas and sea mango oils for 

biodiesel or fatty acid methyl esters (FAME) production. Initially, non-catalytic 

supercritical methanol (SCM) was carried out by utilizing sea mango oil as 

triglycerides (TG) feedstock. Statistical analysis method of design of experiment 

(DOE) was employed to investigate the effect of reaction time, reaction temperature 

and molar ratio of methanol to oil in the range of 10 – 50 min, 320 – 400 °C and 20 

– 60 mol/mol, respectively. The optimum conditions were found to be 380 °C, 40 

min and 45:1 mol/mol of methanol to oil, resulting in 78 % w/w biodiesel content. 

Subsequently, development of mathematical model based on SCM reaction 

mechanism was conducted. This maiden model of FAME production incorporating 

both reversible transesterification and esterification was verified using an ordinary 

differential equation (ODE45) solver. The highest activation energy of 40 kJ/mol 

and the lowest reaction rate constant of 2.50 ×10
-5

 dm
3
/mol s confirmed that the first 

stepwise reaction of TG to produce diglycerides (DG) was the rate-limiting step in 

SCM system. Apart from that, new technology which is non-catalytic superheated 

methanol vapour (SMV) was developed for transesterification and esterification of 

oil feedstock. In the initial development, jatropha curcas oil was utilized as TG 

feedstock in the SMV system. The effects of reaction time, reaction temperature, 
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methanol flow rate and initial oil mass on the FAME production rate and FAME 

content were studied at the range of 0 – 240 min, 260 – 300 °C, 1 – 3 mL/min and 

40.0 – 70.0 g, respectively. Results obtained showed that the highest biodiesel yield 

at 71.54 % w/w was achieved at reaction temperature of 290 °C, methanol flow rate 

at 2 mL/min for the initial oil mass at 40.0 g with 88.81 % w/w FAME content, 

implying the huge potential of SMV technology in producing FAME. In addition, it 

was observed that higher FAME production rate can be obtained when the initial oil 

mass is increased. Therefore, initial oil mass was fixed at higher volume which was 

100 mL and experimental system was modified by replacing the preheater to a high 

temperature crucible furnace and introducing obstacle into the reaction chamber. Sea 

mango oil was utilized after modification had been carried out. From the results, 

obstacle which refers to cylinder cap with two perforated plates had successfully 

increased the FAME production (g). The effects of methanol flow rate and reaction 

temperature between the range of 1 – 4 mL/min and 260 – 290 °C, respectively on 

FAME yield (%), FAME production (g) and FAME production rate (g/min) was 

studied accordingly at a constant oil volume of 100 mL. Results showed that higher 

methanol flow rate and reaction temperature can increase the FAME yield and 

production. Subsequently, mathematical modelling of semi-batch SMV system, 

incorporating both reversible transesterification and esterification was developed and 

verified by using ODE45 solver. The highest activation energy of 50 kJ/mol and the 

low reaction rate constant of 1.62×10
-4

 dm
3
/mol min corroborated that the reaction 

of TG to become DG as the rate limiting step in SMV system. As a conclusion, 

SMV reaction is showing its great potential in biodiesel production by using 

feedstock with high content of FFA.  
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