CARBON MEMBRANES DERIVED FROM POLYMER BLEND OF POLYETHERIMIDE AND POLYETHYLENE GLYCOL FOR GAS SEPARATION

WAN NURUL HUDA BINTI WAN ZAINAL

UNIVERSITI SAINS MALAYSIA 2015

CARBON MEMBRANES DERIVED FROM POLYMER BLEND OF POLYETHERIMIDE AND POLYETHYLENE GLYCOL FOR GAS

SEPARATION

by

WAN NURUL HUDA BINTI WAN ZAINAL

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

November 2015

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. I am using this opportunity to express my deepest gratitude to my supervisors, Associate Professor Dr. Mohd Azmier Ahmad, Associate Professor Dr. Tan Soon Huat and Dr. Muhamad Nazri Murat, for their aspiring guidance, invaluably constructive criticism, friendly advice and support during the last four years.

I would like to express my appreciation to the Dean School of Chemical Engineering, Deputy Dean (Research), lecturers and staffs for their support and help towards my postgraduate affair. Indeed, their willingness in sharing ideas, knowledge and skills are deeply appreciated. I am grateful to the Ministry of Education for providing me scholarship through MyPhD and Universiti Sains Malaysia for providing the USM Membrane Cluster Grant and Postgraduate Research Grant Scheme.

Most importantly, none of this could have happened without the continued support and encouragement from my family especially my parents, Mr. Wan Zainal Wan Muhammad and Mrs. Saloma Husin, my siblings, aunt and my friends. To those who indirectly contributed in this research, your kindness means a lot to me. May Allah richly bless all of you.

Wan Nurul Huda binti Wan Zainal

November 2015

TABLE OF CONTENTS

Acknowledgements	ii
Table of Contents	iii
List of Tables	х
List of Figures	xii
List of Plates	xviii
List of Abbreviations	xix
List of Symbols	xxii
Abstrak	XXV
Abstract	xxvii

CHAPTER 1 - INTRODUCTION

1.1	Gas Separation Technology	1
1.2	Membrane Technology for Gas Separation	3
1.3	Carbon Membrane for Gas Separation	6
1.4	Problem Statement	8
1.5	Research Objectives	11
1.6	Scope of the Study	12
1.7	Organization of the Thesis	13

CHAPTER 2 – LITERATURE REVIEW

2.1	Carbon Membrane	15
2.2	Gas Transport in Carbon Membrane	19

2.3	Precurso	r of Carbon M	Membrane	24
2.4	Modifica	ation of Carbo	on Membrane	30
	2.4.1	Partial Pyr	olyzed Membrane	30
	2.4.2	Polymer P	recursor Modified-derived Carbon	32
		Membrane		
	2.4.3	Mixed Ma	trix Carbon Membrane	33
	2.4.4	Polymer B	lend-derived Carbon Membrane	35
2.5	Supporte	ed Carbon Me	embrane	40
	2.5.1	Membrane	Support	40
	2.5.2	Precursor S	Selection	41
	2.5.3	Polymeric	Membrane Preparation	41
	2.5.4	Pre-treatm	ent	42
	2.5.5	Carbonizat	tion	43
		2.5.5 (a)	Carbonization Temperature	44
		2.5.5 (b)	Carbonization Heating Rate	49
		2.5.5 (c)	Carbonization Soaking Time	50
2.6	Membra	ne Aging and	Regeneration of Carbon Membrane	51
2.7	Gas Perr	neation Perfo	ormance of the Carbon Membrane	53
	2.7.1	Permeation	n Temperature and Feed Pressure	53
	2.7.2	CO ₂ /CH ₄ S	Separation	54
	2.7.3	CO ₂ /N ₂ Se	paration	55
	2.7.4	O ₂ /N ₂ Separation		
	2.7.5	Robeson P	lot	58
2.8	Conclud	ing Remarks		60

CHAPTER 3 – MATERIALS AND METHODS

3.1	Materials		62	
3.2	Equipment			
3.3	Preparatio	on of PEG/PEI Carbon Membranes	64	
	3.3.1	Preparation of Membrane Support	65	
	3.3.2	Preparation of Al ₂ O ₃ Intermediate Layer	66	
	3.3.3	Preparation of Polymer Solution	67	
	3.3.4	Preparation of Supported PEG/PEI Carbon	68	
		Membrane		
	3.3.5	Preparation of Unsupported PEG/PEI Carbon	68	
		Membrane		
3.4	Carboniza	ation	68	
3.5	Gas Perm	neability and Separation Studies	70	
	3.5.1	Single Gas Permeability	70	
		3.5.1 (a) Experimental Set-up and Procedure	70	
		3.5.1 (b) Single Gas Permeability and Ideal	72	
		Selectivity Calculations		
	3.5.2	Binary Gas Permeability and Separation Studies	73	
		3.5.2 (a) Experimental Set-up and Procedure	73	
		3.5.2 (b) Analysis with Gas Chromatography	75	
		3.5.2 (c) Permeability and Selectivity	75	
		Calculations		
3.6	Parameter	r Studies	76	
	3.6.1	Effect of Different Polymer Blend Ratio	76	

		3.6.2	Parameter Studies in Carbonization Process	77
			3.6.2 (a) Effect of Carbonization Temperature	77
			3.6.2 (b) Effect of Carbonization Heating Rate	77
			3.6.2 (c) Effect of Carbonization Soaking Time	78
		3.6.3	Parameter Studies in Single Gas Permeability Test	78
3.	.7	Carbon N	Membranes Characterization	78
		3.7 (a)	Thermal Gravimetric Analysis	79
		3.7 (b)	Fourier Transform Infra-Red	79
		3.7 (c)	Scanning Electron Microscopy	80
		3.7 (d)	X-ray Diffraction	80
		3.7 (e)	Elemental Analysis	81
		3.7 (f)	Atomic Force Microscopy	81
		3.7 (g)	N ₂ Adsorption-Desorption	81
3.	.8	Regenera	ation of the Carbon Membrane	82
3.	.9	Micropo	re Size Estimation Model	82
		3.9.1	Model Assumption	83
		3.9.2	Model Development	83

CHAPTER 4 – RESULTS AND DISCUSSIONS

4.1	Modification of Alumina Support with Al ₂ O ₃ Intermediate				
	Layer				
	4.1 (a)	N ₂ Adsorption-Desorption Analysis of Al ₂ O ₃	89		
		Intermediate Layer			

	4.1 (b)	Surface M	forphology of Al ₂ O ₃ Intermediate Layer	90
		and Alum	ina Support	
	4.1 (c)	Gas Perme	eation Performance of Alumina Support	91
4.2	Effect of	Polymer Ble	end Ratio and Carbonization Parameters on	92
	Carbon N	Aembranes I	Performance and Structure	
	4.2.1	Effect of I	Different Polymer Blend Ratio	92
		4.2.1 (a)	Thermal Gravimetric	92
		4.2.1 (b)	Surface Morphology	95
		4.2.1 (c)	N2 Adsorption-Desorption	97
		4.2.1 (d)	Single Gas Permeation Performance and	98
			Ideal Selectivity	
	4.2.2	Effect of (Carbonization Temperature	104
		4.2.2 (a)	Microstructure of Carbon Membrane	104
		4.2.2 (b)	Surface Chemistry of Carbon Membrane	106
		4.2.2 (c)	Surface Morphology of Carbon	108
			Membrane	
		4.2.2 (d)	Single Gas Permeation Performance and	111
			Ideal Selectivity	
	4.2.3	Effect of (Carbonization Heating Rate	119
		4.2.3 (a)	Microstructure of Carbon Membrane	119
		4.2.3 (b)	Surface Morphology of the Carbon	121
			Membrane	
		4.2.3 (c)	Single Gas Permeation Performance and	122
			Ideal Selectivity	

	4.2.4	Effect of C	Carbonizati	on Soaking Tin	ne		129
		4.2.4 (a)	Surface	Morphology	of	Carbon	129
			Membran	e			
		4.2.4 (b)	Single Ga	as Permeation P	erform	ance and	131
			Ideal Sele	ectivity			
4.3	Character	rizations and	l Gas Separ	ation Performar	ice of F	PEG/PEI-	137
	650-R1-2	2h Carbon M	lembrane				
	4.3.1	Characteri	ization				137
		4.3.1 (a)	Elementa	l Analysis			137
		4.3.1 (b)	N ₂ Adsor	ption-Desorptio	n		138
		4.3.1 (c)	Surface	Topography (Atomi	c Force	139
			Microsco	py)			
	4.3.2	Compariso	on of Perm	eation Perform	ance o	f Carbon	141
		Membrane	es				
	4.3.3	Effect of I	Permeation	Conditions on	Gas Pe	ermeation	142
		Performan	ice				
		4.3.3 (a)	Effect of	Permeation Ter	nperati	ure	142
		4.3.3 (b)	Effect of	Feed Pressure			145
4.4	Binary G	as Permeabi	lity of PEC	PEI Carbon M	lembra	ne	146
4.5	Effect of	Membrane	Aging				150
4.6	Micropor	e Size Estin	nation				154

CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	150	6
5.1	Conclusions	150	0

5.2 Recommendations

REFERENCES

APPENDICES

LIST OF PUBLICATIONS

157

159

LIST OF TABLES

		Page
Table 2.1	Molecular dimensions and molecular weight of gas	22
	penetrants	
Table 2.2	Carbon membranes derived from various polymer	28
	precursors	
Table 2.3	Mixed matrix carbon membranes	34
Table 2.4	Carbon membranes derived from polymer blend	37
	precursor	
Table 2.5	Carbonization temperatures studied in the preparation	46
	of the supported carbon membranes	
Table 3.1	List of chemicals used for the research	63
Table 3.2	List of gases	63
Table 3.3	List of equipment	64
Table 3.4	Operating conditions of the gas chromatography	75
Table 3.5	Preparation of the polymer precursor at different PEG	77
	compositions	
Table 3.6	List of equipment used for the characterization	79
Table 4.1	Single gas permeability of the alumina support	92
Table 4.2	Surface area and micropore volume of PEI and	98
	PEG/PEI carbon membranes	
Table 4.3	Functional groups observed in the FTIR spectra of the	108
	PEG1/PEI film and carbon membranes	

Table 4.4	Results of the elemental analysis of the PEI and	138
	PEG/PEI precursors and carbon membranes	

- Table 4.5Comparison of the permeation performance of the141carbon membranes
- Table 4.6Comparison of gas transport properties between single147and binary gas for CO2/CH4 separation
- Table 4.7Comparison of gas transport properties between single147and binary gas for CO2/N2 separation
- Table 4.8Comparison of gas transport properties between single147and binary gas for O2/N2 separation

LIST OF FIGURES

Figure 1.1	Milestones in the industrial application of membrane	
	gas separation systems (Bernardo and Clarizia, 2013)	
Figure 1.2	Typical molecular sieving mechanism (Ismail et al.,	7
	2011)	
Figure 2.1	Schematic structure of carbonized membrane	16
	(Kusakabe et al., 1998)	
Figure 2.2	Non-graphitising carbon structure (McEnaney, 1999)	16
Figure 2.3	Idealized "slit-like" carbon structure (Steel and Koros,	17
	2003)	
Figure 2.4	Bimodal PSD of carbon membranes (Steel, 2000)	18
Figure 2.5	(a) XRD pattern of the phenolic resin (PR) carbon	18
	membrane (Zhang et al., 2014) and (b) SEM	
	micrograph of the polyimide (PI) carbon membrane	
	(Tseng et al., 2009)	
Figure 2.6	Gas transport mechanisms in porous membrane	20
Figure 2.7	Concept of the polymer blending for carbon	36
	membranes fabrication (Ozaki et al., 1997)	
Figure 2.8	Schematic sketch represent the aging in the carbon	52
	membranes (Xu et al., 2014)	
Figure 2.9	Upper bound correlation of the (a) CO ₂ /CH ₄ , (b)	59
	CO ₂ /N ₂ and (c) O ₂ /N ₂ (Robeson, 2008)	

Figure 3.1	Flowchart of the study	
Figure 3.2	Schematic diagram of the supported carbon membrane	65
Figure 3.3	Flowchart of the supported PEG/PEI carbon	66
	membranes preparation	
Figure 3.4	Schematic diagram of carbonization experimental set-	69
	up	
Figure 3.5	Carbonization profile for the carbon membranes	70
	preparation	
Figure 3.6	Schematic diagram of the single gas permeability test	71
	set-up	
Figure 3.7	Schematic diagram of the membrane permeation cell	72
Figure 3.8	Schematic diagram of the binary gas permeability test	74
	set-up	
Figure 3.9	Schematic diagram of a gas molecule permeates	85
	through a cylindrical pore (Lee et al., 2011)	
Figure 4.1	N2 adsorption-desorption isotherm of Al2O3	90
	intermediate layer	
Figure 4.2	Pore size distribution of Al ₂ O ₃ intermediate layer	90
Figure 4.3	Weight loss and derivative weight versus temperature	93
	of (a) PEI (b) PEG1/PEI (c) PEG2/PEI (d) PEG3/PEI	
	and (e) PEG4/PEI films	
Figure 4.4	Single gas permeability of carbon membranes derived	99
	from different PEG:PEI blend ratio	

- Figure 4.5 Ideal selectivity of carbon membranes derived from 101 different blend ratios
- Figure 4.6 Trade-off relationship between (a) CO₂ permeability 103 and CO₂/CH₄ selectivity, (b) CO₂ permeability and CO₂/N₂ selectivity and (c) O₂ permeability and O₂/N₂ selectivity of carbon membranes derived at different polymer blend ratios
- Figure 4.7 XRD pattern of (a) PEG1/PEI-700 (b) PEG1/PEI-650 105 (c) PEG1/PEI-600 (d) PEG1/PEI-550 and (e) PEG1/PEI film
- Figure 4.8 FTIR spectra of (a) PEG1/PEI-700 (b) PEG1/PEI-650 107 (c) PEG1/PEI-600 (d) PEG1/PEI-550 and (e) PEG1/PEI film
- Figure 4.9 Single gas permeability of (a) CO₂, (b) O₂, (c) N₂ and 112
 (d) CH₄ as a function of carbonization temperature for
 PEI and PEG1/PEI carbon membranes
- Figure 4.10Ideal selectivity of (a) CO2/CH4, (b) CO2/N2 and (c)115O2/N2 of the PEI and PEG1/PEI carbon membranes
derived at different carbonization temperatures
- Figure 4.11Trade-off relationship between (a) CO2 permeability117and CO2/CH4 ideal selectivity, (b) CO2 permeabilityand CO2/N2 ideal selectivity and (c) O2 permeabilityand CO2/N2 ideal selectivity of the PEI and PEG1/PEI

carbon membranes derived at different carbonization temperatures

- Figure 4.12 XRD pattern of (a) PEG1/PEI-R1 (b) PEG1/PEI-R3 120 (c) PEG1/PEI-R5 and (d) PEG1/PEI-R7
- Figure 4.13 Single gas permeability of (a) CO₂, (b) O₂, (c) N₂ and 123
 (d) CH₄ as a function of carbonization heating rate of the PEI and PEG1/PEI carbon membranes
- Figure 4.14Ideal selectivity of (a) CO2/CH4, (b) CO2/N2 and (c)126O2/N2 of the PEI and PEG1/PEI carbon membranesderived at different carbonization heating rates
- Figure 4.15 Trade-off relationship between (a) CO₂ permeability 128 and CO₂/CH₄ ideal selectivity, (b) CO₂ permeability and CO₂/N₂ ideal selectivity and (c) O₂ permeability and O₂/N₂ ideal selectivity of the PEI and PEG1/PEI carbon membranes derived at different carbonization heating rates
- Figure 4.16 Single gas permeability of (a) CO₂, (b) O₂, (c) N₂ and 131
 (d) CH₄ as a function of carbonization soaking time for the PEI and PEG1/PEI carbon membranes
- Figure 4.17Ideal selectivity of (a) CO2/CH4, (b) CO2/N2 and (c)134O2/N2 of the PEI and PEG1/PEI carbon membranes
derived at different carbonization soaking times134
- Figure 4.18 Trade-off relationship between (a) CO₂ permeability 136 and CO₂/CH₄ ideal selectivity, (b) CO₂ permeability

and CO₂/N₂ ideal selectivity and (c) O₂ permeability and O₂/N₂ ideal selectivity of the PEI and PEG1/PEI carbon membranes derived at different carbonization soaking times

- Figure 4.19 MSD of the PEG/PEI carbon membrane estimated 139 from H-K method
- Figure 4.20Single gas performance through the PEG/PEI carbon142membrane as a function of permeation temperatures
- Figure 4.21 Relationship between the activation energy and gas 144 kinetic diameter
- Figure 4.22Ideal selectivity of the PEG/PEI carbon membrane as144a function permeation temperatures
- Figure 4.23Single gas performance through the PEG/PEI carbon145membrane at different feed pressure
- Figure 4.24 Ideal selectivity of the PEG/PEI carbon membrane at 146 different feed pressure
- Figure 4.25 Trade-off relationship between (a) CO_2 permeability 149 and CO_2/CH_4 ideal selectivity, (b) CO_2 permeability and CO_2/N_2 ideal selectivity and (c) O_2 permeability and O_2/N_2 ideal selectivity of the PEG/PEI carbon membrane for single and binary gas mixtures
- Figure 4.26 Single gas permeability of fresh, aged and regenerated 150 of PEG/PEI carbon membrane

- Figure 4.27Ideal selectivity of the fresh, aged and regenerated of152the PEG/PEI carbon membrane
- Figure 4.28 Trade-off relationship between (a) CO_2 permeability 153 and CO_2/CH_4 ideal selectivity, (b) CO_2 permeability and CO_2/N_2 ideal selectivity and (c) O_2 permeability and O_2/N_2 ideal selectivity of fresh, aged and regenerated PEG/PEI carbon membrane
- Figure 4.29Normalized permeabilities as a function of gas kinetic155diameter of the PEG/PEI carbon membrane

LIST OF PLATES

Plate 4.1	Surface of PEG/PEI carbon membranes (a) without	88
	Al ₂ O ₃ intermediate layer and (b) with Al ₂ O ₃ intermediate	
	layer after carbonization	
Plate 4.2	Schematic structure and cross section of the derived	88
	carbon membranes	
Plate 4.3	SEM micrographs of (i) surface and (ii) cross section of	91
	Al ₂ O ₃ intermediate layer	
Plate 4.4	SEM micrographs of (i) surface and (ii) cross section of	96
	(a) PEI (b) PEG1/PEI (c) PEG2/PEI (d) PEG3/PEI and	
	(e) PEG4/PEI carbon membranes	
Plate 4.5	SEM micrographs of (i) surface and (ii) cross section of	109
	(a) PEG1/PEI membrane (b) PEG1/PEI-550 (c)	
	PEG1/PEI-600 (d) PEG1/PEI-650 and (e) PEG1/PEI-700	
Plate 4.6	SEM micrographs of (i) surface and (ii) cross section of	121
	(a) PEG1/PEI-R1 (b) PEG1/PEI-R3 (c) PEG1/PEI-R5	
	and (d) PEG1/PEI-R7	
Plate 4.7	SEM images of (i) surface and (ii) cross section of (a)	130
	PEG1/PEI-1h (b) PEG1/PEI-2h (c) PEG1/PEI-3h	
Plate 4.8	The three dimensional AFM surface images of (a) PEI	140

and (b) PEG/PEI carbon membranes

LIST OF ABBREVIATIONS

6FDA	2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane
	dianhydride
AFM	Atomic force microscopy
APB	1,3-Bis(3-aminophenoxy) benzene
BET	Brunauer-Emmet-Teller
ВЈН	Barrett-Joyner-Halenda
BPDA	Biphenyltetracarboxylic dianhydride
BTDA	Benzophenone tetracarboxylic dianhydride
CA	Cellulose acetate
СМ	Carbon membrane
DAM	Diamino mesitylene
DDBT	Dimethyldibenzothiophene sulfone
FA	Furfuryl alcohol
FFV	Fractional free volume
HCN	Hydrogen cyanide
HFCM	Hollow fiber carbon membrane
H-K	Horvath-Kawazoe
IUPAC	International Union of Pure and Applied Chemistry
MFI	Mordenite framework inverted
MMSCFD	Million metric standard cubic feet per day
MSD	Micropore size distribution
MWNT	Multi-walled carbon nanotube

NDA	Naphthalene dicarboxylic acid
NMP	N-methyl-2-pyrrolidone
NPC	Nanoporous carbon
ODA	Oxydianiline
PAN	Polyacrylonitrile
PEG	Polyethylene glycol
PEI	Polyetherimide
PFA	Polyfurfuryl alcohol
PFNR	Phenol formaldehyde novolac resin
PFR	Phenol formaldehyde resin
PI	Polyimide
PPES	poly(phthalazinone ether sulfone)
PPESK	poly(phthalazinone ether sulfone ketone)
PPM	Partially pyrolyzed membrane
РРО	Poly(phenylene oxide)
РРу	Polypyrrole
PR	Phenolic resin
PSA	Pressure swing adsorption
PSD	Pore size distribution
PVB	Poly(vinylbutyral)
PVDC-AC	Polyvinylidene chloride-acrylate terpolymer
PVDC-PVC	Poly(vinylidene chloride)-polyvinyl chloride
PVP	Polyvinylpyrrolidone
RFR	Resorcinol-formaldehyde resin

RF	Resin formaldehyde
SEM	Scanning electron microscopy
SPAEK	Sulfonated poly(aryl ether ketone)
Tg	Glass transition temperature
TGA	Thermal gravimetric analysis
TMS	Trimethylsilyl
TrisAPB	tris-1,3-Bis(3-aminophenoxy) benzene
TSA	Thermal swing adsorption
XRD	X-ray diffraction

LIST OF SYMBOLS

A	Membrane area	cm ²
Ag	Silver	-
Al ₂ O ₃	Alumina	-
Ar	Argon	-
Ao	Cross-sectional area of the pore	cm ²
A_i	Cross-sectional area of the pore	cm ²
b	Equilibrium adsorption constant	Pa ⁻¹
С	Carbon	-
C3H6	Propene	-
C3H8	Propane	-
CH ₄	Methane	-
СО	Carbon monoxide	-
CO ₂	Carbon dioxide	-
D	Diffusion coefficient	$m^2 s^{-1}$
d	Dimension spacing	nm
deff	Effective diffusion space	nm
d_k	Diameter of permeating gas	nm
d_p	Pore diameter	nm
dc/dx	Concentration gradient of the gas across	mol m ⁻⁴
	the membrane	
Ea	Apparent activation energy	kJ/mol

ſ₽	Normalized gas permeability	-
Н	Hydrogen	-
H_2	Hydrogen gas	-
l	Thickness of the membrane material	cm
J	Flux of gas through the membrane	mol m ⁻² s ⁻¹
М	Molecular weight of the gas	g/mol
Ν	Nitrogen	-
N2	Nitrogen gas	-
N_p	Number of pores	-
n	Integral number	-
NH ₃	Ammonia	-
NO _x	Nitrogen oxides	-
0	Oxygen	-
O ₂	Oxygen gas	-
Р	Permeability	barrer
P/l	Permeance	GPU
р	Pressure	Pa
p feed	Pressure at feed stream	cmHg
Q	Volumetric flow rate of gas at standard	cm ³ /s
	temperature and pressure	
R	Gas constant	J K ⁻¹ mol ⁻¹
Т	Absolute temperature	K
t	Time	S
V	Volume of permeate gas	cm ³