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PEMBANGUNAN ALGORITMA GABUNGAN DATA TERNYAHPUSAT

DENGAN PENAPIS KALMAN TEROPTIMUM

ABSTRAK

Manfaat positif teknik penggabungan data telah mempengaruhi beberapa aplikasi

kejuruteraan untuk melaksanakan teknologi tersebut. Walau bagaimanapun, terdapat

beberapa cabaran yang masih perlu diatasi seperti pemilihan algoritma yang

bersesuaian, kelewatan pemprosesan dan masalah jejalan memori. Tesis ini

mencadangkan satu model penggabungan data yang akan memudahkan proses

pemilihan algoritma selain mengoptimumkan jumlah pemilihan algoritma yang

berpotensi. Model ini menggabungkan teknologi penggabungan data dengan domain

kejuruteraan algoritma, dan dengan itu mengoptimumkan algoritma penggabungan

data menggunakan teknik yang canggih seperti pengaturcaraan berfungsi untuk

mengurangkan lengah pemprosesan dan penggunaan memori. Model ini

direalisasikan dalam empat aplikasi penggabungan data seperti sistem unit

pengukuran inersia (IMU), sistem OktoKopter, penggabungan data satelit dan

penilaian struktur konkrit. Bagi keseluruhan aplikasi pelbagai penggabungan data

algoritma seperti algoritma turas Kalman, algoritma faktor analisis (FA) dan

pengusulan algoritma QR-FA telah dibandingkan dalam jangkaan kesalahan asas.

Algoritma QR-FA yang dicadangkan telah dibangunkan dengan memperkenalkan

beberapa langkah tambahan algoritma penguraian QR ke dalam algoritma piawai

analisis faktor. Algoritma dengan paling kurang jangkaan kesalahan akan dipilih bagi

proses pengoptimuman. Hasil keputusan bagi semua aplikasi mengesahkan bahawa

pengoptimuman telah mengurangkan masa pelaksanaan dan penggunaan memori

bagi penggabungan data algoritma.
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DEVELOPMENT OF DECENTRALIZED DATA FUSION ALGORITHM

WITH OPTIMIZED KALMAN FILTER

ABSTRACT

The positive virtues of data fusion technique have influenced several engineering

applications to implement the technology. However, a number of challenges remain

to be addressed, such as selection of appropriate algorithm, processing delay and

bottleneck-memory problem. This thesis proposes a data fusion model that facilitates

selection of algorithm and recommends selected algorithm to be optimized. The

model collaborates data fusion technology with algorithm engineering domain,

accordingly data fusion algorithm is optimized using sophisticated technique such as

functional programming to reduce the processing delay and memory usage. The

model is realized in four data fusion applications such as inertial measurement unit

(IMU) system, OktoKopter system, satellite data fusion and concrete structure

evaluation. In all the applications, various data fusion algorithms such as Kalman

filter algorithm, factor analysis (FA) algorithm and the proposed QR-FA algorithm

are compared on basis of estimation error. The proposed QR-FA algorithm is

developed by introducing additional step of QR decomposition in the standard factor

analysis algorithm. The algorithm with the least estimation error is selected for

optimization. The results in all the applications confirm that optimization has

significantly reduced execution time and memory usage of selected data fusion

algorithm.
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CHAPTER ONE

INTRODUCTION

1.1 General introduction

In the present era of technology, for many systems that require acquisition,

processing and integration of information provided by several knowledge sources,

the need for a mechanism that can transform incomplete, inconsistent or imprecise

data provided by one sensor to more useful information by fusing it with data

provided by other sensors is a crucial element to achieve autonomy and efficiency

through machine intelligence. The area of data fusion provides solutions to problems

that are characterized by intensive and diverse sensor information.

Data fusion is a general term that encompasses multifaceted and multilevel

processing and deals with the association, correlation, automatic detection,

approximate estimation and amalgamation of data and information from single and

multiple sources to accomplish better refined estimates, and provide comprehensive

and appropriate assessments of threats and situations and their impact (Data fusion

lexicon, 1991).

The technology of data fusion handles synergistic arrangement of information

obtained by various information sources, measurement sensor devices and decision

makers. Thus, the process of sensor fusion is entirely concerned regarding

identification of target, registration of sensors, distributed detection, decision-making

and management of database. It utilizes diverse set of techniques/methods namely,



2

Bayesian method, method of least squares, Dempster–Shafer’s scheme, Fuzzy logic

and artificial neural networks (Kokar and Kim, 1993).

1.2 Research motivation

Application of data fusion technology has enabled a higher performance primarily

in terms of resolution and dynamics in various control-engineering applications.

Multi-sensor data fusion providing reliable navigation information, and better state

estimates established reputable position in many UAV applications. Fusion

algorithms associated with noise filters incorporated at circuit design level have

become indispensible part of many embedded control applications (Ridley, 2014).

In the geospatial domain, data fusion is often synonymous with data integration.

Fusion centers facilitate the collection, analysis, and dissemination of hazard-related

data (Stankutė and Asche, 2009). In many complicated applications marine animal

researchers use data fusion to combine animal tracking data with bathymetric,

meteorological, sea surface temperature (SST) and animal habitat data to examine

and understand habitat utilization and animal behavior in reaction to external forces

such as weather or water temperature (Fekas et al., 2012). Data fusion has established

a remarkable position in road and traffic safety applications. The data from the

different sensing technologies can be combined in intelligent ways to determine the

traffic state accurately. Fusion based approach utilizes data collected from roadside

utilizing acoustic and image sensors (Joshi et al., 2013).

Multisensor data fusion by improving accuracy and precision has established

significant advantages in various engineering applications. In order to convince

growing demands pertaining to requisites of applications, new models, systems and

algorithms are continually being designed and developed.
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