DEVELOPMENT OF DECENTRALIZED DATA FUSION ALGORITHM WITH OPTIMIZED KALMAN FILTER

SAYED ABULHASAN QUADRI

UNIVERSITI SAINS MALAYSIA 2016

DEVELOPMENT OF DECENTRALIZED DATA FUSION ALGORITHM

WITH OPTIMIZED KALMAN FILTER

by

SAYED ABULHASAN QUADRI

Thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

August 2016

ACKNOWLEDGEMENTS

I express my gratitude to the Almighty Allah who is the ultimate source of guidance in all our endeavours. I am deeply obliged and thankful to my supervisor Professor Dr. Othman Sidek whose constant supports and advices have been sources of motivation for the smooth and successful completion of this work.

All my thanks and regards to the staff of CEDEC and School of Electrical and Electronic Engineering, especially Dean Professor Rizal Arshad, for their kind cooperation and assistance in carrying out the research.

I am also thankful to Kevin Ward (Manager, NASA's Earth Observatory Group, US), Aristidis Vaiopoulos (Researcher at University of Athens, Greece), Prof. Dr. Maarten Broekmans (Senior researcher at Department of Mineral Resources, Geological Survey of Norway), Dr. Rob Campbell (Scientist at Cold Spring Harbor Laboratory, New York), and Mr. Strobel Norbert (Scientist at R & D Department, Siemens, Germany), for providing valuable data and technical assistance.

My special gratitude is due to Dr. M. Abdul Mujeebu, University of Dammam, Saudi Arabia, whose comments were highly helpful in organizing and shaping the thesis. I gratefully acknowledge the supports of my parents, my wife, family members and all those who contributed to the successful completion of this dissertation.

I am indebted to my younger brother Dr. Sayed Abulhayan Quadri, my father-in-law Syed Ali Shah & his family and my friend Abdurrahman Javid Shaikh for their moral support. A profound expression of gratitude to my beloved neighbours, Jamaludin Bin Ismail, Saloma Binti Yusof, Mohamed Barakath Ali, Mumtaj Begum and Mohammed Billal. I am thankful to Allah who gave me a wonderful nephew, Ijaz Ahmed, who stood beside me in all my testing conditions.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	iv
LIST OF FIGURES	xi
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii
ABSTRAK	XX
ABSTRACT	xxi

CHAPTER ONE : INTRODUCTION

1.1	General introduction	1
1.2	Research motivation	2
1.3	Problem statement	3
1.4	Research objectives	4
1.5	Research scope and assumptions	4
1.6	Thesis organization	7

CHAPTER TWO : LITERATURE REVIEW

2.1	Brief history of data fusion	10
2.2	The need for multisensors and their advantages	11
2.3	Data fusion models	17
	2.3.1 Multi-sensor integration fusion model	18

	2.3.2	Behavioural knowledge-based data fusion model	19
	2.3.3	Distributed blackboard data fusion architecture	21
	2.3.4	Thomopoulos architecture	22
	2.3.5	Waterfall model	24
	2.3.6	Joint Directors of Laboratories (JDL) process model	26
	2.3.7	Revised JDL data fusion model	28
	2.3.8	Omnibus data fusion model	31
2.4	Other	data fusion models	33
2.5	Kalma	an filter	45
	2.5.1	The Kalman filter cycle	45
	2.5.2	Kalman state estimation equations	47
2.6	Kalma	an filter for inertial measurement unit (IMU)	50
	2.6.1	Inertial measurement unit	50
	2.6.2	Working principles of IMU	52
	2.6.3	IMU IDG500/ADXL335 circuit board details	53
	2.6.4	Kalman filter algorithm in IMU applications	53
	2.6.5	Details of error analysis under Kalman filter implementation	58
2.7	Kalma	an filter equations for pixel fusion in satellite data application	64
2.8	Factor	analysis (FA) implementation in algorithm development	67
2.9	Algor	ithm engineering	71
	2.9.1	Role of algorithm engineering in data fusion algorithms	71
	2.9.2	Building blocks of algorithm engineering	73
	2.9.3	Functional programming	76
2.10	Decen	tralized data fusion approach	78
2.11	Summ	nary	79

CHAPTER THREE : RESEARCH METHODOLOGY

3.1	Introd	uction	81
3.2	Propo	sed collaborative model of data fusion (CDFM)	81
3.3	Layer	_1	83
3.4	Layer	_2	83
	3.4.1	Level four: Technical analysis	84
	3.4.2	Level five: Algorithm engineering	90
	3.4.3	Level six: Decentralized data fusion	92
3.5	Imple	mentation of the proposed CDFM in IMU application	94
	3.5.1	Proposed optimization of Kalman filter algorithm	95
	3.5.2	Proposed optimization of QR-FA algorithm	97
3.6	Proposed CDFM versus standard JDL model		99
3.7	Evalu	ation of CDFM	101
	3.7.1	FA versus QR-FA algorithm	101
	3.7.2	QR-FA versus optimized QR-FA algorithm	102
	3.7.3	QR-FA versus Kalman filter algorithm	102
	3.7.4	KF algorithm versus optimized KF algorithm	102
3.8	Summ	nary	103

CHAPTER FOUR : CASE STUDIES

4.1	Introd	uction	104
4.2	Case s	study_1: Data fusion application in OktoKopter system	105
	4.2.1	Introduction	105
	4.2.2	OktoKopter	105
	4.2.3	Basic terms and technical specifications	108

	4.2.4	Flight control mechanism	109
	4.2.5	Sensor fusion layout for OktoKopter system	110
	4.2.6	Optimization of Kalman filter algorithm in an OktoKopter	112
		application	
	4.2.7	Implementation of decentralized data fusion approach	112
4.3	Case s	study_2: Data fusion application in satellite image inferences	113
	4.3.1	Introduction	113
	4.3.2	Proposed data fusion schema for satellite data application	113
	4.3.3	Satellite data and inferences	114
	4.3.4	Optimization of Kalman filter algorithm in an satellite	116
		data fusion	
	4.3.5	Implementation of decentralized data fusion approach	120
4.4	Case s	study_3: Data fusion application in concrete	120
	structi	ures evaluation	
	4.4.1	Introduction	120
	4.4.2	Concrete structures and Alkali-aggregate reaction	121
	4.4.3	Integrated multisensor data fusion approach	122
	4.4.4	Features extraction	125
	4.4.5	Optimization of Kalman filter algorithm in concrete	125
		structure evaluation	
	4.4.6	Implementation of decentralized data fusion approach	126
4.5	Sumn	nary	126

CHAPTER FIVE : RESULTS AND DISCUSSION

5.1	Introd	uction	127
5.2	Implementation of the CDFM in IMU application		127
	5.2.1	FA versus QR-FA algorithm	127
	5.2.2	QR-FA versus optimized QR-FA	130
	5.2.3	Kalman filter algorithm versus QR-FA algorithm	132
	5.2.4	Kalman filter algorithm versus optimized KF algorithm	134
5.3	Implei	mentation of the CDFM in OktoKopter application	137
	5.3.1	FA versus QR-FA algorithm	137
	5.3.2	QR-FA versus optimized QR-FA	139
	5.3.3	Kalman filter algorithm versus QR-FA algorithm	141
	5.3.4	Kalman filter algorithm versus optimized KF algorithm	143
	5.4	Implementation of the CDFM in satellite data application	145
	5.4.1	FA versus QR-FA algorithm	146
	5.4.2	QR-FA versus optimized QR-FA	147
	5.4.3	Kalman filter algorithm versus QR-FA algorithm	149
	5.4.4	Kalman filter algorithm versus optimized KF algorithm	151
5.5	Implei	mentation of the CDFM in concrete structure	153
	evalua	tion application	
	5.5.1	FA versus QR-FA algorithm	153
	5.5.2	QR-FA versus optimized QR-FA	156
	5.5.3	Kalman filter algorithm versus QR-FA algorithm	158
	5.5.4	Kalman filter algorithm versus optimized KF algorithm	160
5.6	Summ	ary	162

CHAPTER SIX : CONCLUSIONS AND FUTURE WORKS

REFE	RENCES	166
6.2	Recommendations for future work	164
6.1	Conclusions and research findings	163

APPENDICES

APPENDIX A : Circuit configuration of IMUAPPENDIX B : Kalman filter implementation in IMU applicationAPPENDIX C : Data procurement and hypothesisAPPENDIX D : Feature extraction and derivation of estimates

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Representative data fusion applications for	16
	defence systems (Hall & Llinas, 2001)	
Table 2.2	Representative nondefense data fusion	17
	applications (Hall & Llinas, 2001)	
Table 2.3	Comparison of standard data fusion models	33
Table 2.4	Basic Kalman filtering notations	47
Table 4.1	Technical specification of the aircraft	109
	(ww.mikrokopterdotde)	
Table 5.1	Execution time comparison of FA and QR-	129
	FA data fusion algorithms for IMU	
	application	
Table 5.2	Execution time comparison of QR-FA and	132
	optimized QR-FA for IMU application	
Table 5.3	Execution time comparison of Kalman filter	134
	and QR-FA algorithm for IMU application	
Table 5.4	Execution time comparison of Kalman filter	
	and optimized Kalman filter algorithm for	136
	IMU application	
Table 5.5	Execution time comparison of FA and QR-	139
	FA data fusion algorithms	
	OktoKopter application	
Table 5.6	Execution time comparison of QR-FA and	141
	optimized QR-FA data fusion algorithms for	
	OktoKopter application	
Table 5.7	Execution time comparison of QR-FA and	143
	Kalman filter algorithm for OktoKopter	
	application	
Table 5.8	Execution time comparison of Kalman filter	145
	and optimized Kalman filter algorithm for	

	OktoKopter application	
Table 5.9	Execution time comparison of FA and QR-	147
	FA data fusion algorithms for satellite data	
	application	
Table 5.10	Execution time comparison of QR-FA and	149
	optimized QR-FA for satellite data	
	application	
Table 5.11	Execution time comparison of QR-FA and	151
	Kalman filter algorithm for satellite data	
	application	
Table 5.12	Execution time comparison of Kalman filter	153
	and optimized Kalman filter algorithm for	
	satellite data application	
Table 5.13	Execution time comparison of FA and QR-	155
	FA data fusion algorithms for concrete	
	structure evaluation application	
Table 5.14	Execution time comparison of QR-FA and	158
	optimized QR-FA for concrete structure	
	evaluation application	
Table 5.15	Execution time comparison of QR-FA and	160
	Kalman filter algorithm for concrete	
	structure evaluation application	
Table 5.16	Execution time comparison of Kalman filter	162
	and optimized Kalman filter algorithm for	
	concrete structure evaluation application	

LIST OF FIGURES

Figure 1.1	Flowchart summarizing the present research work	06
Figure 2.1	Luo and Kay's model (Luo and Kay, 1988)	18
Figure 2.2	Sensor fusion model (Pau, 1988)	20
Figure 2.3	Distributed blackboard data fusion (Schoess & Castore, 1988)	22
Figure 2.4	Thomopoulos architecture (Thomopoulos, 1989)	24
Figure 2.5	Waterfall model (Harris et al., 1998)	25
Figure 2.6	JDL data fusion model (Llinas and Hall, 1998)	27
Figure 2.7	Revised JDL data fusion model (Steinberg et al., 1999)	28
Figure 2.8	Omnibus data fusion model (Bedworth and O'Brien, 2000)	32
Figure 2.9	Kalman filter cycle	46
Figure 2.10	Inertial measurement unit (King, 1998)	52
Figure 2.11	Three angles of rotation (yaw, pitch and roll) (El- Fatary, 2003)	52
Figure 2.12	IMU board	53
Figure 2.13	Process block diagram	60
Figure 3.1	Conceptual overview of the proposed collaborative data fusion-algorithm engineering model	82
Figure 3.2	The proposed collaborative data fusion model (CDFM)	82
Figure 3.3	Stages of the technical analysis	85
Figure 3.4	Structural overview of the proposed data fusion algorithm	86

Figure 3.5	Flowchart of factor analysis algorithm with added	87
	QR decomposition step	
Figure 3.6	Algorithm optimization using functional	92
	programming technique	
Figure 3.7	Decentralized data fusion using optimized Kalman	94
	filter algorithm	
Figure 3.8	Flowchart of Kalman filter algorithm used in IMU	96
	application	
Figure 3.9	Flowchart of optimized Kalman filter algorithm used	97
	in IMU application	
Figure 3.10	Flowchart of QR-FA algorithm	98
Figure 3.11	Flowchart of optimized QR-FA algorithm	99
Figure 4.1	ARF-MikroKopter OktoXL	107
Figure 4.2	XL- Power Board	107
Figure 4.3	ARF Transmitter systems	107
Figure 4.4	Screen shot of MK flight control software	110
Figure 4.5	Sensor fusion layout for the OktoKopter system	111
Figure 4.6	Pixel-level data fusion schema using Kalman filter	114
	algorithm	
Figure 4.7	Input image (http://visibleearth.nasa.gov)	116
Figure 4.8	Flowchart of KF algorithm in satellite data fusion	118
Figure 4 9	Flowchart of optimized KF algorithm in satellite data	119
i iguite 1.9	fusion application	117
Figure 4.10	Proposed experimental set up for the integrated	122
8	multi-sensor data acquisition	
Figure 5.1	Comparison of estimation errors (FA versus QR-FA	128
	algorithm) for IMU application	
Figure 5.2	Comparison of FA and QR-FA algorithms with	128
	respect to CPU usage for IMU application	

Figure 5.3	Comparison of FA and QR-FA algorithms with	129
	respect to memory usage for IMU application	
Figure 5.4	Comparison of estimation errors (QR-FA versus	130
	optimized QR-FA algorithm) for IMU application	
Figure 5.5	Comparison of QR-FA and optimized QR-FA	131
	algorithms with respect to CPU usage for IMU	
	application	
Figure 5.6	Comparison of QR-FA and optimized QR-FA	132
	algorithms with respect to memory usage for IMU	
	application	
Figure 5.7	Comparison of estimation errors in Kalman filter	133
	algorithm and QR-FA for IMU application	
Figure 5.8	Comparison of Kalman filter algorithm QR-FA	133
	algorithms with respect to CPU usage for IMU	
	application	
Figure 5.9	Comparison of Kalman filter algorithm and QR-FA	134
	algorithms with respect to memory usage for IMU	
	application	
Figure 5.10	Comparison of estimation errors in Kalman filter	135
	algorithm and optimized Kalman filter algorithm for	
	IMU application	
Figure 5.11	Comparison of Kalman filter versus optimized	135
	Kalman filter algorithm with respect to CPU usage	
	for IMU application	
Figure 5.12	Comparison of Kalman filter versus optimized	136
	Kalman filter algorithm with respect to memory	
	usage for IMU application	
Figure 5.13	Comparison of estimation errors (FA versus QR-FA	137
	algorithm) for OktoKopter application	
Figure 5.14	Comparison of FA and QR-FA algorithms with	138
	respect to CPU usage for OktoKopter application	

Figure 5.15 Comparison of FA and QR-FA algorithms with 138

respect to memory usage for OktoKopter application

- Figure 5.16 Comparison of estimation errors (QR-FA versus 139 optimized QR-FA algorithm) for OktoKopter application
- Figure 5.17 Comparison of QR-FA and optimized QR-FA 140 algorithms with respect to CPU usage for OktoKopter application
- Figure 5.18 Comparison of QR-FA and optimized QR-FA 141 algorithms with respect to memory usage for OktoKopter application
- Figure 5.19Comparison of estimation errors (QR-FA versus KF142algorithm) for OktoKopter application
- Figure 5.20 Comparison of Kalman filter (KF) and QR-FA 142 algorithms with respect to CPU usage for OktoKopter application
- Figure 5.21 Comparison of Kalman filter (KF) and QR-FA 143 algorithms with respect to memory usage for OktoKopter application
- Figure 5.22 Comparison of estimation errors (Kalman filter 144 versus optimized Kalman filter algorithm) for OktoKopter application
- Figure 5.23Comparison of KF and optimized KF algorithms with144respect to CPU usage for OktoKopter application
- Figure 5.24 Comparison of KF and optimized KF algorithms with 145 respect to memory usage for OktoKopter application
- Figure 5.25Comparison of estimation errors (FA versus QR-FA146algorithm) for satellite data application
- Figure 5.26Comparison of FA and QR-FA algorithms with146respect to CPU usage for satellite data application
- Figure 5.27 Comparison of FA and QR-FA algorithms with 147 respect to memory usage for satellite data application
- Figure 5.28 Comparison of estimation errors (QR-FA versus 148

optimized (QR-FA algorithm) for satellite data application

- Figure 5.29 Comparison of QR-FA and optimized QR-FA 148 algorithms with respect to CPU usage for satellite data application
- Figure 5.30 Comparison of QR-FA and optimized QR-FA 149 algorithms with respect to memory usage for satellite data application
- Figure 5.31Comparison of estimation errors (QR-FA versus KF150algorithm) for satellite data application
- Figure 5.32 Comparison of Kalman filter (KF) and QR-FA 150 algorithms with respect to CPU usage for satellite data application
- Figure 5.33 Comparison of Kalman filter (KF) and QR-FA 151 algorithms with respect to memory usage for satellite data application
- Figure 5.34 Comparison of estimation errors (Kalman filter 152 versus optimized Kalman filter algorithm) for satellite data application
- Figure 5.35 Comparison of Kalman filter (indicated by KF in the 152 plot) and optimized KF algorithms with respect to CPU usage for satellite data application
- Figure 5.36 Comparison of Kalman filter (indicated by KF in the 153 plot) and optimized KF algorithms with respect to memory usage for satellite data application
- Figure 5.37 Comparison of estimation errors (FA versus QR-FA 154 algorithm) for concrete structure evaluation application
- Figure 5.38 Comparison of FA and QR-FA algorithms with 154 respect to CPU usage for concrete structure evaluation application
- Figure 5.39 Comparison of FA and QR-FA algorithms with 155 respect to memory usage for concrete structure

evaluation application

Figure 5.40	Comparison of estimation errors (OR-FA versus	156
	ontimized OR-FA algorithm) for concrete structure	
	evaluation application	
F: 5.41		1 6 7
Figure 5.41	Comparison of QR-FA and optimized QR-FA	157
	algorithms with respect to CPU usage for concrete	
	structure evaluation application	
Figure 5.42	Comparison of QR-FA and optimized QR-FA	157
	algorithms with respect to memory usage for	
	concrete structure evaluation application	
Figure 5.43	Comparison of estimation errors (QR-FA versus KF)	158
	for concrete structure evaluation application	
Figure 5.44	Comparison of KF and QR-FA algorithms with	159
	respect to CPU usage for concrete structure	
	evaluation application	
Figure 5.45	Comparison of KF and QR-FA algorithms with	159
	respect to memory usage for concrete structure	
	evaluation application	
Figure 5.46	Comparison of estimation errors (KF versus	160
-	optimized KF algorithm) for concrete structure	
	evaluation application	
Figure 5.47	Comparison of KF and optimized KF algorithms with	161
	respect to CPU usage for concrete structure	
	evaluation application	
Figure 5.48	Comparison of KF and optimized KF algorithms with	161
	respect to memory usage for concrete structure	
	evaluation application	

LIST OF SYMBOLS

CO	Carbon monoxide
CO_2	Carbon dioxide
ej-	a priori error
ej	a posteriori error
F	Faraday
Hz	Hertz
I_0	Bessel function
m	Meter
mm	Millimeter
μ	Micro
mg	Milligram
m ³	cubic meter
Psi	Specific variance
R	Rényi entropy
r	Radius
S	Second
t	Time
	Loading matrix
	Ohm
	Variance

LIST OF ABBREVIATIONS

AAR	Alkali-aggregate reaction
ALV	Autonomous land vehicles
ANN	Artificial neural network
AQE	Air quality emergency
ARF	Almost ready to fly
ARM	Adaptive recursive model
BDDF	Bayesian decentralized data fusion
CC	Correlation coefficient
CCD	Charge coupled device
CSV	Comma separated values
DoD	Department of defence
EEPROM	Electrically erasable programmable read-only memory
EKF	Extended Kalman filter
EM	Expectation maximization
FA	Factor analysis
FEA	Finite element analysis
FPM	Fusion performance model
GIHS-GA	Generalized intensity-hue-saturation-genetic algorithm
GMM	Gaussian Mixture Models
IF	Image fidelity
IMU	Inertial measurement unit
KF	Kalman filter
LDA	Local Discriminant Analysis
LiPo	Lithium-Polymer

LOC	Lines of codes
LVDT	Linear variable displacement transformer
MEMS	Micro electro mechanical systems
MLP	Multi-layer perceptron
MPN	Most probable number
MRA	Multi-resolution analysis
MSDF	Multisensor data fusion
NBRI	National Building Research Institute
OA	Observed accuracy
OMI	Ozone monitoring instrument
PCA	Principal Component analysis
PCB	Printed circuit board
PDF	Probability density function
PLSE	Pseudo least squares estimates
PMLE	Pseudo maximum likelihood estimates
PNN	Probabilistic neural network
PSNR	Peak signal to noise Ratio
RCC	Reinforced cement concrete
RMSD	Root mean square deviations
SA	Situational awareness
SD	Standard deviation
SF	Spatial frequency
SHM	Structural health monitoring

PEMBANGUNAN ALGORITMA GABUNGAN DATA TERNYAHPUSAT DENGAN PENAPIS KALMAN TEROPTIMUM

ABSTRAK

Manfaat positif teknik penggabungan data telah mempengaruhi beberapa aplikasi kejuruteraan untuk melaksanakan teknologi tersebut. Walau bagaimanapun, terdapat beberapa cabaran yang masih perlu diatasi seperti pemilihan algoritma yang bersesuaian, kelewatan pemprosesan dan masalah jejalan memori. Tesis ini mencadangkan satu model penggabungan data yang akan memudahkan proses pemilihan algoritma selain mengoptimumkan jumlah pemilihan algoritma yang berpotensi. Model ini menggabungkan teknologi penggabungan data dengan domain kejuruteraan algoritma, dan dengan itu mengoptimumkan algoritma penggabungan data menggunakan teknik yang canggih seperti pengaturcaraan berfungsi untuk mengurangkan lengah pemprosesan dan penggunaan memori. Model ini direalisasikan dalam empat aplikasi penggabungan data seperti sistem unit pengukuran inersia (IMU), sistem OktoKopter, penggabungan data satelit dan penilaian struktur konkrit. Bagi keseluruhan aplikasi pelbagai penggabungan data algoritma seperti algoritma turas Kalman, algoritma faktor analisis (FA) dan pengusulan algoritma QR-FA telah dibandingkan dalam jangkaan kesalahan asas. Algoritma QR-FA yang dicadangkan telah dibangunkan dengan memperkenalkan beberapa langkah tambahan algoritma penguraian QR ke dalam algoritma piawai analisis faktor. Algoritma dengan paling kurang jangkaan kesalahan akan dipilih bagi proses pengoptimuman. Hasil keputusan bagi semua aplikasi mengesahkan bahawa pengoptimuman telah mengurangkan masa pelaksanaan dan penggunaan memori bagi penggabungan data algoritma.

XX

DEVELOPMENT OF DECENTRALIZED DATA FUSION ALGORITHM WITH OPTIMIZED KALMAN FILTER

ABSTRACT

The positive virtues of data fusion technique have influenced several engineering applications to implement the technology. However, a number of challenges remain to be addressed, such as selection of appropriate algorithm, processing delay and bottleneck-memory problem. This thesis proposes a data fusion model that facilitates selection of algorithm and recommends selected algorithm to be optimized. The model collaborates data fusion technology with algorithm engineering domain, accordingly data fusion algorithm is optimized using sophisticated technique such as functional programming to reduce the processing delay and memory usage. The model is realized in four data fusion applications such as inertial measurement unit (IMU) system, OktoKopter system, satellite data fusion and concrete structure evaluation. In all the applications, various data fusion algorithms such as Kalman filter algorithm, factor analysis (FA) algorithm and the proposed QR-FA algorithm are compared on basis of estimation error. The proposed QR-FA algorithm is developed by introducing additional step of QR decomposition in the standard factor analysis algorithm. The algorithm with the least estimation error is selected for optimization. The results in all the applications confirm that optimization has significantly reduced execution time and memory usage of selected data fusion algorithm.

CHAPTER ONE

INTRODUCTION

1.1 General introduction

In the present era of technology, for many systems that require acquisition, processing and integration of information provided by several knowledge sources, the need for a mechanism that can transform incomplete, inconsistent or imprecise data provided by one sensor to more useful information by fusing it with data provided by other sensors is a crucial element to achieve autonomy and efficiency through machine intelligence. The area of data fusion provides solutions to problems that are characterized by intensive and diverse sensor information.

Data fusion is a general term that encompasses multifaceted and multilevel processing and deals with the association, correlation, automatic detection, approximate estimation and amalgamation of data and information from single and multiple sources to accomplish better refined estimates, and provide comprehensive and appropriate assessments of threats and situations and their impact (Data fusion lexicon, 1991).

The technology of data fusion handles synergistic arrangement of information obtained by various information sources, measurement sensor devices and decision makers. Thus, the process of sensor fusion is entirely concerned regarding identification of target, registration of sensors, distributed detection, decision-making and management of database. It utilizes diverse set of techniques/methods namely, Bayesian method, method of least squares, Dempster–Shafer's scheme, Fuzzy logic and artificial neural networks (Kokar and Kim, 1993).

1.2 Research motivation

Application of data fusion technology has enabled a higher performance primarily in terms of resolution and dynamics in various control-engineering applications. Multi-sensor data fusion providing reliable navigation information, and better state estimates established reputable position in many UAV applications. Fusion algorithms associated with noise filters incorporated at circuit design level have become indispensible part of many embedded control applications (Ridley, 2014).

In the geospatial domain, data fusion is often synonymous with data integration. Fusion centers facilitate the collection, analysis, and dissemination of hazard-related data (Stankut and Asche, 2009). In many complicated applications marine animal researchers use data fusion to combine animal tracking data with bathymetric, meteorological, sea surface temperature (SST) and animal habitat data to examine and understand habitat utilization and animal behavior in reaction to external forces such as weather or water temperature (Fekas et al., 2012). Data fusion has established a remarkable position in road and traffic safety applications. The data from the different sensing technologies can be combined in intelligent ways to determine the traffic state accurately. Fusion based approach utilizes data collected from roadside utilizing acoustic and image sensors (Joshi et al., 2013).

Multisensor data fusion by improving accuracy and precision has established significant advantages in various engineering applications. In order to convince growing demands pertaining to requisites of applications, new models, systems and algorithms are continually being designed and developed.