ATTITUDE DETERMINATION AND CONTROL FOR STABILIZATION AND POINTING ACCURACY FOR 3U CLASS NANO-SATELLITE

MUHAMMAD FADLY

UNIVERSITI SAINS MALAYSIA

2016

ATTITUDE DETERMINATION AND CONTROL FOR STABILIZATION AND POINTING ACCURACY FOR 3U CLASS NANO-SATELLITE

by

MUHAMMAD FADLY

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

April 2016

ACKNOWLEDGMENTS

In the name of Allah, the most gracious and the most merciful. First and foremost I offer my sincerest gratitude to my supervisor, Professor Dr. Othman Sidek, who has guided and supported me with his patience and knowledge throughout my research. I attribute my accomplishment to his encouragement, patience, effort and without him this thesis would not have been completed. One simply could not wish for a better and friendlier supervisor as he is. His suggestions and advices had helped me in my times of despair when my research were facing some problems.

I also owe my sincerest gratitude to Professor Dr. Ir. Md Azlin Md Said as my co-supervisor who help me very much since I came to Malaysia. He is the one who bring me to Malaysia and support me to take my PhD. He always advice me to keep my family and thought me a lot about good things in life. He is like father to me in Malaysia. He is also my good tutor when we were doing InnoSAT project together. He believe me very much about electronic system and projects.

I would like to extend my gratitude to my family members especially my late mother and father who always support me and pray for me to complete my PhD. My wife and daughters for their love and support. Many thanks should also go to my best friend Mohd Faizal Allaudin who always with me in many thick and thin situations.

Many thanks to Pak Indra and wife, all my friend from Collaborative Microelectronic Design Excellence Center (CEDEC) who were involved directly or indirectly in this research work. My appreciation also goes to the School of Electrical and Electronic Engineering (SEEE), USM for giving me the opportunity to further my studies.

Finally, I would like to thanks Astronautics Technology Sdn. Bhd. (ATSB) and

Malaysia Space Centre (ANGKASA) for giving me the opportunity to be involved with the InnoSAT satellite project.

TABLE OF CONTENTS

Ackr	nowledgments	ii
Table	e of Contents	iv
List	of Tables	X
List	of Figures	хi
List (Of Abbreviations	xxi
List (Of Symbolsx	xvii
Abst	rak	XXX
Abst	ractx	xxii
СНА	PTER 1 – INTRODUCTION	
1.1	Background	3
	1.1.1 Innovation Satellite (InnoSAT)	5
1.2	Problem Statement	7
1.3	Significance of Study	10
1.4	Objective of Research	11
1.5	Contribution of the Study	12
1.6	Scope of Works	13
1.7	Thesis outline	15
СНА	PTER 2 – LITERATURE REVIEW	
2.1	Introduction	17
2.2	3-Units Cube Satellite (3U) Satellite	18
2.3	Sun and Magnetic Field Sensors	23
2.4	Magnetorquer	27
2.5	Attitude Determination	29
2.6	Attitude Determination Method	35

	2.6.1	TRIAD Method	36
	2.6.2	q-Method or Davenport's q-method	36
	2.6.3	The Quaternion Estimator(QUEST)	39
	2.6.4	Fast Optimal Attitude Matrix(FOAM)	40
	2.6.5	Estimator of Optimal Quaternion(ESOQ1)	40
	2.6.6	Extended Kalman Filter(EKF)	4]
2.7	Attitud	le Control	45
2.8	Attitud	le Control Method	55
	2.8.1	Stability	56
	2.8.2	Controllability	59
	2.8.3	Observability	59
	2.8.4	Stabilizability	60
	2.8.5	Proportional Integral Derivative(PID) Control	6
	2.8.6	Linear Quadratic Regulator(LQR) Control	62
	2.8.7	H ₂ Optimal Control	64
	2.8.8	Robust H_{∞} Control	69
	2.8.9	Robust μ-synthesis Control	72
		2.8.9(a) Structured Uncertainty	7.
		2.8.9(b) μ -synthesis Control Algorithm	7
	2.8.10	Linear Parametric Varying (LPV) Control	78
	2.8.11	Sliding Mode Control	84
2.9	Summ	ary	8'
СНА	APTER 3	3 – METHODOLOGY	
3.1	Introdu	uction	9
3.2	Mathe	matical Model	9.
	3.2.1	Environmental Model	9:

		3.2.1(a)	Orbit Model	96
		3.2.1(b)	Sun Model	98
		3.2.1(c)	Eclipse	99
		3.2.1(d)	Magnetic Field Model	99
	3.2.2	InnoSAT	Mathematical Model	100
		3.2.2(a)	Kinematic Model	101
		3.2.2(b)	Dynamic Model	102
		3.2.2(c)	Nonlinear Model	104
		3.2.2(d)	Linear Model	106
3.3	Imple	mentation	and Simulation	107
	3.3.1	Introduc	tion	107
	3.3.2	Orbit and	d Environmental Model	109
	3.3.3	Attitude	Determination Calculation	111
	3.3.4	Attitude	Control Design	117
		3.3.4(a)	Open Loop Analysis	119
		3.3.4(b)	Embedding Sliding Mode into Open Loop Model	121
		3.3.4(c)	PID Control Design	123
		3.3.4(d)	LQR Control Design	124
		3.3.4(e)	H ₂ Control Design	128
		3.3.4(f)	H_{∞} Control Design	130
		3.3.4(g)	μ -synthesys Control Design	134
		3.3.4(h)	LPV Control Design	135
3.4	Summ	nary		143
CHA	APTER 4	4 – RESU	LTS AND DISCUSSION	
4.1	Enviro	onmental N	Model	145
	/ 1 1	Orbit Ma	odal	1/16

	4.1.2	Sun Mod	lel	147
	4.1.3	Magnetic	Field Model	148
4.2	Attitud	de Determ	ination	151
4.3	Attitud	de Control		156
	4.3.1	Open Lo	op and PID control Analysis	157
		4.3.1(a)	Open Loop Analysis	157
		4.3.1(b)	PID Control Analysis	159
	4.3.2	Linear Q	uadratic Control (LQR)	160
		4.3.2(a)	Stabilization Mode Analysis Using LQR Control	162
		4.3.2(b)	Pointing Accuracy Analysis Using LQR Control	166
	4.3.3	H_2 Contr	rol	167
		4.3.3(a)	Stabilization Mode Analysis Using <i>H</i> ₂ Control	167
		4.3.3(b)	Pointing Accuracy Analysis Using H ₂ Control	184
	4.3.4	H_{∞} Cont	rol	192
		4.3.4(a)	Stabilization Mode Analysis Using H_{∞} Control	193
		4.3.4(b)	Pointing Accuracy Analysis Using H_{∞} Control	200
	4.3.5	μ -synthe	esis Control	207
		4.3.5(a)	Stabilization Mode Analysis Using μ -synthesis Control.	207
		4.3.5(b)	Pointing Accuracy Analysis Using μ -synthesis Control .	211
	4.3.6	Linear Pa	arametric Varying (LPV) Control	214
		4.3.6(a)	Stabilization Mode Using LPV Control	214
		4.3.6(b)	Pointing Accuracy Analysis Using LPV Control	222
4.4	Summ	ary		224
CHA			CLUSION AND RECOMMENDATION	
5.1	Conclu	usion		226
5.2	Recommendation			220

Refe	rences	230
APP	ENDICES	237
СНА	PTER A -ROTATION MATRIX	238
A.1	Matrix Rotation	238
	A.1.1 Property of Rotation Matrix	238
	A.1.2 Euler Angle	239
	A.1.3 Quaternion	240
	A.1.4 Conversion from Euler to Quaternion and Vice Versa	242
A.2	Reference Frame	242
	A.2.1 Earth Centered Inertial (ECI)	242
	A.2.2 Earth Centered Earth Fixed (ECEF)	243
	A.2.3 Orbit Frame	244
	A.2.4 Body Frame	244
	A.2.5 Transformation from ECI to ECEF Frames	245
	A.2.6 Transformation from ECI to Orbit Frames	246
	A.2.7 Transformation from Orbit to Body Frame	247
СНА	PTER B -ENVIRONMENTAL MODEL	248
B.1	Orbit Model	248
	B.1.1 Orbit Model Kepler	248
B.2	Environment Model	250
	B.2.1 Sun Model	250
СНА	PTER C – MATHEMATICAL MODEL	252
СНА	PTER D –CONTROL METHODS	257
D.1	D-K Iteration	257
D.2	Simulink Matlab	259

CHA	HAPTER E – ATTITUDE CONTROL RESULT		262
E.1	H_{∞} Control		262
	E.1.0(a)	Stabilization Mode Analysis Using H_{∞} Control	262
	E.1.0(b)	Pointing Accuracy Analysis Using H_{∞} Control	270
E.2	μ -synthesis Con	trol	271
	E.2.0(a)	Stabilization Mode Analysis Using μ -synthesis Control.	271
	E.2.0(b)	Pointing Accuracy Analysis Using μ -synthesis Control .	283
E.3	Linear Parametri	c Varying (LPV) Control	289
	E.3.0(a)	Stabilization Mode Using LPV Control	289
	E.3.0(b)	Pointing Accuracy Analysis Using LPV Control	296

LIST OF TABLES

		Page
Table 2.1	List of 3U Satellite literature review	22
Table 2.2	List of attitude determination literature review	34
Table 2.3	List of attitude control using magnetic torque literature review	53
Table 2.4	List of attitude control using magnetic torque literature review (continue)	54
Table 3.1	Explaination of Two Line Element (TLE) data (Krogh et al., 2002)	110
Table 3.2	Constant definition (Krogh et al., 2002)	111
Table 3.3	Initial value of variables for Extended Kalman Filter (EKF) (Produced from STK simulation)	115
Table 3.4	Moment of Inertial of InnoSAT (Azlin et al., 2008)	115
Table 3.5	Weighting matrix Q and R	125
Table 3.6	Estimated coefficient for LPV model of InnoSAT	141
Table 4.1	Error position vector between orbit model and STK	147
Table 4.2	Error sun vector between model and STK	148
Table 4.3	Error magnetic field vector between model and STK	150
Table 4.4	Error estimation of magnetic field model	151
Table 4.5	Accuracy evaluation of attitude angle estimation for InnoSAT	155
Table 4.6	speed evaluation of attitude angle estimation for InnoSAT	156
Table 4.7	Result of LQR attitude control	166
Table 4.8	Result of H_2 attitude control	183
Table 4.9	Result of H_{∞} attitude control	200
Table 4.10	Result of μ -synthesis attitude control	211
Table 4.11	Result of LPV attitude control	221

LIST OF FIGURES

		Page
Figure 1.1	Vertical Component of Earth magnetic field (nT) from IGRF model at 2005 from Macmillan and Maus (2005)	2
Figure 1.2	North Component of Earth magnetic field (nT) from IGRF model at 2005 from Macmillan and Maus (2005)	3
Figure 1.3	Comparison of CubeSAT structure	5
Figure 1.4	(a) Electronic board staging, (b) Electronic board structure, (c) Solar panel and payload	6
Figure 1.5	Orbit of InnoSAT	7
Figure 1.6	Magnetorquer for InnoSAT	14
Figure 2.1	Pyramid sun sensor ExPSS (Azlin et al., 2008)	24
Figure 2.2	SS-411 digital sun sensor (Enright and Sinclair, 2007)	25
Figure 2.3	Digital micro sun sensor (Xie and Theuwissen, 2014)	25
Figure 2.4	Digital micro sun sensor (Persson, 2011)	27
Figure 2.5	Concept of Magnetorquer (Bellini, 2014)	28
Figure 2.6	Block diagram of Proportional Integral Derivative (PID) control in closed loop system	61
Figure 2.7	Block diagram of Linear Quadratic Regulator (LQR) control in closed loop system	62
Figure 2.8	Block diagram of H_2 optimal control in closed loop system	65
Figure 2.9	Block diagram of H_2 optimal control in closed loop system	67
Figure 2.10	Unmodelled dynamic in multiplicative uncertainty	74
Figure 2.11	Structure block diagram to analysis robustness	74
Figure 2.12	Interconnection scaling D to system G	77
Figure 2.13	System structure of LPV control Apkarian et al. (1995)	78
Figure 3.1	Interconnection system block diagram of Attitude Determination And Control System (ADCS)	92

Figure 3.2	Process of orbit model kepler and Simplified General Perturbation 4 (SGP4)	96
Figure 3.3	Block diagram of Implementation and simulation for InnoSAT ADCS	109
Figure 3.4	Iteration process of EKF	116
Figure 3.5	Process of attitude control design	118
Figure 3.6	Block diagram of PID control design for InnoSAT	123
Figure 3.7	Block diagram of LQR control design for InnoSAT	124
Figure 3.8	2D and 3D simulation closed loop of InnoSAT	127
Figure 3.9	2D and 3D simulation closed loop of InnoSAT	127
Figure 3.10	Block diagram of H_2 control design for InnoSAT	129
Figure 3.11	Performance weighting function for H_2 control	130
Figure 3.12	Block diagram of H_{∞} control design for InnoSAT	133
Figure 3.13	Performance weighting function for H_{∞} control	133
Figure 3.14	Block diagram of μ – synthesis control design for InnoSAT	134
Figure 3.15	Point of satellite position for calculation B matrix	137
Figure 3.16	Estimation of replacement equation for LPV system InnoSAT	141
Figure 3.17	Block diagram of LPV control design for InnoSAT	142
Figure 4.1	Comparison between position vector from orbit model and STK	146
Figure 4.2	Error of position vector between orbit model and STK	147
Figure 4.3	Comparison between sun vector from model and STK	148
Figure 4.4	Error of sun vector from model and STK	148
Figure 4.5	Comparison between magnetic field vector from model and STK	149
Figure 4.6	Error of magnetic field vector from model and STK	149
Figure 4.7	Estimation of magnetic field model	151
Figure 4.8	Attitude angular position using deterministic method	152
Figure 4.9	Attitude angular rate using deterministic method	153

Figure 4.10	Attitude angular position using recursive method	154
Figure 4.11	Root Locus of Open Loop System	157
Figure 4.12	Time response of open loop	158
Figure 4.13	Energy and energy rate of open loop	158
Figure 4.14	Nyquist plot of open loop	159
Figure 4.15	Nyquist plot of open loop	159
Figure 4.16	Bode plot of open loop	160
Figure 4.17	Bode plot of open loop	161
Figure 4.18	Angular position response of closed loop using PID in stabilization mode	161
Figure 4.19	Root Locus of closed loop using LQR in stabilization mode	162
Figure 4.20	Time response of Closed loop using LQR in stabilization mode	162
Figure 4.21	Controller output of LQR in stabilization mode	163
Figure 4.22	Energy and energy rate of closed loop in stabilization mode	164
Figure 4.23	Nyquist plot of closed loop using LQR control	165
Figure 4.24	Stability analysis of LQR controller for variation of satellite position	166
Figure 4.25	Step response using LQR control in pointing accuracy mode	167
Figure 4.26	Frequency response of disturbance input using LQR control in pointing accuracy mode	168
Figure 4.27	Time response of disturbance input using LQR control in pointing accuracy mode	169
Figure 4.28	Root Locus of closed loop using H_2 control in stabilization mode	169
Figure 4.29	Time response of closed loop using H_2 control in stabilization mode	170
Figure 4.30	Controller signal using H_2 control in stabilization mode	171
Figure 4.31	Energy and energy rate of closed loop using H_2 control in stabilization mode	171
Figure 4.32	Maximum perturbation of closed loop using H_2 control	172

Figure 4.33	Stability analysis of H_2 controller for variation of satellite position	173
Figure 4.34	Stability analysis of H_2 controller for variation of satellite position	174
Figure 4.35	Root Locus of closed loop using H_2 control in stabilization mode	175
Figure 4.36	Time response of closed loop using H_2 control in stabilization mode	175
Figure 4.37	Controller signal using H_2 control in stabilization mode	176
Figure 4.38	Energy and energy rate of closed loop using H_2 control in stabilization mode	177
Figure 4.39	Maximum perturbation of closed loop using H_2 control	178
Figure 4.40	Stability analysis of H_2 controller for variation of satellite position	178
Figure 4.41	Root Locus of closed loop using H_2 control in stabilization mode	179
Figure 4.42	Time response of closed loop using H_2 control in stabilization mode	180
Figure 4.43	Controller signal using H_2 control in stabilization mode	180
Figure 4.44	Energy and energy rate of closed loop using H_2 control in stabilization mode	181
Figure 4.45	Maximum perturbation of closed loop using H_2 control	182
Figure 4.46	Stability analysis of H_2 controller for variation of satellite position	183
Figure 4.47	Step response using H_2 control in pointing accuracy mode	184
Figure 4.48	Frequency response of command input using H_2 control in pointing accuracy	185
Figure 4.49	Frequency response of command input using H_2 control in pointing accuracy	185
Figure 4.50	Frequency response of command input using H_2 control in pointing accuracy	186
Figure 4.51	Step response using H_2 control in pointing accuracy mode	187
Figure 4.52	Frequency response of command input using H_2 control in pointing accuracy	187

Figure 4.53	Frequency response of command input using H_2 control in pointing accuracy	188
Figure 4.54	Frequency response of command input using H_2 control in pointing accuracy	188
Figure 4.55	Step response using H_2 control in pointing accuracy mode	189
Figure 4.56	Frequency response of command input using H_2 control in pointing accuracy	190
Figure 4.57	Frequency response of command input using H_2 control in pointing accuracy	190
Figure 4.58	Frequency response of command input using H_2 control in pointing accuracy	191
Figure 4.59	Frequency response of closed loop using H_2 control with respect to disturbance input	191
Figure 4.60	Frequency response of closed loop using H_2 control with respect to disturbance input	192
Figure 4.61	Frequency response of closed loop using H_2 control with respect to disturbance input	192
Figure 4.62	Root Locus of closed loop using H_{∞} control in stabilization mode	193
Figure 4.63	Time response of closed loop using H_{∞} control in stabilization mode	194
Figure 4.64	Controller signal using H_{∞} control in stabilization mode	195
Figure 4.65	Energy and energy rate of closed loop using H_{∞} control in stabilization mode	196
Figure 4.66	μ -analysis of closed loop using H_{∞} control in stabilization mode	197
Figure 4.67	Maximum perturbation of closed loop using H_{∞} control	197
Figure 4.68	Stability analysis of H_{∞} controller for variation of satellite position	198
Figure 4.69	Step response using H_{∞} control in pointing accuracy mode	201
Figure 4.70	Frequency response of command input using H_{∞} control in pointing accuracy	202
Figure 4.71	Frequency response of command input using H_{∞} control in pointing accuracy	202

Figure 4.72	Frequency response of command input using H_{∞} control in pointing accuracy	203
Figure 4.73	Step response using H_2 control in pointing accuracy mode	205
Figure 4.74	Frequency response of command input using H_{∞} control in pointing accuracy	205
Figure 4.75	Frequency response of command input using H_{∞} control in pointing accuracy	206
Figure 4.76	Frequency response of command input using H_{∞} control in pointing accuracy	206
Figure 4.77	Time response of closed loop using LPV control in stabilization mode	215
Figure 4.78	Controller signal using LPV control in stabilization mode	216
Figure 4.79	Maximum perturbation of closed loop using LPV control	217
Figure 4.80	Stability analysis of LPV controller for variation of satellite position	217
Figure 4.81	Stability analysis of LPV controller for variation of satellite position	219
Figure 4.82	Time response of closed loop using LPV control in stabilization mode	220
Figure 4.83	Stability analysis of <i>LPV</i> controller for variation of satellite position	221
Figure A.1	ECI Frame	243
Figure A.2	ECEF Frame	243
Figure A.3	Orbit Frame	244
Figure A.4	Body Frame	245
Figure D.1	Simulink of InnoSAT	259
Figure D.2	Satellite view of InnoSAT 3D Simulation	260
Figure D.3	Earth view of InnoSAT 3D Simulation	261
Figure E.1	Root Locus of closed loop using H_{∞} control in stabilization mode	262

Figure E.2	Time domain response of closed loop using H_{∞} control in stabilization mode	263
Figure E.3	Controller signal using H_{∞} control in stabilization mode	263
Figure E.4	Energy and energy rate of closed loop using H_{∞} control in stabilization mode	264
Figure E.5	μ -analysis of closed loop using H_{∞} control in stabilization mode	264
Figure E.6	Maximum perturbation of closed loop using H_{∞} control	265
Figure E.7	Stability analysis of H_{∞} controller for variation of satellite position	265
Figure E.8	Root Locus of closed loop using H_{∞} control in stabilization mode	266
Figure E.9	Time domain response of closed loop using H_{∞} control in stabilization mode	266
Figure E.10	Time domain response of closed loop using H_{∞} control in stabilization mode	267
Figure E.11	Controller signal using H_{∞} control in stabilization mode	267
Figure E.12	Energy and energy rate of closed loop using H_{∞} control in stabilization mode	268
Figure E.13	μ -analysis of closed loop using H_∞ control in stabilization mode	268
Figure E.14	Maximum perturbation of closed loop using H_{∞} control	269
Figure E.15	Stability analysis of H_{∞} controller for variation of satellite position	269
Figure E.16	Step response using H_{∞} control in pointing accuracy mode	270
Figure E.17	Frequency response of command input using H_{∞} control in pointing accuracy	270
Figure E.18	Frequency response of command input using H_{∞} control in pointing accuracy	271
Figure E.19	Frequency response of command input using H_{∞} control in pointing accuracy	271
Figure E.20	Root Locus of closed loop using μ -Synthesis control in stabilization mode	272
Figure E.21	Time domain response of closed loop using μ -Synthesis control in stabilization mode	272

Figure E.22	Controller signal using μ -Synthesis control in stabilization mode	273
Figure E.23	Energy and energy rate of closed loop using μ -Synthesis control in stabilization mode	273
Figure E.24	μ -analysis of closed loop using μ -Synthesis control in stabilization mode	274
Figure E.25	Maximum perturbation of closed loop using μ -Synthesis control	274
Figure E.26	Stability analysis of μ -Synthesis controller for variation of satellite position	275
Figure E.27	Root Locus of closed loop using μ -Synthesis control in stabilization mode	275
Figure E.28	Time domain response of closed loop using μ -Synthesis control in stabilization mode	276
Figure E.29	Controller signal using μ -Synthesis control in stabilization mode	276
Figure E.30	Energy and energy rate of closed loop using μ -Synthesis control in stabilization mode	277
Figure E.31	μ -analysis of closed loop using μ -Synthesis control in stabilization mode	277
Figure E.32	Maximum perturbation of closed loop using μ -Synthesis control	278
Figure E.33	Stability analysis of μ -Synthesis controller for variation of satellite position	278
Figure E.34	Root Locus of closed loop using μ -Synthesis control in stabilization mode	279
Figure E.35	Time domain response of closed loop using μ -Synthesis control in stabilization mode	280
Figure E.36	Controller signal using μ -Synthesis control in stabilization mode	280
Figure E.37	Energy and energy rate of closed loop using μ -Synthesis control in stabilization mode	281
Figure E.38	μ -analysis of closed loop using μ -Synthesis control in stabilization mode	281
Figure E.39	Maximum perturbation of closed loop using μ -Synthesis control	282
Figure E.40	Stability analysis of μ -Synthesis controller for variation of satellite position	282

Figure E.41	Step response using μ control in pointing accuracy mode	283
Figure E.42	Frequency response of command input using μ control in pointing accuracy	284
Figure E.43	Step response using μ control in pointing accuracy mode	285
Figure E.44	Frequency response of command input using μ control in pointing accuracy	286
Figure E.45	Step response using μ control in pointing accuracy mode	287
Figure E.46	Frequency response of command input using μ control in pointing accuracy	288
Figure E.47	Root Locus of closed loop using LPV in stabilization mode	289
Figure E.48	Energy and energy rate of closed loop using LPV control in stabilization mode	290
Figure E.49	Maximum perturbation of closed loop using LPV control	290
Figure E.50	Root Locus of closed loop using LPV in stabilization mode	291
Figure E.51	Time domain response of closed loop using LPV control in stabilization mode	292
Figure E.52	Controller signal using LPV control in stabilization mode	292
Figure E.53	Energy and energy rate of closed loop using LPV control in stabilization mode	293
Figure E.54	Maximum perturbation of closed loop using LPV control	293
Figure E.55	Root Locus of closed loop using LPV control in stabilization mode	294
Figure E.56	Controller signal using LPV control in stabilization mode	294
Figure E.57	Energy and energy rate of closed loop using LPV control in stabilization mode	295
Figure E.58	Maximum perturbation of closed loop using LPV control	295
Figure E.59	Step response using LPV control in pointing accuracy mode	296
Figure E.60	Controller signal using LPV control in stabilization mode	297
Figure E.61	Step response using LPV control in pointing accuracy mode	298
Figure E.62	Controller signal using LPV control in stabilization mode	299

Figure E.63	Step response using LPV control in pointing accuracy mode	300
Figure E.64	Controller signal using LPV control in stabilization mode	301

LIST OF ABBREVIATIONS

2D Two Dimensions
3D Three Dimensions
1U 1-Unit Cube Satellite
2U 2-Units Cube Satellite
3U 3-Units Cube Satellite
AMR Anisotropic Magneto Resistance
AMS Alpha Magnetic Spectrometer
AC Attitude Control
AD Attitude Determination
ADS Attitude Determination System
ACS Attitude Control System
ADCS Attitude Determination And Control System
ADC Analog-To-Digital Converter
ARE Algebra Riccati Equation
ASP Austrian Space Program
ATSB Astronautics Technology Sdn.Bhd.

BRITE Bright Target Explorer

c.g Center Of Gravity

ECO Earth-Center Orbit

CHARM Cubesat Hydrometric Atmospheric Radiometer Mission

CHIME Cubesat Heliospheric Imaging Experiment

CSSWE Colorado Student Space Weather Experiment

CINEMA Cubesat for Ions, Neutrals, Electrons and Magnetic fields

COTS Commercial Of The Shelf

CDR Critical Design Review

CSSWE Colorado Student Space weather Experiment

DSP Digital Signal Processor

DCM Direction Cosine Matrix

DOD Depth of Discharge

ESOQ1 Estimator Of The Optimal Quaternion-1

ESOQ2 Estimator Of The Optimal Quaternion-2

ECI Earth Centered Inertial

ECEF Earth Centered Earth Fixed

EKF Extended Kalman Filter

ESOQ Estimator of Optimal Quaternion

ExEMFP Experimental Earth Magnetic Field Probe

ExPSS Experimental Pyramidal Sun Sensor
FOAM Fast Optimal Attitude Matrix
GUI Graphical User Interface
GMR Giant Magnetic Resistance
GEOS Geostationary Operational Environment Satellite
GPS Global Positioning System
IGRF International Geomagnetic Reference Field
InnoSAT Innovation Satellite
LEO Low Earth Orbit
LFT Linear Fractional Transformation
LKF Linearized Kalman Filter
LLA Latitude Longitude Altitude
LMI Linear Matrix Inequality
LPV Linear Parametric Varying
LQ Linear Quadratic
LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
LTI Linear Time Invariant
LTP Linearize Time-Periodic