COPLANAR ELECTRODE FLUIDIC-BASED ACOUSTIC SENSING METHOD FOR UNDERWATER APPLICATIONS

MOHAMAD FAIZAL ABD RAHMAN

UNIVERSITI SAINS MALAYSIA

2016

COPLANAR ELECTRODE FLUIDIC-BASED ACOUSTIC SENSING METHOD FOR UNDERWATER APPLICATIONS

by

MOHAMAD FAIZAL ABD RAHMAN

Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

June 2016

ACKNOWLEDGEMENTS

"All praises and thanks to ALLAH"

First and foremost, I would like to give Glory to God Almighty for His Grace and help in all my endeavors and for bringing me this far in my educational life.

I would like to express my sincere appreciation and heartfelt thanks to my supervisor, Prof. Dr. Mohd Rizal Arshad and Assoc. Prof. Dr Asrulnizam Abd Manaf for their creative guidance throughout this research work, their intellectual support and constructive criticisms that has greatly enhanced this thesis writing. A token of appreciation also goes to UiTM, for providing the scholarship and also to Prof Othman Sidek for permitting the use of facilities in Collaborative Microelectronic Design Excellence Centre(CEDEC) during his tenure as the director.

Great appreciation also dedicated to all my colleagues in Underwater, Control and Robotic(UCRG) group for their help, constructive comments and invaluable advices. Not to be forgotten, I would also like to thank all staff in School of Electrical and Electronics, USM and UiTM for their help and support, directly or indirectly in completing this work.

Last but not least, great thanks to all my families for providing support motivation as well as encouragement in pursuing this study.

TABLE OF CONTENTS

Acknowledgements	ii
Table of Contents	iii
List of Tables	ix
List of Figures	X
List of Abbreviations	XV
List of Symbols	xvii
Abstrak	XX
Abstract	xxi

CHAPTER 1- INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Research Objectives	5
1.4	Scope of research	6
1.5	Thesis organization	6

CHAPTER 2- LITERATURE REVIEW

2.1	Introduction	8	
2.2	Sensing structure		
2.3	Sensing mechanism		
2.4	Capacitive micromachined ultrasonic transducer (CMUT	11	
	2.4.1 Common structural design	12	
	2.4.2 CMUT Fabrication	16	

2.5	Microfluidic device		
	2.5.1 Common structural design	22	
	2.5.2 Fabrication of microfluidic based device	28	
2.6	Summary	31	

CHAPTER 3- BACKGROUND THEORY

3.1	Introd	uction		33
3.2	Acous	tic theory		33
	3.2.1	Velocity	and density	35
	3.2.2	SPL,SIL	AND SWL	36
	3.2.3	Frequenc	ey and wavelength	37
	3.2.4	Sensing J	principles	39
3.3	Desig	n structura	l elements	40
	3.3.1	Membrar	1e	40
		3.3.1(a)	Material	40
		3.3.1(b)	Deflection theory	41
		3.3.1(c)	Impedance matching	43
		3.3.1(d)	Underwater depth	45
	3.3.2	Fluidic li	quid	46
		3.3.2(a)	Squeeze damping theory	46
		3.3.2(b)	Liquid flow	47
	3.3.3	Sensing e	electrodes	49
		3.3.3(a)	Parallel electrode	49
		3.3.3(b)	Coplanar electrodes	50
3.4	Summ	nary		54

4.1	Introd	uction		55
4.2	Desig	n approach	nes	55
4.3	Propo	sed work		58
	4.3.1	Structure	configuration	58
	4.3.2	Transduct	tion mechanisms	59
4.4.	Mode	ling		60
	4.4.1	Membrar	ne	60
		4.4.1(a)	Deflection response model	61
		4.4.1(b)	Acoustic impedance	63
		4.4.1(c)	Dimensional factor	64
		4.4.1(d)	Pressure response	66
	4.4.2	Fluidic li	quid	67
		4.4.2(a)	Flow model	67
		4.4.2(b)	Effect of reservoir height on flow	69
		4.4.2(c)	Squeeze film analysis	70
	4.4.3	Sensing e	element	71
		4.4.3(a)	Capacitive model	72
		4.4.3(b)	Aspect ratio	74
		4.4.3(c)	Effective depth of microchannel	74
		4.4.3(d)	Electrode underneath microchannel	75
		4.4.3(e)	2D model verification	75
4.5	Devic	e fabricatio	on	76
	4.5.1	Structura	l parameter and specification	76
	4.5.2	Fabricati	on process	82

CHAPTER 4-RESEARCH METHODOLOGY AND IMPLEMENTATION

		4.5.2(a)	Overview of process flow	82
		4.5.2(b)	Mold	84
		4.5.2(c)	PDMS body	86
		4.5.2(d)	Sensing electrodes	86
		4.5.2(e)	Final device	87
4.6	Testin	ig and exp	erimental setup	88
	4.6.1	Microcha	annel	88
		4.6.1(a)	Capacitive response	89
		4.6.1(b)	2D model verification	90
	4.6.2	Underwa	ter acoustic sensing	92
		4.6.2(a)	Frequency response	92
		4.6.2(b)	Burst signal generation	93
		4.6.2(c)	Pulse catch testing	95
	4.6.3	Surround	ling effect	96
		4.6.3(a)	Vibration effect	97
		4.6.3(b)	Temperature	98
4.7.	Summ	nary		99

CHAPTER 5- RESULTS AND DISCUSSIONS

5.1	Introd	uction		100
5.2	Mode	ling		100
	5.2.1	Membrai	ne	100
		5.2.1(a)	Deflection response	102
		5.2.1(b)	Acoustic impedance for underwater application	102
		5.2.1(c)	Dimensional factor	103

		5.2.1(d)	Pressure response	107
	5.2.2	Fluidic li	quid	109
		5.2.2(a)	Flow analysis	109
		5.2.2(b)	Reservoir height	112
		5.2.2(c)	Squeeze film analysis	113
	5.2.3	Sensing	structure	115
		5.2.3(a)	Voltage distribution	115
		5.2.3(b)	Electric field	115
		5.2.3(c)	Effective height of microchannel	116
		5.2.3(d)	Capacitance response for different aspect ratio	117
		5.2.3(e)	The effect of electrodes location beyond microchannel	
			region	118
		5.2.3(f)	Analytical model verification	119
5.3	Fabric	ated devic	ce	120
	5.3.1	Mold		120
	5.3.2	PDMS b	ody	121
	5.3.3	Sensing	electrodes	122
	5.3.4	Final dev	vice	123
5.4	Exper	imental w	ork	124
	5.4.1	Microcha	annel	124
		5.4.1(a)	Capacitive response	124
		5.4.1(b)	2D model verification	127
	5.4.2	Underwa	ter acoustic sensing	129
		5.4.2(a)	Frequency response	129
		5.4.2(b)	Device sensitivity	131

		5.4.2(c)	Pulse catch technique	131
	5.4.3	Surround	ing effect	134
		5.4.3(a)	Vibration effect	135
		5.4.3(b)	Temperature effect	136
5.5.	Summ	nary		137

CHAPTER 6-CONCLUSION AND FUTURE WORK

6.1	Conclusion	140
6.2.	Future Work	141

References	142
	143
List of Publications	

LIST OF TABLES

		Page
Table 2.1	Basic structural layer of CMUT	12
Table 2.2	Basic fabrication process of CMUT	17
Table 2.3	Common micro fluidic based device	22
Table 2.4	Summary of development of membrane based device	32
Table 4.1	The membrane's dimension	62
Table 4.2	Material properties of membrane materials	62
Table 4.3	Acoustic properties of air, water and PDMS	63
Table 4.4	Membrane geometry specification	65
Table 4.5	Structure design specification	68
Table 4.6	Properties of liquid candidates	68
Table 4.7	Material specifications	69
Table 4.8	Structure specification for flow model	69
Table 4.9	The thin film geometry	70
Table 4.10	Material properties of liquid materials	70
Table 4.11	Material properties of the structure	73
Table 4.12	Model dimension	73
Table 4.13	Specification of the fabricated device	82
Table 4.14	Testing specification	96
Table 5.1	Reflection coefficient	103

LIST OF FIGURES

		Page
Figure 1.1	Summary of various applications of underwater acoustic	2
	sensing	
Figure 2.1	The map of topics of interest for literature review process	9
Figure 2.2	Structural difference for acoustic sensing	10
Figure 2.3	Cross sectional view of CMUT	12
Figure 2.4	CMUT with non uniform membrane	14
Figure 2.5	CMUT with multiple electrodes	14
Figure 2.6	CMUT with isolation posts	15
Figure 2.7	CMUT with liquid cavity	15
Figure 2.8	Sacrificial release process to realise the membrane structure	19
Figure 2.9	Microchannel used for detection, control and sorting of the	23
	droplets	
Figure 2.10	Microchannel used for pumping, transportation and mixing of	24
	microfluidic materials	
Figure 2.11	Top view of single sided electrode configuration	25
Figure 2.12	Membrane structure controlling microfluidic flow	25
Figure 2.13	Membrane structure acting as microvalve for microdispensar.	26
Figure 2.14	Basic process of softlitography	29
Figure 3.1	Propagation of a longitiudinal wave.	34
Figure 3.2	The original and deflected of the membrane	42
Figure 3.3	Some of the energy is reflected due to the acoustic impedance	44
	mismatch	
Figure 3.4	Squeeze effect of thin film	46

Figure 3.5	Parallel electrode configuration	49
Figure 3.6	Cross sectional view of coplanar electrodes configuration	51
Figure 3.7	Cross sectional area that shows the effective electric field only	52
	bounded inside the microchannel and related to penetration	
	depth theory	
Figure 3.8	Equivalent circuit of coplanar electrodes	53
Figure 4.1	Flow chart of methodology.	56
Figure 4.2	Fluidic based acoustic sensor	58
Figure 4.3	FEM model of circular shape membrane	61
Figure 4.4	2D asymmetric model concept	64
Figure 4.5	Critical region under investigation	68
Figure 4.6	Cross sectional area of microchannel	72
Figure 4.7	FEM model approach	73
Figure 4.8	Location of electrode underneath beyond microchannel	75
Figure 4.9	Simplified equivalent circuit of microchannel for modeling	76
Figure 4.10	The structural parameter of the device	77
Figure 4.11:	Flow chart of dimension selection of membrane and	79
	electrodes	
Figure 4.12	Fabrication process (a) –(g)	83
Figure 4.13	The concept used to control the thickness of the membrane	85
Figure 4.14	SOLIDWORK drawing of the device mold	86
Figure 4.15	Example of coplanar PCB drawing	87
Figure 4.16	Microfluidic filling up process	88
Figure 4.17	Experimental setup to validate the FEM model	90
Figure 4.18	Conceptual diagram for estimating the volumetric capacitive	91

change based on capacitors in parallel configuration

Figure 4.19	Experimental setup for the frequency response	93
Figure 4.20	Burst signal	94
Figure 4.21	Burst signal set up to provide different burst cycle	95
Figure 4.22	Final setup of pulse catch technique with different pulse cycle	96
Figure 4.23	Experimental setup to investigate the effect of vibration	97
Figure 4.24	Experimental setup to study the temperature variation effect	98
Figure 5.1	Contour plot of five different type of deflection mode.	101
Figure 5.2	Acoustic response of three different materials	102
Figure 5.3	Axisymmetric radial deflection profile for three different	104
	pressures	
Figure 5.4	The relationship between the membrane thickness and the	104
	maximum deflection	
Figure 5.5	The relationship between the membrane radius and the	105
	maximum deflection	
Figure 5.6	The relationship between the structural ratio and the	106
	deflection ratio	
Figure 5.7	The relationship between the pressure signal and the	107
	deflection ratio	
Figure 5.8	Deflection ratio against underwater depth	108
Figure 5.9	Pressure distribution inside the device at selected device	109
	dimension	
Figure 5.10	Contour plot of the velocity across the devices	110
Figure 5.11	Flow direction of both materials	110
Figure 5.12	Flow response comparison of both materials	111

Figure 5.13	Flow velocity at the region of interest for different height of	113
	reservoir.	

- Figure 5.14 The damping ratio across different modes for two different 114 backing materials Figure 5.15 Voltage distribution of simulated FEM 115 Electric field distribution of simulated FEM Figure 5.16 116 Figure 5.17 Effective height of microchannel 117 Figure 5.18 The C^*_{FEM} for different aspect ratio 118 Figure 5.19 Effect of extending sensing electrode beyond microchannel 119 region Figure 5.20 Comparison of C^* between FEM and analytical model 120 Figure 5.21 Top part creation mold with different wall height to 121
- Figure 5.22 Peeling off process to separate the PDMS stamp from the 121 mold.

manipulate produce different thickness of the membrane

- Figure 5.23 Examples of broken membrane or rupture due to very thin 122 membrane
- Figure 5.24SEM Image122
- Figure 5.25PCB fabrication of sensing electrodes123

124

- Figure 5.26 Final process
- Figure 5.27 Sample of liquid inside microchannel viewed through 125 handheld microscope at Δl
- Figure 5.28 Schematic diagram of the resulted capacitance response inside 126 microchannel
- Figure 5.29 Estimating the capacitance change along the microchannel 128

using FEM, analytical and experimental approaches (3D verification)

Figure 5.30	The plot of capacitance changes against signal's frequency	130
Figure 5.31	Capacitive response for different burst cycle.	132
Figure 5.32	Capacitive response vs no of burst cycle (1 to 10)	133
Figure 5.33	Capacitive response of dual burst cycle(n=3 and n=5)	134
Figure 5.34	Capacitive response at $f = 90Hz$	135
Figure 5.35	The effect of rapid transition of frequency's vibration on the	136
	capacitive response	
Figure 5 36	The effect of temperature variation on the device's canacitive	137

Figure 5.36 The effect of temperature variation on the device's capacitive 137 response

LIST OF ABBREVIATIONS

2D	Two Dimensional
3D	Three Dimensional
BAW	Bulk Acoustic Wave
CMOS	Complimentary Metal Oxide Semiconductor
CMUT	Capacitive Micromachined Ultrasonic Transducer
DC	Direct Current
DUT	Device Under Test
EM	Electromagnetic
FEA	Finite Element Analysis
FEM	Finite Element Model
IC	Integrated Circuit
LCR	Inductance Capacitance Resistance
LOC	Lab On Chip
LPCVD	Low Pressure Chemical Vapor Deposition
MEMS	Microelectromechanical Systems
РС	Propelyne Carbonate
PDMS	Polydimethyldiloxane
PECVD	Plasma-Enhanced Chemical Vapor Deposition
RF	Radio Frequency
RMS	Root Mean Square
SAW	Surface Acoustic Wave
SEM	Scanning Electrode Microscope
SONAR	Sound Navigation and Ranging

SPL	Sound Pressure Level
μΤΑS	Micro Total Analysis System
LOCOS	Local Oxidation of Silicone

LIST OF SYMBOLS

Si_3N_4	Silicon Nitride
Р	Pressure of sound
x	Displacement of particle
С	Speed of sound
t	Time
Ι	Intensity
P_o	Amplitude of pressure
P _{rms}	rms value of pressure
Pref	Reference sound pressure
ρ	Medium/material density
f	Frequency
λ	Wavelength
S_R	Receiving sensitivity
V_C	Output voltage
P_F	Sound pressure in fluid
W _m	Membrane deflection
P_t	Total pressure
r _m	Radius of the membrane
D	Flexural rigidity
Ε	Young Modulus
v_p	Poisson ratio
t_m	Thickness of the membrane
Ζ	Acoustic impedance

Κ	Elasticity modulus
V_z	Acoustic velocity (material dependant)
R _e	Reynolds number
K_n	Knudsen number
С	Capacitance
\mathcal{E}_{o}	Electric constant
\mathcal{E}_r	Dielectric constant (Dieletric permittivity)
A	Area of plates
d	Plate separation
We	Width of electrode
Wc	Microchannel width
g_e	Half gap separation
l	Length of electrodes
Weff	Effective width
h	Height of microchannel
C_{eq}	Equivalent capacitance
R	Reflection coefficient
Z_1	Acoustic impedance of medium 1
Z_2	Acoustic impedance of medium 2
g	Gravitational force
h_{uw}	Underwater depth
P _{atm}	Atmospheric pressure
P_{hyd}	Hydrostatic pressure
h_w	Height of mold's wall

h_r	Height of reservoir
<i>C</i> *	Capacitance per unit length
Δl	Displacement
ΔC_T	Change of total capacitance
C* _{FEM}	Capacitance per unit length of FE model
C*ana	Capacitance per unit length of analytical model

KAEDAH PENDERIAAN AKUSTIK BERASASKAN BENDALIR ELEKTROD KOPLANAR UNTUK APLIKASI BAWAH AIR

ABSTRAK

Tesis ini mencadangkan kaedah penderiaan akustik berasaskan cecair untuk aplikasi bawah air. Mekanisme penderiaan yang dipilih adalah berdasarkan konsep kemuatan yang terhasil daripada elektrod koplanar. Struktur tersebut dicadangkan untuk mengatasi beberapa permasalahan yang timbul daripada peranti sediada iaitu Pemuat Mikromesin Transduser Ultrasonik. Isu kebolehbergantungan, disebabkan lengkungan membran yang berlebihan diatasi dengan menyuntik cecair di bawah lapisan membran bagi menambah nilai redaman ketika beroperasi di bawah tekanan luaran dan voltan yang tinggi. Penggunaan teknik litografi lembut untuk fabrikasi memberi kelebihan disebabkan proses yang lebih ringkas. Kaedah penderiaan ini dibuktikan melalui kitaran lengkap yang terdiri daripada proses pemodelan, fabrikasi dan pengujian. Dimensi struktur mematuhi kriteria yang ditetapkan seperti teori lengkungan membran dan teori penembusan kedalaman. Ujian akhir menunjukkan kebolehan peranti untuk mengesan isyarat akustik 200kHz yang dipancarkan melalui peranti bawah air dengan bacaan sensitiviti sebanyak 0.67pF/Pa. Kesan persekitaran seperti getaran pada frekuensi rendah (10Hz to 100Hz) dan perubahan suhu (-20 °C to 30°C) juga didapati tidak memberi kesan terhadap operasi peranti. Ini menujukkan kestabilan peranti untuk berfungsi pada keadaan tertentu.

COPLANAR ELECTRODE FLUIDIC-BASED ACOUSTIC SENSING METHOD FOR UNDERWATER APPLICATIONS

ABSTRACT

The thesis proposed a novel fluidic-based acoustic sensing method for underwater applications. The capacitive principles based on coplanar electrodes configuration is selected as the sensing mechanism. The new structure device was proposed to overcome several issues faced by the conventional device based on Capacitive Micromachined Ultrasonic Transducer (CMUT) by adapting the microfluidic technology. Reliability issues caused by the over deflected membrane was overcame by introducing the liquid backing material underneath the membrane which increases the damping at high operating voltage and high external pressure. The use of softlitography technique for fabrication also gave an advantage due to its process simplicity. The sensing concept was proven through a development cycle which consists of modelling, fabricating and testing. The structural design had satisfied several design rules such as membrane deflection theory as well as penetration depth theory. The final testing showed the ability of the device to detect 200kHz acoustic signal transmitted from the underwater acoustic projector with capacitive pressure sensitivity of 0.4 fF/Pa. It was also found that the constant frequency vibration (10Hz to 100Hz) and change of temperature (-20 °C to 30 °C) has minimal effect on the sensing performance, thus showcased the stability of the sensor.

CHAPTER 1

INTRODUCTION

1.1 Background

Acoustic sensing is a field that deals with the reception process of acoustic signal. It is a technology that has been inspired from biological nature such as communication process of bat and dolphin. The use of acoustic for terrestrial application includes for military (Becker & Gu, 2000), structural monitoring (Hamdi et al. 2013; Mostafapour & Davoudi, 2013), level sensor (Osborne et al., 2004) and ecological monitoring(Blumstein et al., 2011). For underwater application, early history of acoustic sensing is recorded way back in 1490 when Leonardo Da Vinci had detected the vessel through an inserted tube underwater as well as when underwater bell was designed for hazards warning during 19th century. Modern application of underwater acoustic sensing is primarily influenced by the sonar technology and frequently related to the oceanography application (Zielinski et al., 1995;Zhao, 2010). Apart from that, the use of acoustic in immersion application also benefits humankind in some ways. As an example, the technology has contributed to the important application in medical imaging (B. Bayram et al., 2005; Chen et al., 2008; Vaithilingam et al., 2006) and near surface application such as underwater sensor network, sound and vibration instrument, navigation and fault detecting industries and underwater communication (Culver & Hodgkiss, 1988). Figure 1.1 shows various applications of underwater acoustic sensing and indicates the significance of such field to be studied and explored.

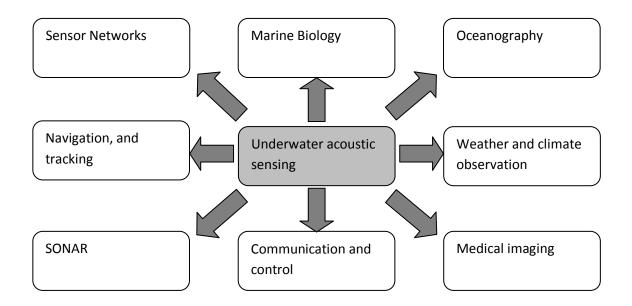


Figure 1.1: Summary of various applications of underwater acoustic sensing.

In recent years, underwater acoustic sensor experienced a revolution in terms of its device fabrication, which shares the same technology as in Integrated Circuit (IC) technology, (Esashi, 2010; Gentili et al., 2005; Jin et al., 1998; Oralkan & Ergun, 2002). Fabrication process based on surface micromachining and bulk machining has brought the device technology into micro and nanoscale size which is proven to have substantial advantages in terms of its power consumption, reliability, handling and portability (Arshad, 2009). The progress, hence benefits the ocean and underwater research field due to the fact that the use of acoustic signal is preferred compared to other type of signal wave such as radio frequency (RF) due to its acoustic nature that is more prone to underwater noise (Akyildiz et al., 2005;Singer et al., 2009).

In terms of performance, acoustic sensing can be classified into several categories. Different applications sometimes require different device performance to suit its operation. Structural design and fabrication process are two key factors that