
NONLINEAR CONTROL OF ROBOT 

MANIPULATOR USING SLIDING MODE AND 

COMPUTED TORQUE CONTROL TECHNIQUE 

 

 

 

 

 

SITI NUR HANISAH BINTI UMAR 

  

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA  

 2015



 

NONLINEAR CONTROL OF ROBOT MANIPULATOR USING SLIDING 

MODE AND COMPUTED TORQUE CONTROL TECHNIQUE 

 

 

 

 

by 

  

 

 

 

 

SITI NUR HANISAH BINTI UMAR 

 

 

 

 

 

 

 

Thesis submitted in fulfilment of the  

requirements for the degree of 

Master of Science 

 

 

  July 2015



ii 

 

ACKNOWLEDGEMENT 

In the name of Allah Most Gracious, Most Merciful, 

Alhamdulillah. Praise to Allah SWT, whom with His willing and guidance in 

giving me the opportunity to complete my master research. 

I owe my deepest gratitude to my supervisor, Dr Elmi Abu Bakar for his 

continuous support of my master research, for his patience, motivation, enthusiasm 

and immense knowledge. His guidance helped me throughout the research and writing 

process. 

I wish to express my warm thanks and appreciation to my parents and family 

for their endless love, pray and continuous support from the beginning till the end. 

Without their understanding with my work it would have been impossible for me to 

finish this research.  

I am thankful to my friend and colleagues from Innovative System and 

Instrumentation (ISI) research team for continuous support and helped in feeding me 

new knowledge and come out with bright ideas through numerous interesting 

discussion and make this research enjoyable and sometimes unforgettable experience.  

Last but not least, to all the lecturers, technicians, staff and financial support 

from Ministry of Higher Education (MOHE) and Universiti Sains Malaysia, (USM) is 

gratefully acknowledged. Go shien itadaki arigatōgozaimasu! 

 



iii 

 

TABLES OF CONTENTS 

ACKNOWLEDGEMENT ........................................................................................... ii 

TABLES OF CONTENTS .......................................................................................... iii 

LIST OF TABLES ..................................................................................................... vii 

LIST OF FIGURES .................................................................................................. viii 

LIST OF ABBREVIATIONS ................................................................................... xiv 

LIST OF SYMBOLS ................................................................................................ xvi 

ABSTRAK ................................................................................................................ xix 

ABSTRACT .............................................................................................................. xxi 

CHAPTER 1 - INTRODUCTION 

1.1 Background of research.......................................................................................... 1 

1.2 Problem statement .................................................................................................. 4 

1.3 Research objective ................................................................................................. 6 

1.4 Research scope ....................................................................................................... 7 

1.5 Research approach ................................................................................................. 8 

1.6 Thesis outline ......................................................................................................... 9 

CHAPTER 2 - LITERATURE REVIEW 

2.1 Introduction .......................................................................................................... 10 

2.2 Previous Study on Modelling Robot Manipulator ............................................... 10 

2.2.1 Review on Kinematics Equation ................................................................ 10 

2.2.2 Review on Dynamics Equation .................................................................. 11 

2.2.3 Perturbation ................................................................................................ 12 

2.3 Controller System ................................................................................................ 13 

2.3.1 Review on Linear PID Controller .............................................................. 13 



iv 

 

2.3.2 Review on Nonlinear CTC ......................................................................... 14 

2.3.3 Review on Robust Controller ..................................................................... 16 

2.4 Nonlinear SMC .................................................................................................... 16 

2.4.1 Reaching Phase .......................................................................................... 20 

2.4.2 Sliding Mode Phase .................................................................................... 21 

2.5 Chattering ............................................................................................................. 22 

2.5.1 Continuous Approximation ........................................................................ 23 

2.5.2 Observer or Estimation of Uncertainty ...................................................... 24 

2.5.3 Higher order Sliding Mode Design ............................................................ 24 

2.5.4 Other control modification ......................................................................... 25 

2.6 Summary .............................................................................................................. 25 

CHAPTER 3 - METHODOLOGY 

3.1 Introduction .......................................................................................................... 28 

3.2 Framework of Study ............................................................................................. 28 

3.3 The Robot Manipulator System ........................................................................... 30 

3.3.1 Kinematic Equation of Robot Manipulator ................................................ 31 

3.3.2 Dynamics Equation of Robot Manipulator ................................................ 36 

3.4 Design Controller System .................................................................................... 39 

3.4.1 Linear PID Controller ................................................................................ 39 

3.4.2 PIDCTC ...................................................................................................... 40 

3.4.3 Design SMCTC .......................................................................................... 44 

3.4.4 Chattering Reduction ................................................................................. 46 

3.4.5 Reaching Control Law ............................................................................... 47 

3.5 Simulation for Designed Controller System ........................................................ 49 

3.5.1 Simulation of PID ...................................................................................... 50 



v 

 

3.5.2 Simulation of PIDCTC ............................................................................... 52 

3.5.3 Simulation of SMCTC ............................................................................... 53 

3.6 Design the Experimental Rig for SMCTC System .............................................. 55 

3.6.1 Robot Manipulator Components ................................................................ 56 

3.6.2 Motion path ................................................................................................ 60 

3.6.3 Controller implementation ......................................................................... 60 

3.7 Summary .............................................................................................................. 62 

CHAPTER 4 - RESULTS AND DISCUSSION 

4.1 Introduction .......................................................................................................... 63 

4.2 PID Control .......................................................................................................... 63 

4.3 PIDCTC ............................................................................................................... 70 

4.4 SMCTC ................................................................................................................ 79 

4.4.1 CR reaching law ......................................................................................... 79 

4.4.2 C+PR reaching law .................................................................................... 83 

4.4.3 PR reaching law ......................................................................................... 90 

4.4.4 Chattering reduction ................................................................................... 97 

4.5 Comparison of controllers .................................................................................. 100 

4.6 Servomotor robot manipulator SMCTC system ................................................ 106 

4.7 Summary ............................................................................................................ 110 

CHAPTER 5 - CONCLUSION AND RECOMMENDATION 

5.1 Conclusion of the research ................................................................................. 111 

5.2 Contribution of the research ............................................................................... 112 

5.3 Further recommendation .................................................................................... 112 

REFERENCES ......................................................................................................... 114 



vi 

 

APPENDICES ......................................................................................................... 120 

Appendix A: MATLAB source code for inverse kinematics................................... 120 

Appendix B: MATLAB source code for robot manipulator plant ........................... 122 

Appendix C: MATLAB source code for PIDCTC part ........................................... 124 

Appendix D: MATLAB source code for SMCTC part ............................................ 126 

Appendix E: Simulink block for hardware implementation .................................... 129 

Appendix F: Performance of PIDCTC ..................................................................... 130 

Appendix G: Performance of SMCTC CR reaching law ......................................... 131 

Appendix H: Performance of SMCTC C+PR reaching law .................................... 132 

Appendix I: Performance of SMCTC PR reaching law ........................................... 133 

LIST OF PUBLICATIONS ..................................................................................... 134 



vii 

 

LIST OF TABLES 

Page 

Table 3.1  Specification of two-link robot manipulator. 31 

Table 3.2  D-H parameter of two link manipulator 34 

Table 3.3  Effects of independent 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 tuning 52 

Table 3.4  Controller parameter of reaching law 55 

Table 3.5  Parameter of robot manipulator component. 57 

Table 3.6  Torque at both joints. 58 

Table 4.1  Comparison performance value for PID and PD 70 

Table 4.2  Comparison performance value for PIDCTC and PDCTC 77 

Table 4.3  Comparison of tracking error 106 

Table 4.4  Movement in Cartesian and joint space 107 

 

 



viii 

 

LIST OF FIGURES 

  Page 

Figure 2.1  Sliding mode mechanism in phase plane. 18 

Figure 3.1  A framework of the proposed study. 29 

Figure 3.2  Robot manipulator model. 30 

Figure 3.3  Relation of FK and IK. 32 

Figure 3.4  Motion planning for experimental robot manipulator (a) 

initial position and (b) final position 

33 

Figure 3.5  Coordinate transformation 34 

Figure 3.6  Structure of PID control system. 40 

Figure 3.7  PIDCTC scheme, showing inner feed-forward and outer 

feedback loops 

41 

Figure 3.8  Simulink block of PID control system 51 

Figure 3.9  Simulink block for PIDCTC system. 53 

Figure 3.10  Simulink block of SMCTC system. 54 

Figure 3.11  Servomotor robot manipulator system. 57 

Figure 3.12  Moment diagram of robot manipulator 58 

Figure 3.13  Servomotor block diagram. 59 



ix 

 

Figure 3.14  Work envelope of robot manipulator. 60 

Figure 3.15  Controller and wiring setup. 61 

Figure 3.16 Simulink block for hardware implementation. 62 

Figure 4.1  Constant position tracking response of PID with 𝐾𝑑 =

100, 𝐾𝑖 = 0 and varying 𝐾𝑝 for (a) joint 1 and (b) joint 2 

64 

Figure 4.2  PID control performance when 𝐾𝑑=100, 𝐾𝑖=0 and varying 

𝐾𝑝 

65 

Figure 4.3  Constant position tracking response of PID with 𝐾𝑝 =

100, 𝐾𝑖 = 0 and varying 𝐾𝑑 for (a) joint 1 and (b) joint 2 

66 

Figure 4.4  PID control performance when 𝐾𝑝=100, 𝐾𝑖=0 and varying 

𝐾𝑑 

67 

Figure 4.5  Constant position tracking response of PID with 𝐾𝑝 =

100, 𝐾𝑑 = 20 and varying 𝐾𝑖 for (a) joint 1 and (b) joint 2 

68 

Figure 4.6  PID control performance when 𝐾𝑝=100, 𝐾𝑑=20 and 

varying 𝐾𝑖 

69 

Figure 4.7  Constant position tracking response of PIDCTC with 𝐾𝑑 =

20, 𝐾𝑖 = 0 and varying 𝐾𝑝 for (a) joint 1 and (b) joint 2 

71 

Figure 4.8 PIDCTC performance when 𝐾𝑑 = 20, 𝐾𝑖 = 0 and varying 

𝐾𝑝 

72 



x 

 

Figure 4.9  Constant position tracking response of PIDCTC with 𝐾𝑝 =

100, 𝐾𝑖 = 0 and varying 𝐾𝑑 for (a) joint 1 and (b) joint 2 

73 

Figure 4.10  PIDCTC performance when 𝐾𝑝=100, 𝐾𝑖=0 and varying 𝐾𝑑 74 

Figure 4.11  Constant position tracking response of PIDCTC with 𝐾𝑝 =

100, 𝐾𝑑 = 20 and varying 𝐾𝑖 for (a) joint 1 and (b) joint 2 

75 

Figure 4.12  PIDCTC performance when 𝐾𝑝=100, 𝐾𝑑  = 20 and varying 

𝐾𝑖 

76 

Figure 4.13  Constant position tracking response of PDCTC with 𝐾𝑝 =

100 and 𝐾𝑑 = 20 for 100%, 80% and 60% model accuracy 

for (a) joint 1 and (b) joint 2 

78 

Figure 4.14  Constant position tracking response of SMCTC CR 

reaching law with 𝑘 = 100 and varying 𝑐 for (a) joint 1 

and (b) joint 2 

80 

Figure 4.15  Performance of SMCTC CR reaching law with 𝑘=100 and 

varying 𝑐 

81 

Figure 4.16  Constant position tracking response of SMCTC CR 

reaching law with 𝑐 = 20 and varying 𝑘 for (a) joint 1 and 

(b) joint 2 

82 

Figure 4.17  Performance of SMCTC CR reaching law with 𝑐=20 and 

varying 𝑘 

83 



xi 

 

Figure 4.18  Constant position tracking response of SMCTC C+PR 

reaching law with 𝑐 = 100, 𝑘 = 100 and varying 𝑄 for (a) 

joint 1 and (b) joint 2 

84 

Figure 4.19  Performance of SMCTC C+PR reaching law with 𝑐=100, 

𝑘=100 and varying 𝑄 

85 

Figure 4.20  Constant position tracking response of SMCTC C+PR 

reaching law with c = 100, Q = 100 and varying k for (a) 

joint 1 and (b) joint 2 

86 

Figure 4.21  Performance of SMCTC C+PR reaching law with c=100, 

𝑄=100 and varying 𝑘 

87 

Figure 4.22  Constant position tracking response of SMCTC C+PR 

reaching law with k= 100, Q= 100 and varying c for (a) 

joint 1 and (b) joint 2 

88 

Figure 4.23  Performance of SMCTC C+PR reaching law with 𝑘=100, 

𝑄=100 and varying 𝑐 

89 

Figure 4.24  Constant position tracking response of SMCTC C+PR 

reaching law with 𝑐 = 100, 𝑘 = 100 and 𝑄 = 100 for 

varying 𝑝 for (a) joint 1 and (b) joint 2 

90 

Figure 4.25  Constant position tracking response of SMCTC PR 

reaching law with 𝑐 = 100, 𝑘 =  100 and varying 𝛼 for 

(a) joint 1 and (b) joint 2 

91 



xii 

 

Figure 4.26  Performance of SMCTC PR reaching law with c=100, 

k=100 and varying α 

92 

Figure 4.27  Constant position tracking response of SMCTC PR 

reaching law with c= 100, α= 0.9 and varying k for (a) 

joint 1 and (b) joint 2 

93 

Figure 4.28  Performance of SMCTC PR reaching law with 𝑐=100, 

𝛼=100 and varying 𝑘 

94 

Figure 4.29  Constant position tracking response of SMCTC PR 

reaching law with 𝑘 =  100, 𝛼 = 0.9 and varying 𝑐 for (a) 

joint 1 and (b) joint 2 

95 

Figure 4.30  Performance of SMCTC PR reaching law with 𝑘=100, 

𝛼=100 and varying c 

96 

Figure 4.31  Constant position tracking response of SMCTC PR 

reaching law with 𝑐 = 100, 𝑘 = 100 and 𝛼 = 0.9 for 

varying 𝑝 for (a) joint 1 and (b) joint 2 

97 

Figure 4.32  Control input of SMCTC for (a) discontinuous CR, (b) 

boundary layer CR, (c) C+PR and (d) PR reaching law 

99 

Figure 4.33  Comparison constant position response of PID, PIDCTC 

and SMCTC without disturbance for (a) joint 1 and (b) 

joint 2 

101 



xiii 

 

Figure 4.34  Comparison constant position response of PID, PIDCTC 

and SMCTC with disturbance for (a) joint 1 and (b) joint 2 

102 

Figure 4.35  Comparison periodic position tracking of PID, PIDCTC 

and SMCTC without disturbance for (a) joint 1 and (b) 

joint 2 

104 

Figure 4.36  Comparison periodic position tracking of PID, PIDCTC 

and SMCTC with disturbance for (a) joint 1 and (b) joint 2 

105 

Figure 4.37  Position of servomotor robot manipulator for joint 1 and 

joint 2 (a) initial position, (b) final position 

107 

Figure 4.38  Robot manipulator SMCTC system using C+PR reaching 

law for simulation and experimental for (a) joint 1 and (b) 

joint 2   

108 

Figure 4.39  Robot manipulator SMCTC system using PR reaching law 

for simulation and experimental for (a) joint 1 and (b) joint 

2 

109 



xiv 

 

LIST OF ABBREVIATIONS 

AFC  Active Force Control 

ATE  Average Tracking Error 

AVR  Advanced Virtual Risc 

C+PR  Constant plus Proportional Rate 

CR  Constant Rate 

CTC  Computed Torque Control  

DC  Direct current 

D-H  Denavit–Hartenberg 

DOF  Degree of Freedom 

FK  Forward Kinematics 

HIL  Hardware in a Loop 

IK  Inverse Kinematics 

KE  Kinetic Energy 

MATLAB Matrix Laboratory 

P  Proportional 

PC  Personal Computer 

PD  Proportional and Derivative 

PE  Potential Energy 

PID  Proportional, Integral and Derivative 

PIDCTC Proportional, Integral, Derivative Computed Torque Control 

PO  Percent of Overshoot 

PR  Power Rate 

SMC  Sliding Mode Control 



xv 

 

SMCTC Sliding Mode Computed Torque Control 

SSE  Steady State Error 

TS  Settling Time 

VSC  Variable Structure Control 

  



xvi 

 

LIST OF SYMBOLS 

𝑇2
0 , 𝐴1, 𝐴2 Homogeneous transformation matrix 

𝑎  Length of the link 

A  Generalised inertia matrix 

Amp  Amplitude of periodic position tracking 

𝐵  Matrix represent Coriolis force 

𝐵’𝐶’  Combination of coriolis and centripetal term 

𝐶  Matrix represent centripetal force 

𝑐  Sliding surface parameter 

𝐷  Matrix represent grabitational acceleration 

𝑑  Joint offset 

𝑒  Position error  

𝑒̇  First derivative of error 

𝑒̈  Second derivative of error 

𝑔  Gravitational acceleration 

𝑘  Constant rate reaching parameter 

𝐾𝑑  Derivative gain 

𝐾𝑖  Integral gain 

𝐾𝑝  Proportional gain 

𝑙  Length of link 

𝑚  Mass of link 

𝑀  Control input value 

𝑛  Number of order/link/joint 

𝑃𝑓  Coordinate of final position    



xvii 

 

𝑃𝑖  Coordinate of initial position 

𝑄  Proportional rate reaching parameter 

𝑆   Sliding manifold 

𝑠  Sliding surface 

𝑠̇   Derivative of sliding surface 

𝑡  time 

𝑇𝑑  Derivative time constant 

𝑇𝑖  Integral time constant 

𝑢  Control input 

𝑉  Lyapunov function 

𝑉̇  Derivative of Lyapunov function 

𝑊𝑙  Mass of link for servomotor robot manipulator 

𝑊𝑀  Mass of motor for servomotor robot manipulator 

𝑋𝑓  x-axis final position 

𝑋𝑖  x-axis initial position 

𝑋𝑖𝑛𝑡  x-axis intermediate position 

𝑥𝑇  Final state 

𝑌𝑓  y-axis final position 

𝑌𝑖  y-axis initial position 

𝑌𝑖𝑛𝑡  y-axis intermediate position 

𝛼  Power rate reaching parameter 

𝛽  Twist angle 

𝜃  Angular position 

𝜃̈  Angular acceleration 

𝜃̇  Angular velocity 



xviii 

 

𝜃𝑑  Desired position 

𝜃𝐷𝑖𝑠𝑡  Amplitude of disturbance 

𝜏  Applied torque 

𝜔  Angular frequency 



xix 

 

KAWALAN TAK LINEAR BAGI PENGOLAH ROBOT MENGGUNAKAN 

TEKNIK KAWALAN MOD GELUNGSURAN DAN DAYA KILAS TERKIRA 

ABSTRAK 

Idea penciptaan robot adalah berdasarkan sifat manusia dan kehidupan alam 

sekitar. Tujuannya adalah untuk menggantikan pekerjaan manusia yang meletihkan, 

berulang-ulang dan pekerjaan yang berbahaya dalam industri atau kegunaan 

ketenteraan. Sistem robot pengolahan adalah yang paling banyak digunakan dan boleh 

didapati dalam industri pembuatan. Robot jenis pengolah menyerupai mekanisma 

sistem rangkaian lengan dan objektif kawalannya adalah untuk mengolah sesuatu 

bahan tanpa berhubung secara terus dengan menggerakkan rangkaian akhir bagi 

melaksanakan operasi yang diingini. Oleh itu, kajian mengenai hubungan ruang sendi 

dan Kartesian serta sistem kawalan adalah penting. Objektif kajian adalah untuk 

mengkaji kawalan linear Berkadaran, Kamiran dan Terbitan (PID), Kawalan Daya 

Kilas Terkira (CTC) dan Kawalan Mod Gelunsuran (SMC) dan algoritma kawalan 

telah dibina dengan menggunakan blok MATLAB Simulink. Seterusnya, algoritma 

kawalan PID, PIDCTC dan SMCTC telah dilaksanakan pada robot pengolah yang 

mana parameter kawalan telah ditentukan dalam julat yang ditetapkan. Prestasi sistem 

kawalan diuji terhadap tindak balas langkah, menjejak kedudukan dan anggaran 

model. Ujian tambahan bagi mengurangkan penggelatukan telah dilaksanakan untuk 

SMCTC dengan menggunakan hukum kawalan pencapai. Berdasarkan keputusan 

tersebut, prestasi setiap kawalan dibandingkan. Sistem kawalan PID menunjukkan 

prestasi yang baik dan memenuhi keperluan yang ditetapkan dalam kajian ini. 

Manakala, PIDCTC menghasilkan keputusan yang lebih baik daripada kawalan PID 

terutamanya bagi menjejak kedudukan. Walau bagaimanapun apabila sistem 



xx 

 

mempamerkan gangguan luaran, kedua-dua pengawal tidak mampu menolak 

gangguan tersebut. SMCTC teguh terhadap gangguan luaran dan menunjukkan 

prestasi yang terbaik di kalangan semua kawalan. Pelaksanaan hukum kawalan 

pencapai bukan sahaja dapat mengurangkan masa penyelesaian tetapi juga mampu 

untuk menghapuskan fenomena   penggelatukan. Keberkesanan SMCTC kemudiannya 

telah ditunjukkan dengan melaksanakannya pada robot pengolah motor servo. 

Berdasarkan hasil kajian, prestasi eksperimen telah menunjukkan bahawa kedua-dua 

sendi mampu mencapai kedudukan yang dikehendaki. 
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NONLINEAR CONTROL OF ROBOT MANIPULATOR USING SLIDING 

MODE AND COMPUTED TORQUE CONTROL TECHNIQUE 

ABSTRACT 

The idea of a robot is created based on human and biological nature. The 

purpose of creating robots is to replace human work that is tiresome, repetitive, or 

dangerous task in industries or military application.  The most extensively used is the 

manipulation robot system which can be found in manufacturing industries. This type 

of robot is an arm-link mechanism system, and the control objective is to manipulate 

material without direct contact by commanding the end-effector motion to achieve the 

desired operation. For this purpose, the study on the relation of joint-space and 

Cartesian-space, together with the control system, is essential. The objectives of this 

research are to study the linear Proportional, Integrator and Derivative (PID) control, 

nonlinear Computed Torque Control (CTC) and Sliding Mode Control (SMC), and the 

control algorithm was built using MATLAB Simulink block. The control algorithm of 

the PID, PIDCTC and SMCTC were implemented into the robot manipulator, where 

the controller parameters were determined within a prescribed range. The performance 

of the control system was tested for step response, position tracking and modelled 

estimation. An additional test for chattering reduction has been carried out for SMCTC 

with reaching control law. Based on the results, the performance of each of the 

controllers was compared. The PID control system shows a relatively good 

performance within the requirements of this study. Also, the PIDCTC produced better 

results than the PID controller, especially for position tracking. However, when the 

system were subjected to external disturbance, both controllers were unable to reject 

the disturbance.   The SMCTC is robust towards external disturbance, and has shown 
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the best performance. The implementation of reaching control law not only reduced 

the settling time, but was also able to eliminate the chattering phenomenon. The 

effectiveness of SMCTC has been shown by its implementation into a servomotor 

robot manipulator. Based on the results, the experimental performance has shown that 

both joints are able to reach the position as desired.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background of research 

A robot is an electro-mechanical device guided by computer programs and 

applications, and is a combination of mechanical engineering, electrical engineering 

and computer science. A robot is generally constructed and designed based on human 

and biological nature. The purpose of creating robots is to replace human work that is 

tiresome, repetitive, or dangerous. This could be military and police work, such as the 

manipulation of explosive devices or the access to places that are difficult to reach by 

humans, such as space (Moosavian & Papadopoulos, 2007) or the bottom of the sea 

(Salvador et al., 2013), due to extreme environments which humans are unable to 

survive. Due to the limited working space, the first robotic surgery was successfully 

performed by two main robots called McSleepy and DaVinci, which allowed the 

surgeon to work with delicate and precise hand movements of fingers that would be 

impossible to be done by humans alone (Science Daily, 2010). 

Robots can generally be categorized based on three basic applications 

(Stonecypher, 2009). The first application is mobile robots, which are automated 

platforms usually used to carry objects from one location to another. The second 

application is data acquisition and control robot system, which are used to acquire, 

process and transmit data into important information signals. The third category, which 

is the most extensively used, is the manipulation robot system, which is mostly found 

in manufacturing industries. The manipulator type robot is an arm-link mechanism 

system, and the control objective is to manipulate material without direct contact by 
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commanding the end-effector motion to achieve desired responses (Braganza et al., 

2005). 

The study on controlling the end-effector is related to kinematics and dynamics 

of robot manipulators (Hemami & Labonville, 1988; Rocha et al., 2011). Kinematics 

is the study of geometry and motion without the consideration of force and torque that 

give rise to the motion. While dynamics deal with forces or torque that cause the 

manipulator motion. Practically, the robot is commonly controlled in joint space, and 

follows a particular pre-set tracking trajectory. Thus, the feedback obtained is in terms 

of joint space, which means that the position error of the end effector is not directly 

obtained (Soltanpour & Fateh, 2009). The tracking performance of joint space is 

inheritable to the end-effector, which is influenced by the robot manipulator’s 

modelling and control system. 

The controller is a device that manages, commands, directs or regulates the 

behaviour of robots system. The force, or torque, is applied so that the system moves 

according to the commanded instructions. However, due to difficulty in accurately 

computing the robot manipulator parameters and changes in the payload, and non-

consideration of friction in the mathematical model of the joint angle, the end-effector 

will not accurately follow the desired trajectory (Piltan et al., 2012a). Therefore, the 

actual joint angle and its derivative are returned as feedback to the control system to 

rectify it.  

The robot manipulator control system can be classified into linear and 

nonlinear control systems. A system is considered linear if the differential describing 

it is linear and its components behave in a linear fashion (Niku, 2011), else, the system 
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is considered nonlinear. All practical systems are nonlinear, but the system component 

may be assumed to be linear or linearized for a small range in order to simplify the 

analysis. Thus, the linear control technique is valid for small changes in the angle, and 

when the robot moves in a slow manner (Saha, 2008). 

One of the conventional linear controllers still in use is the Proportional, 

Integrator and Derivative (PID) controller. This controller is well known for its simple 

control structure, which does not require any component of the robot dynamics into its 

control law (Kelly, 1998). The controller uses an error signal to generate the 

proportional, integral and derivative action with a resulting signal gain and sum to 

form a control signal applied to the system (Aydogdu & Korkmaz, 2011). Since the 

PID is a linear control technique, the linear tuning methods cannot be applied to robot 

manipulator PID control directly, because robot manipulator dynamic is nonlinear and 

tuning the PID parameters are required to guarantee good performance of the system 

(Yu et al., 2013), which is  time consuming (Alassar et al., 2010).  

The nonlinearities of the robot manipulator nonlinear system can be classified 

into natural and artificial nonlinearities. The centripetal force in the rotational motion 

between each link, and the Columb friction between the contacting surface on the robot 

manipulator design contribute to the natural nonlinearities (Slotine & Li, 1991), while 

artificial nonlinearities are introduced by the designer. It is essential to express the 

dynamic model precisely so that the compensation in the control system is accurate 

(Brandtstaedter, 2009). Thus, applying the nonlinear control system with the 

consideration of relevant nonlinearities is crucial so that the system possess sufficient 

control performance despite a large range and high speed of motion (Slotine & Li, 

1991).  
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One of the nonlinear controls is the Computed Torque Control (CTC), which 

is a special application of feedback linearization of nonlinear systems (Lewis et al., 

2003). Precise knowledge of the model is required to design the CTC. However, it is 

well-known for its potentially high tracking accuracy (Nguyen-Tuong et al., 2008). 

Another nonlinear control technique is the Sliding Mode Control (SMC), which takes 

into consideration the nonlinearities and the disturbance of the system.  

SMC can be construed as a variable structure control method due to the 

behaviour of the control input that is able to switch from one continuous function to 

another based on the current position of the state space. There are two main parts 

involve in the designing of the SMC (Jezernik et al., 1994). The first part is the design 

of a sliding surface with the state variable of the plant dynamic restricted to another 

set of equations. The second part deals with the construction of a switched feedback 

gain in order to drive the plant’s state trajectory to the sliding surface. The SMC 

consists of two main phases. The reaching phase, where the state trajectory of the 

system is driven from any initial state to reach the switching manifolds, or the 

predetermined sliding surface in finite time. The sliding-mode phase is where the 

system is induced or slides into the sliding motion on the switching manifolds 

(Bartoszewicz & Zuk, 2010).  

1.2 Problem statement 

The PID control offers the simplest and most efficient solution to many real-

world control problems (Ang et al., 2005), as no other controllers match the simplicity, 

clear functionality, applicability, and ease of use offered by this type of controller 

(Wang et al., 1995). However, when the nonlinearities of the plant are considered, and 

dealing with fluctuated parameter and disturbance rejection, the PID controller must 
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be retuned regularly. The conventional controller is no longer worthwhile, as obtaining 

the PID gain will be tedious (Lee et al., 2002), and the simple physical meaning of PID 

gain will be lost (Yu et al., 2013). To overcome this problem, several nonlinear and 

robust control techniques have been developed.  

One of them are the CTC, where the controller exhibits a good tracking 

performance, however, it requires precise knowledge of the robot model (Jezernik et 

al., 1994; Nguyen-Tuong et al., 2008). Thus, it is preferable to implement a robust 

control technique for a robot manipulator. It is well-known that the SMC is a nonlinear 

control technique that is robustness against model uncertainty and external disturbance 

(Mohammad & Ehsan, 2008; Slotine & Li, 1991). Moreover, Lee et al. (1992) stated 

extra advantages, which are the output performance can be predetermined by sliding 

surface, and there is no overshoot in regulations. Thus, in this study, the CTC and the 

SMC is used in order to obtain good tracking performance and robustness capability 

for the system. 

However, SMCs have often encountered chattering phenomenon, which is a 

drawback of the system (Lee et al., 1992; Sefriti et al., 2012). It is due to the high 

frequency oscillation of the control input, which causes the motion trajectory of the 

system to change frequently in the vicinity of a sliding surface before it reaches and 

slides along the sliding surface. This may excite un-modelled high frequency modes, 

which degrades the performance of the system and may even lead to instability. 

Chattering may also lead to a high wear for moving mechanical parts, and high heat 

losses in the electrical power circuit.   
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Thus, numerous research works on SMCs have the main aim to overcome this 

drawback. (Slotine & Sastry, 1983) eliminated the chattering problem based on a 

boundary layer solution. However, this method provides a solution for small 

uncertainties only. Wang et al. (2002) eliminated the high control activity and 

chattering by incorporating an auto-tuning neuron into the SMC. Also, (Fallaha et al.  

(2011) stated that the method proposed by using the reaching control law is able to 

deal with chattering performance. Thus, in this study, the Sliding Mode Computed 

Torque Control (SMCTC) will be implemented with the reaching control law which is 

introduced by Gao & Hung (1993) in order to reduce the chattering phenomenon. 

1.3 Research objective 

The purpose of this research is to study the implementation of a nonlinear 

control system in order to control the position robot manipulator system as desired. 

The sub-objectives of this research are: 

1. to design a nonlinear robust sliding mode type controller and implement it by 

considering various operating and loading condition 

2. to compare the effectiveness of the designed nonlinear controller with other 

controllers and 

3. to verify the designed controller into a servomotor robot manipulator system in 

real-time. 
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1.4 Research scope 

There are several limitations of the proposed research. The plant of the 

controller system is a two link robot manipulator in which will be moved 

simultaneously and the controller system focuses on the linear PID control, nonlinear 

PID Computed Torque Control (PIDCTC) and nonlinear SMCTC. Although the PID 

and PIDCTC have been studied previously by other researchers, in this study, these 

controller will be used for comparing the performance of designed SMCTC. Where 

the SMCTC will be designed with the consideration of reaching control law. Each 

controller parameter focuses on the prescribed range. From that range, three different 

values are tested on the robot manipulator system in order to produce the desired 

performance.  

The proposed controller system focuses only on the two type of position angle 

tracking, which is the constant position and a sinusoidal position tracking. From the 

output feedback of the system, only measurement of joint displacement is available. 

The velocity and acceleration are obtained through single and double differentiation 

of the joint displacement angle, but are usually contaminated by measuring noise. 

For verification of the controller, SMCTC scheme will be implemented into a 

servomotor robot manipulator system. The structure of the robot is assumed as a planar 

robot with a slender link. The movement is restricted by two Degree of Freedom 

(DOF) caused by a revolute joint. In this study, the elasticity and damping of the joints 

and the backlash introduced by the gear pairs of the transmission mechanism are not 

taken into consideration. The controller is not designed to eliminate all of the factors 

mentioned above. 



8 

 

1.5 Research approach 

The research is initiated by studying the fundamental concepts and relevant 

topics. Topics include the mathematical modelling of the robot manipulator, which 

consists of kinematics and dynamics models. Recent research works and studies in the 

existing literature on linear and nonlinear control systems were reviewed carefully. 

The application of the control systems on robot manipulators was the main focus.  

From the objectives previously stated, there are several tasks to be achieved. 

First, the robot manipulator is modelled based on mathematical equation of motion. 

The behaviour of the robot manipulator is studied and comprehended before any 

controller system is implemented into the system.  

Using the equation of motion, the linear PID control, nonlinear CTC and SMC 

are studied. Based on that, the combination of CTC and SMC to become SMCTC is 

designed to control each link of the robot manipulator to follow the desired task. The 

control algorithms of PID, the combination PID and CTC known as PIDCTC and 

SMCTC were built to obtain the comparison results and effectiveness for each of the 

controllers.  

After the SMCTCs manage to control the robot manipulator, the controller part 

is adjusted to suit the hardware part for implementation into the designed servomotor 

robot manipulator. Several tests were conducted and the results and data were used to 

evaluate the performance of step response and position tracking robot manipulators for 

both simulations and practical experiments. 
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1.6 Thesis outline 

This thesis is arranged in accordance with the objectives and approaches, as 

previously mentioned. Chapter 2 provides an in-depth literature review of the related 

subjects including the enhancement on previous studies and explanation of previous 

concepts and knowledge. The topics discussed include the development of robot 

manipulators, linear and nonlinear control systems, such as PID, CTC, SMC and the 

development of other control systems that attract researcher’s interest.  

Chapter 3 provides a description of the proposed research methodology. The 

methods of kinematics and dynamics of the robot manipulator are shown. The 

conventional PID controller, CTC and SMC are discussed in more detail, including 

the control algorithms. Next, a detailed development of the servomotor robot 

manipulator, including the control system, is explained. 

In Chapter 4, the results achieved based on the gain value of PID, PIDCTC and 

SMCTC are discussed, along with a reasonable justification to support the results. The 

study concludes with a summary, conclusion and contribution of the overall research, 

which are presented in Chapter 5. Recommendations for future research are presented 

as well.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the overview of the topic covered in this study. Four 

major topics are focused, which are the modelling the robot manipulator, conventional 

control systems, sliding mode control system and chattering phenomenon. The review 

on the modelling of the robot manipulator includes kinematics and dynamics 

modelling. Next, the linear PID control system and the nonlinear CTC system are 

discussed.   After that, the concept of nonlinear SMC is presented. Lastly, one of the 

common problems regarding the SMC, which is chattering, and the method to reduce 

chattering, is discussed.  

2.2 Previous Study on Modelling Robot Manipulator  

Modelling a robot system can be categorized into kinematics and dynamics 

modelling. Kinematics and dynamics of robot manipulators are fundamental to robot 

technologies. Both models are widely used in the simulation of motion, analysis of 

robot manipulator structures and design of control algorithms (Lee, 1982). 

2.2.1 Review on Kinematics Equation 

Kinematics is the study of the motion of a system without consideration of the 

forces or moments that cause the motion. Kinematic modelling is crucial for analysing 

the behaviour of robot manipulators. It can be divided into forward and inverse 

kinematics. Forward kinematics (FK) is usually applied for the design and simulation 
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of robotics. Deriving the FK equation is more straightforward and less complex when 

compared to inverse kinematics problems. On the other hand, inverse kinematics (IK) 

is more difficult to solve due to the singularities and nonlinearities within the system. 

Nevertheless, IK is crucial for motion planning resolution algorithms (Kucuk & 

Bingul, 2006; Rocha et al., 2011). Normally, before formulating the IK equation, the 

FK equation is obtained first. From that, the IK equation is calculated.  

There were three types of methods for formulation of FK that had been studied 

by Aspragathos & Dimitros (1998), namely, homogeneous transformation, Lie algebra 

and the screw theory via-dual quaternion algebra. Nevertheless, for the three methods, 

the robot parameters definition is based on the well-known Denavit-Hartenberg 

notation which the concept was first introduced in a study by Denavit, Hartenberg and 

Evanston. Since then, this technique was modified by many researchers in order to 

ease the parameter identification. The detailed formulation of such a technique had 

been documented by Niku (2011). 

On the other hand, there are two types of techniques to solve the IK problem, 

which are the analytical and numerical methods. This study focuses on the analytic 

methods which are classified by geometric and algebraic solutions (Kucuk & Bingul, 

2006). The application of a geometric solution is suitable for a simple robot structure. 

For robots that constitute of complicated structures, an algebraic solution is preferred 

(Lee & Ziegler, 1984).  

2.2.2 Review on Dynamics Equation 

A dynamic equation represents the relationship between robot motions towards 

the applied torque. This equation is essential for the simulation of robot manipulator 
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motion and also for the design of a control algorithm. In order to obtain the dynamics 

equation of motion for robot manipulators, there are two methods that are commonly 

used, which are the Lagrangian and the Newtonian methods. Both methods have been 

studied and compared by Silver (1982). The author showed that the formulation of the 

Lagrangian and Newtonian methods is indeed equivalent, and there is in fact no 

fundamental difference in computational efficiency between them.  

The concept of Lagrangian was introduced by Joseph Louis Lagrange, which 

is defined as the kinetic energy minus the potential energy of the system (Zefran & 

Bullo, 2004). The Lagrangian concept leads to obtaining the equation of motion of the 

system by substituting such equation into the Euler-Lagrange equation. The robot 

system is treated as a whole and provided systematic procedures for eliminating the 

constraints from the dynamic equations. A detailed derivation of the dynamic equation 

for the Lagrange method has been established in numerous studies. Niku (2011) 

provided a systematic procedure to obtain the dynamics model of the robot 

manipulator, not only for a simple structure, but also for multiple DOF robot 

manipulators.  

2.2.3 Perturbation  

Modelling is basically a process of constructing a mathematical description for 

a physical system to be controlled. Modelling a system can be divided into two parts, 

the nominal model and the model uncertainties. The model uncertainties are the 

differences between the nominal model and the real system, and can be categorized as 

parametric uncertainties and non-parametric uncertainties, or un-modelled dynamics. 

The parametric uncertainties are due to the imprecise model and the variation in the 
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load, while the non-parametric uncertainties are usually neglected, such as the motor 

dynamics, measurement noise and sensor dynamics (Slotine & Li, 1991). The term 

perturbation indicates the combination of modelling uncertainties and external 

disturbance (Elmali & Olgac, 1996). 

2.3 Controller System 

Various controller schemes have been developed for robotic manipulators. 

Two types of conventional controllers, PID control and CTC, have been widely used. 

The PID control is a linear controller, and the CTC is a nonlinear controller. Most of 

them are based on the assumption that a complete state measurement (position and 

velocity) of the robot manipulator is available (Mien et al., 2013). 

2.3.1 Review on Linear PID Controller 

The PID control algorithm is one of the most commonly used algorithms in the 

control system area. This is due to its simple structure and clear physical meaning of 

control parameters, which makes it easier to implement in control systems (Patel & 

Chaphekar, 2012). Even though PID control law has already been established and 

implemented in industrial robot manufacturing, there still exists an open problem that 

attracts researchers in this area. The early application of the PID controller on robot 

manipulators has been studied by Takegaki & Arimoto (1981). Later on, Wen & 

Murphy (1990) extended the research by Takegaki & Arimoto (1981) using the 

modified Lyapunov function for stability trajectory tracking of robot manipulators.  

One of the issues that often arises during implementation of PID control 

techniques is insufficiency to guarantee the desired performance of the system. 
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Therefore, the PID must be appropriately tuned. Manually tuning the PID gain for the 

robot manipulator is time consuming due to the nonlinearities of the system. Tuning 

using nonlinear method caused the great advantage of the clear physical meaning 

disappears, as the method to obtain control gain becomes complicated (Yu et al., 

2013). The study by Kelly & Carelli (1996) extended the previous results of linear gain 

PD controllers with the nonlinear functions of the gains. The authors also provided 

sufficient conditions on proportional and derivative gain in order to guarantee a global 

asymptotically based system.  

Most of the mentioned studies on control are tested on computer simulations, 

and a few of them consider case studies. Research by Agrawal et al., (2012) 

implemented a discrete PID control technique into a DC motor using an Advanced 

Virtual Risc (AVR) (Atmega 16/24) microcontroller of a robot arm to replace the 

complex electronic circuitry. The simple PID controller presented applied the Ziegler-

Nichols tuning method in order to determine the PID gains values. Ziegler and Nichols 

is one of the well-known simple tuning techniques that use heuristics method. 

However, it is written that this technique is applicable on linear systems only, and 

cannot be applied for nonlinear robot systems (Yu et al., 2013). 

2.3.2 Review on Nonlinear CTC 

The CTC is a special application of feedback linearization for nonlinear 

systems. The design control problem consists of a feed-forward loop model and a 

feedback loop model. The feed-forward model is used to predict the feed-forward 

control input in order for the robot to follow the given desired trajectory. The dynamic 
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model of the robot can be used as a feed-forward model. The feedback control input is 

used as a compensator for tracking errors (Nguyen-Tuong & Peters, 2008). 

For good tracking performance, a feed-forward model requires the accurate 

model of the robot. However, such a condition is difficult to achieve due to the 

presence of disturbances and the variance of the manipulator’s parameters. Thus, to 

compensate the performance, Piltan et al. (2012b) applied a proportional gain and 

derivative gain type feedback control input. These gain feedback parameters must be 

tuned in a way to compensate for the difference between the nominal parameters and 

the perturbed parameters. Piltan et al. (2012a) later improved the overall performance 

of the CTC by substituting the linear PD type feedback control input with a 

discontinuous feedback control input. The authors showed a comparison of the 

performance between both feedbacks. The results proved that the discontinuous 

feedback control input is more robust than the PD CTC. 

The requirement for the complete knowledge of robot dynamics and physical 

parameters is a well-known issue in CTC. A less accurate model requires high 

feedback gains and caused the robot to be less safe for the environment, and degrades 

the performance of the system. The study by Chen et al. (1988) proposed an improved 

dynamic model for two types of robust CTC in order to enhance the accuracy of the 

model by compensating the uncertainty of the system. Firstly, the non-adaptive robust 

CTC is applied for a system where the bounded uncertainty is available. Secondly, the 

adaptive robust CTC is applied for a system in which the bounded uncertainty is 

unavailable. The adaptive scheme is used to estimate the uncertainty bounded. The 

control action is then based on the estimated uncertainty. The simulation results proved 
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that the robust computed torque guarantees a zero error convergence when system 

uncertainty is considered.  

2.3.3 Review on Robust Controller 

The robustness of a system is an important criteria for a good control system. 

The study by  Mailah et al. (2006) proposed an approach for a robust motion control 

for mobile robot manipulator. The part of designed controller consists proportional-

integral active force control to compensate the dynamic effects including the bounded 

known/unknown disturbances and uncertainties. The effectiveness and robustness of 

the proposed scheme are investigated through deliberately introduce a number of 

disturbances in the form of vibratory and impact forces.  

Later on, Sabzehmeidani et al. (2010) designed and integrated three different 

types of control algorithms into the robot controller system which are the PID 

controller, active force control (AFC) and SMC. This hybrid scheme is to be known 

as AFC+SMC+PID. The primary objective to ensure accurate and robust trajectory 

tracking control of the micro robot system is achieved. The performances of the control 

system under different types of disturbances are evaluated through a simulation study. 

The obtained results clearly demonstrate an effective trajectory tracking capability of 

the wormlike micro robot in spite of the negative effects of the external disturbances.  

2.4 Nonlinear SMC  

A SMC system is a kind of Variable Structure Control (VSC) proposed and 

elaborated by Emelyanov and several co-researchers including Utkin and Itkis from 

the Soviet Union in the early 1950s (Piltan et al., 2011). Since then, the SMC technique 
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has been extensively studied for the class of nonlinear systems due to its special 

characteristics that provide robust behaviour towards model uncertainty and external 

disturbance.  

Due to a simple structure in implementing the control law, while at the same 

time maintaining good performance, the SMC is an ideal candidate for robot 

manipulator control (Ge & Ye, 2011). SMC was first implemented into robot 

manipulators by Young (1978), and then by Slotine & Sastry (1983). The authors 

presented the control design methodology with approximate SMC to remedy the 

chattering effect.  

The design methodology of a SMC is composed of a two-step procedure. The 

first step is to design a sliding surface where the state trajectory is restricted to such a 

surface in order to obtain the desired response. The second step is to construct a control 

action that takes the system into such surface and keeps it there (Kurfess, 2010; Liu & 

Wang, 2011). The control action is constructed by switching control and equivalent 

control (steady state control).  

The design procedure mentioned above yields two type of phase as shown in 

Figure 2.1. The first phase is the reaching phase; this is the step where the state with 

an error vector is attracted to a sliding manifold, S or sliding surface, 𝑠 = 0. The 

second phase is the sliding mode phase; the state with error vector slides on the surface 

until it reaches the equilibrium point or final state, 𝑥𝑇 = 0 or error, 𝑒 = 0, which is 

known as steady state (Gao & Hung, 1993).  
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Figure 2.1 Sliding mode mechanism in phase plane (Fallaha et al., 2011).  

The system behaviour of the SMC can be analysed in the phase plane (𝑒 = 𝑥1,   

derivative error, 𝑒̇ = 𝑥2) as shown in Figure 2.1 and Equation (2.1). The 

discontinuities of the control input, 𝑢 occur at the 𝑠 = 0 , which consists of two 

functions. The first function is when state trajectory is at the upper semiplane, 𝑠 > 0, 

thus 𝑢 = −𝑀. The second function is when the state trajectory is at the lower 

semiplane, 𝑠 < 0, and thus 𝑢 = +𝑀. Where M is a control value action. When the 

state trajectory reaches the switching line at time 𝑡1, the state remains in the switching 

line for 𝑡 > 𝑡1, and this motion in the sliding line is called the sliding mode. This is 

due to the state trajectory being interpreted as the motion equation (Utkin et al., 1999),   

𝑒̇ + 𝑐𝑒 = 0 (2.1) 
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To guarantee the convergence, the sliding surface parameter, 𝑐 must be selected such 

that Equation (2.1) is Hurwitz (Yilmaz & Hurmuzlu, 2000). The real part of its 

eigenvalue must be negative 𝑒̇ = −𝑐𝑒. Thus, 𝑐 > 0.  

A simple derivation of SMC algorithm is presented by Chen et al. (1990), 

which does not required the inverse of inertia matrix. The methodology shows the 

application of Lyapunov function in order to guarantee that the constructed control 

input 𝑢(𝑡) converges the 𝑠(𝑡) to be 0. 

Myszkorowski (1989) proposed a feed-forward SMC for trajectory tracking of 

a robot manipulator system. The feed-forward part is the compensator for the know 

dynamics of the robot, while the feedback SMC is the variable structure regulator. The 

author also proved that the proposed control law is locally stable for the whole system 

in the presence of parameter uncertainty and bounded disturbances. 

Comparing the nonlinear type controls between CTC and SMC, the CTC is 

unable to eliminate the nonzero steady state error in the presence of the parametric 

uncertainty system. Tzafestas et al. (1996) study the comparison between the 

conventional CTC and SMC, which robustified the CTC. The finding shows that SMC 

is superior to CTC, and the superiority is strengthened when the uncertainty level is 

increased. 

For the next section, two different phases of SMC are discussed, including a 

brief introduction on inherent robustness. 
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2.4.1 Reaching Phase 

SMC usually make a distinction between two different phases, which are the 

reaching phase and sliding mode phase. The reaching phase is also known as a 

transient phase while approaching the sliding mode phase. It lasts until the system state 

reaches the sliding surface.  

During this period, the structure of reaching control law does not contain the 

discontinuous term and consequently, does not suffer from chattering (Bartoszewicz 

& Lesniewski, 2014). However, the system is unable to control the tracking error 

directly and is sensitive to parameter uncertainties and noise (Yilmaz & Hurmuzlu, 

2000). Therefore, reducing, or even eliminating the reaching phase is an interesting 

issue in the SMC.  

The reaching control law approaches were first introduced by Gao & Hung 

(1993). The purpose of its implementation is to improve the performance of the 

reaching mode and amplitude of the chattering. Three types of reaching laws are 

introduced by the authors. The constant plus proportional rate reaching is implemented 

in a case study for controlling the robot systems. The results obtained from this work 

show that the response during the reaching phase is able to improve by modifying the 

parameter of the reaching control law.  

The Lyapunov method in the SMC only warrants the reachability to the sliding 

surface in a finite time. However, the system behaviour during the reaching phase is 

not specified. Furthermore, the trajectory error of the system is unable to be directly 

controlled. Thus, Chang & Hurmuzlu (1993) proposed a modified SMC which 

eliminate the reaching phase. It is known that once the state reaches the sliding surface, 
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it will never leave it. Based on such statement, the tracking error is modified so that 

the state response begin on the sliding surface regarding arbitrary initial conditions.  

Later on, Yilmaz & Hurmuzlu (2000) presented a reaching phase elimination 

by modifying the sliding surface through the use of an exponential function, as the 

exponential form is the most preferable choice for a good convergence. The proposed 

method ensured the optimal convergence parameter with respect to the tracking error 

and control input.  

The reaching control law approach is also used to reduce chattering. Fallaha et 

al. (2011) intended to reduce the chattering effect and at the same time, maintain a 

good tracking performance. The authors designed a nonlinear reaching control law by 

using the exponential function. The exponential reaching law is dynamically adapted 

to a variation of controlled systems in order to achieve the desired performance. The 

result of this work shows that the chattering and the tracking performance are 

positively improved compared to conventional SMCs.  

2.4.2 Sliding Mode Phase 

The sliding mode phase starts when the state trajectory reaches the sliding 

surface (Bartoszewicz & Zuk, 2010). Once the state reaches the sliding surface, it will 

slide and remain on the sliding surface, 𝑠 ≈ 0 (Harashima et al., 1987; Yilmaz & 

Hurmuzlu, 2000). During this phase, the dynamics of the state are determined by the 

sliding line parameter and the order of the equation of the original system is reduced 

following the sliding line (Bartoszewicz & Zuk, 2010; Sage et al., 1999).  
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The sliding mode phase on the sliding surface is carried out due to the 

discontinuity of the controller (Piltan et al., 2011), which is very sensitive to small 

deviations and provides an infinitely high gain as a corrective action. Therefore, this 

causes the system to be insensitive towards model uncertainty and external 

disturbance.  

During the sliding mode phase, although the system is robust towards 

invariance, the discontinuous control action to correct the trajectory error supposedly 

switches quickly. This action exhibits a serious drawback of high frequency 

oscillations, which inevitably result in chattering (Bartoszewicz & Zuk, 2010). The 

chattering phenomenon is discussed in the next section.  

2.5 Chattering  

The SMC is an attractive nonlinear control technique due to its robustness 

towards parameter variation and external disturbance. However, there are a few 

problems that arise within the SMC, which receive a great deal and attention among 

researchers. One of the common problems in the application of the SMC is the 

chattering phenomenon.  

Chattering is high frequency oscillation that appear about the desired 

equilibrium point and causes a decrease in the system’s performance, which causes the 

system to become instable. This is due to un-modelled dynamics, switching gain value, 

discontinuous function in the SMC, idle time or delay due to computer calculation 

limitation of physical actuators, among other reasons (Hung, Gao, & Hung, 1993).  
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Many different approaches exist that attempt to reduce or completely eliminate 

the chattering effect. They can be categorized as continuous approximation, observer 

design and higher order SMC (Aguilar-Ibañez et al., 2013). A review of these 

approaches are discussed in the following sections.  

2.5.1 Continuous Approximation 

One technique to reduce the chattering phenomenon is to replace the 

discontinuous control law with a continuous type. Slotine & Sastry (1983) proposed a 

continuous control law which approximates discontinuous control law in order to 

obtain the insensitive tracking system towards parameter variation and disturbance, 

and thus, improves the chatter along the sliding mode. The detailed design 

methodology of the continuous control law can be found  in the study by Kurfess 

(2010). 

In order to surmount the chattering phenomenon, the discontinuous function is 

replaced with the smooth function. The widely used smooth function is related to the 

boundary layer technique. However, Huang & Chang (2005) stated that the boundary 

layer technique does not guarantee the elimination of steady state errors. The authors 

introduced the self-tuning law in SMCs, which have been observed to control input 

chattering, and as a result the steady state error do not occur.  

Sulaiman et al. (2014) proposed an improved technique of state the dependent 

auto-tuning of sigmoid function and the switching gain. The authors introduced a 

control algorithm without the use of a complex algorithm so that it is easy to implement 

into the hardware system. The findings reveal that the proposed technique can maintain 

the robust performance of the SMC to suppress the chattering phenomenon. 
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2.5.2 Observer or Estimation of Uncertainty 

Conventional SMC require the knowledge of model uncertainties and external 

disturbance. The exact knowledge is impossible to obtain, consequently, these 

perturbations are assumed to be bounded.  The control action based on this knowledge 

negatively affects the tracking performance and causes undesired oscillations. Elmali 

& Olgac (1996) proposed a perturbation estimator to improve such issues. An on-line 

estimator is used to estimate the perturbation, which relieve the burden of guessing the 

upper bound from the previous technique. The authors proved that the tracking 

performance can be improved.  

The control gain of the boundary layer technique is a counterbalance between 

chattering and robustness. Lower control gain is required to reduce or eliminate 

chattering. In order to maintain the robustness of the system, it requires all states to be 

modelled, including the un-modelled part, which are difficult to model. A neural 

network structure is proposed by Sefriti et al. (2012) to estimate the unknown parts of 

the model. The neural network weight is adjusted during the online implementation by 

using the gradient descent (GD) method. 

2.5.3 Higher order Sliding Mode Design 

The boundary layer technique does not guarantee that the oscillations will 

disappear. Bartolini et al. (1998) proposed a high-order SMC that translates the 

discontinuity produced by the sign function to the higher order derivatives, producing 

the continuous control signal. However, this technique requires great computing 

efforts. 


