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Introduction  
 

Deposition  of   radiation  energy within the interacting material is termed as  dose, whose 

unit is Gray (Gy), defined as joule of deposited energy per unit mass(kg) (Khan, 

2010).Dosimetry   is the  measurement or  estimation of  dose,  ideally  at  a defined  point 

within  the  interacting material, but it  could  also  be  performed for a  plane  of  2D or  for  

a volume of   3D.The goal of   radiation   therapy  is  to deliver  uniform and homogeneous  

prescribed  dose  to   treatment  volume but at   the same time, save the  adjacent  healthy  

tissues from   radiation   exposure or  keep the doses  to  un-avoidable  healthy  tissues,  well 

below their radiation tolerance (Khan, 2010). The treatment plans are made with the patients 

radiographic images  X-rays, CT scan and   MRI. Due to current treatment complexity 

raising the risk for target  miss or unnecessary  irradiation of  healthy  tissues,  pre-treatment 

dosimetric verification of each treatment plan is highly recommended. 

 Now a days a variety of radiation dosimeters are used serving different purposes. Examples 

of the commonl used dosimeters are,Ionization chambers, Silver halide Radiographic films, 

Radiochromic films, Thermoluminescence dosimeters,  Optically stimulated dosimeters, 

Semi conductor detectors. Frick dosimeter, Gel dosimetry, Plastic  dosimeters and some  

Natural and synthetic materials. 

 
Objectives 
 
The aim of the study is to fabricate a reusable tissue equivalent plastic composite dosimeter 

with acceptable accuracies, that could serve the routine dosimetric requirements of a 



radiation therapy centre.First, this work seeked to identify the most suitable material to be 

used as the ingredient in the plastic composite mix. Secondly, this work seeked to determine 

whether the sensitivity of any of these materials can be improved by synthetic introduction 

of crystal defects. Thirdly, methods of sample preparations were to be evaluated. Finally, 

these samples would be evaluated for their radiation dosimetric properties using X-ray 

photon beam from a linear accelerator. They would be evaluated mainly for radiation 

sensitivity, repeatability, fading, and dose linearity. 

 
Methods and Materials 
 
To prepare the samples in which radiation sensitive material grains were uniformly 

embedded within the body of the plastic, different techniques were tried and finally N1(pure 

sodium chloride) samples were made with Haake polydrive internal mixing and hot press 

technique. Samples prepared by, spraying plastic solution with grains of material, with 

solution casting of  plastic and material grains and b using  hot plate with solution casting 

and to melt plastic grains was found unsuitable for further experiments.  

 
Results 
 
The  final sample  of N1 and PMMA composite  in 40/60 ratio (wt/wt)  has shown  

good sensitivity for 3 Gy of 6 MV photons  with  very  linear  dose  response up to 10 Gy. 

From 10 Gy  to 15 Gy  the  sensitivity of  the  plastic  dosimeter  was  found  to  be 

decreased.  For the next observed dose of 20 Gy, the dosimeter appeared to  

regain its sensitivity. The doses were delivered for alternate 4 days post optical  bleaching of 

18 hours. The area of dip  in the percentage  transmission curve, corresponding  the absorbed 

dose  was  found  to  have  an  average  value of 96.4 arbitrary area units with standard 

deviation of 4.85 %. The peak values of the dips were found to be between 460 nm to 472 

nm. The fading in response for 5 Gy of 6 MV photons was found to be 16.93% in one week 

and 48.07% in one month. Dosimetric evaluation of the materials were conducted with the 



study of  their optical properties pre and post irradiation of 2  Gy of 6 MV photons, using 

Shimadzu UV 1800 Spectrophotometer.      

 
Conclusions 
 
Zeff of the fabricated N1 PMMA composite dosimeter  is 10.51.Linear response from 3Gy to 

10Gy,and  then from 15Gy till  the observed dose of 20Gy was observed. The fading in 

response for 5 Gy of 6 MV photons was found to be 16.93% in one week and 48.07% in one 

month. Dose repeatibility for 5Gy of 6 MV photons was found to have standard deviation of 

4.85 %.  
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FABRIKASI  DOSIMETER GUNASEMULA  SINAR-X 

BERASASKAN  PLASTIK  UNTUK RADIOTERAPI 
 

ABSTRAK 
 

Tujuan kajian ini adalah untuk menghasilkan dosimeter komposit plastik untuk 

mengukur dos sinaran foton sinar-X yang digunakan dalam radioterapi. Kriteria 

untuk dosimeter yang dicadangkan adalah kos yang rendah, penggunaan yang 

mudah, bahan bukan toksik, dan boleh diguna semula. Sebagai dosimeter, ia harus 

mempunyai sensitiviti dan kebolehpercayaan yang cukup dalam lingkungan ukuran  

dos kepentingan dalam radioterapi. 

Dalam membuat dosimeter berasaskan plastik, zarah bahan aktif yang sensitif kepada 

sinaran tertanam secara seragam, di dalam posisi yang tetap, dalam plastik lut sinar. 

Perubahan dalam spektrum transmisi optik bagi bahan telah digunakan sebagai 

kaedah bacaan, menggunakan Shimadzu UV 1800 spektrofotometer. Perubahan nilai 

ini dikalibrasi untuk mendapatkan nilai dos serapan. Pelunturan optik sampel yang 

telah menerima dedahan sinaran dilakukan dengan menggunakan dua buah mentol 

biasa berkuasa 100 watt dengan dedahan selama 18 jam. 

Antara tiga belas bahan yang telah dipilih untuk kajian kesesuaian mereka sebagai 

bahan aktif terhadap sinaran, natrium klorida tulen gred penyelidikan didapati 

merupakan bahan yang paling sesuai. Bahan-bahan lain yang turut dikaji ialah 

berilium oksida, tujuh jenis garam yang boleh dimakan dari di pasaran tempatan,  

aluminium oksida tulen, kalium alum (tawas), ammonium klorida (Noshadar) dan 

garam buluh. PMMA (polymethyl metaacrylate) telah dipilih sebagai bahan hos. 

Sampel plastik yang baik telah dapat dihasilkan menggunakan Haake poly drive 

pencampur dalaman dan mesin tekan panas, berbentuk lembaran plastik setebal  
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2 mm, dengan zarah natrium klorida (125 μm) tertanam secara seragam dalam nisbah 

berat 40/60 natrium klorida kepada PMMA. Kesemua penilaian bahan aktif telah 

dijalankan dengan sampel diletakkan di dalam botol plastik lutsinar yang 

mengandungi minyak yang lut sinar. Botol plastik ini didapati mempunyai ciri-ciri 

o p t i k  y a n g  s a n g a t  d e k a t  s a m p e l  P M M A  t a n p a  b a h a n  a k t i f . 

Pemerhartian mendapati bahawa rawatan sampel menggunakan dos elektron 9 MeV, 

sehingga 2800 Gy, tidak mengubah sensitiviti sampel terhadap sinaran. Sampel 

plastik akhir yang dinyatakan di atas,  mengandungi natrium klorida yang dilabelkan 

sebagai N1, telah menunjukkan tindak balas kepada foton 6 MV, dengan tindak balas 

dos didapati linear dalam julat 3 Gy hingga 10 Gy. Sensitiviti kelihatan menurun 

antara 10 Gy hingga15 Gy, selepas itu sensitiviti kelihatan kembali untuk dos 

terakhir yang dinilai, iaitu 20 Gy. Penurunan sensitiviti pada 15 Gy berkemungkinan 

besar berpunca daripada pengurangan elektron terperangkap, sepatutnya 

menghasilkan penyerapan optik dalam julat 395 kepada 550nm, disebabkan 

penukaran-ke atas pendarfluor hasil daripada penyerapan semasa ukuran, dalam julat 

570-625 nm. Nilai Zeff bagi dosimeter berasaskan plastik PMMA yang mengandungi 

40% N1 mengikut berat telah dikira dan dipastikan sebagai 10.51 amu. Sampel N1 

yang mendapat dos sinaran 5 Gy 6 MV foton telah menunjukkan nilai kepudaran 

16.92% untuk satu minggu dan 48.06% untuk satu bulan. Kebolehulangan dos 

dianggarkan daripada tiga ujian menggunakan tiga sampel yang berasingan dengan 

nilai dos serapan 5 Gy 6 MV foton. Dos sinaran telah diberikan selang 4 hari selepas 

pelunturan optik selama 18 jam. Kawasan lembah pada spektra transmisi optik yang 

sepadan dengan dos serapan didapati mempunyai nilai purata 96.4 unit-arbitrari 

dengan sisihan piawai 4.85%. Kawasan lembah di dalam lekuk transmisi tersebut 

terletak dalam julat 460 nm hingga 472nm. Dosimeter berasaskan plastik yang 
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terhasil didapati mantap, murah, mudah untuk digunakan dan boleh diguna semula. 

Ia didapati sesuai untuk mengukur dos X-ray foton, dalam julat respons dos linear,  

dari 3 Gy hingga 10 Gy, dan untuk julat dos 15 Gy dan 20 Gy. 
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  FABRICATION OF A  REUSEABLE  PLASTIC BASED  X-RAY         

                      DOSIMETER  FOR   RADIOTHERAPY 

 
ABSTRACT 

The  aim  of  this  study was to  fabricate  a  plastic  composite  dosimeter  for  the 

measurement  of  radiation doses of X -ray photons used in radiotherapy. The criteria 

for  the  proposed  dosimeter  were  low  cost,  ease of use, non toxic, and reusable.  

As a dosimeter, it  should have  acceptable  sensitivity  and  reliability  in the  dose  

measurements  range of  interest  in  radiotherapy.       

In making  plastics  based dosimeters,  radiation  sensitive  material grains were 

uniformly  embedded  in  transparent  plastic  host  where they  are  kept spatially 

fixed.  Changes in optical transmission spectra of  the  materials was  used as readout 

method, using Shimadzu  UV 1800 spectrophotometer. These changes were than 

calibrated to get the absorbed doses. Optical bleaching of the irradiated samples were 

performed with two 100 watts ordinary bulbs for 18 hours. Among the thirteen  

materials  that were  selected for  the study of  their  suitability as the embedding 

material, research grade pure sodium chloride was found to be the most suitable 

material. Other materials studied were beryllium oxide, seven different types of 

edible salts available in local markets, un doped aluminium oxide, potash alum 

(tawas), ammonium chloride (Noshadar) and bamboo salt. PMMA (polymethyl 

metaacrylate) was chosen as the host material. The final plastic sample was produced 

using Haake poly drive internal mixer and hot press machine, as 2 mm thick plastic 

sheet, with uniformly embedded grounded (125µm) pure sodium chloride grains in 

40/60 sodium chloride to PMMA wt/wt  ratio. All  the  evaluations  of  embedding 

materials were carried out with their samples placed  inside a transparent plastic vial 
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containing optically clear oil. This plastic vial was found to have optical properties 

very close to the final, material free, PMMA sample. It was observed that treatment 

of samples using 9 MeV electron doses of up to 2800 Gy does not changed their 

sensitivity. The aforementioned final plastic sample, containing sodium chloride 

labelled as N1, have shown response to 6 MV photons with a linear dose response 

from 3 Gy to10 Gy. The sensitivity appeared to be decreased  between 10 Gy to15 

Gy, after which appeared to recover for the last observed dose of 20 Gy. The 

decrease in 15 Gy response is postulated to be due to the depletion of the trapped 

electrons of interest, supposed to produce optical absorption at 395 to 550nm, due to 

fluorescence up-conversion resulting from 570 to 625 nm absorption during  

measurements. The Zeff  of  the PMMA plastic based dosimeter containing 40% N1 

by weight  was calculated to be 10.51 a.m.u. The N1 samples irradiated with 5 Gy 

6MV photons has shown fading of 16.92% and 48.06% for one week and one month 

respectively. The dose reproducibility was estimated with the average response of 

three fresh samples to 5 Gy 6 MV photons. The doses were delivered for alternate 4 

days post optical bleaching of  18 hours. The area of  dip in  the  percentage  

transmission  curve corresponding  the  absorbed  dose was  found to have  an   

average value  of  96.4 arbitrary  area  units  with  standard deviation of 4.85%. The 

peak values of the dips were found to be between 460 nm to 472 nm. The fabricated 

plastic based dosimeter was found to be robust, cheap, easy to use and reusable and 

suitable for measuring doses of X-ray photons, in the dose ranges of linear responses, 

3  G y to10  G y and  fo r  obse rved  h igher  doses ,  15  G y and  20  G y.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 
 
A  variety  of dosimeters  are in use for different purposes these  days. They  vary  in  

their  sensitivities  for  different  radiations, range of measurable doses, physical form  

and  suitability for a  particular  usage.  Although achievements  have  been  made  in  

developing  materials  that  are  very sensitive and can work at very  high  doses  but  

they fall in the advanced materials category  and have very costly.   

Some  introduced  dosimeters  have  high dose threshold  and  they are difficult to  

develop  due to, their toxicity (plastic dosimeters), their sensitivity to impurities  and   

atmospheric conditions  (Fricke chemical  dosimeters  and  Fricke gel  dosimeter,   

polymer gel dosimeter).  

To use  chemical  and  gel dosimeters  the  introduction  of  the  container  not  only  

made  its  routine  usage  difficult  but  required corrections  in  dose  estimation   

made its usage difficult . Further the  extraction  of dose  information in  most of the  

dosimeters required  diagnostic  machines  such  as  MRI, CT scan and Ultra sound  

which may be difficult due to availability of  these  machines at  for  immediate   

dosimetric  use.  Regarding reusability only ionization chambers,  OSLD's and TLD's  

are reusable. 
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1.2 Statement of the problem 
 

Although the radiation dosimeters used these days have covered specific dosimetric  

requirements of a particular usage, none of them fit in the criteria of a tissue 

equivalent, reusable, easy to use, low cost and reliable dosimeter  for routine   

dosimetry of  therapeutic ranges of doses.             

For  example  Ionization  chambers  with  all  of   their  merits  for   dosimetry,  have  

drawbacks  in terms of size, requirements  of  correction  factors  and  stable   

electrical. On the   other   hand   semiconductor  dosimeters such  as  diodes,  and 

MOSFETS,  are non tissue equivalent and their performances are, affected  by   

temperature, dose  rates  and cumulative doses.  

Among the tissue equivalent dosimeters, the diamond detectors are affected by dose 

rates  and  the cumulative doses, Silver halide and radio chromic films on the other 

hand  are  sensitive to dose rates and require energy corrections. Furthermore silver   

halide  films showed  non  linear  behaviour  that  needs to be corrected. 

Tissue equivalent  synthetically prepared dosimeters such as, LiF:Mg,Ti, 

LiF:Mg,Cu,P, Li 2 B 4 O 7 :Mn  although are good for the therapeutic range of 

dosimetry, but are expensive and require dedicated readout systems for their dose 

data acquisitions. Other tissue equivalent  dosimeters, such  as chemical  and  plastic 

dosimeters  have  shown  high  dose  thresholds. The gel dosimeters, although 

provides good results in the  therapeutic range of doses, suffered with the corrections  

required for its containers.  

Recently introduced, tissue equivalent plastic dosimeter, PRASAGE (Zeff varies from 

6.4 to 16.3 depending on the compositions), has established as a good dosimeter  

qualifying for dosimetry of therapeutic range of doses.        
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The methods of producing all these tissue equivalent dosimetrs are not simple and in 

most of the cases, handling of toxic materials and steps of preparation has potential 

hazards for health. The simple and  non toxic preparation  and  the  reusability of  a  

dosimeter results in its low cost.Except ionization chambers, doped materials, diodes 

and MOSFETS, all the tissue equivalent materials are one time useable. Furthermore  

their  readout  methods  require  either  expensive  dedicated  equipments or 

sophisticated  diagnostic machines, which cannot be used on routinely in most   

medical centres.      

Hence, fabrication of a tissue equivalent radiation  dosimeter,  which  could  be used  

on  routine  basis in radiation therapy centres with acceptable accuracy and reliability 

in its dose measurements of therapeutic ranges,  which is reusable, non toxic,  using 

easily available low cost  ingredients , easy fabrication method and  have ease in use,   

is still a challenge for the researchers.         

 
1.3 Purpose of the study 
 
It was planned to fabricate a tissue equivalent, nontoxic, easy to develop, low cost 

and robust dosimeter, which should be capable of  handling therapeutic dose ranges 

with acceptable accuracy  and  confidence of reproducibility in its routine  

use. The  purpose of  the  study   is  to  develop  a tissue equivalent robust  plastic 

composite  dosimeter suitable  for  validating   dose  ranges  used   in  radiotherapy.   

Its non-toxicity, ease in its, preparation, handling, simple readout method and its  

reusability was of prime concern.Search for the most suitable low cost materials and 

simple methods for the preparation and dose data acquisitions were also considered.   
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1.4 Objectives of the study  
 

The aim of the study is to fabricate a reusable tissue equivalent plastic composite 

dosimeter with acceptable accuracies, that could serve the routine dosimetric 

requirements of a radiation therapy centre. The simple preparation technique easy 

read out methods were of prime concern. The cost of the dosimeter was also 

considered. The sample was supposed to be of  PMMA, uniformly embed sieved 

grains of the selected radiation sensitive material. To achieve this goal, smaller goals 

for this work have been identified. 

First, this work seeked to identify the most suitable material to be used as the 

ingredient in the plastic composite mix. This could be achieved through independent 

evaluations of the respective materials for their responses to radiation in term of 

changes in their optical properties.   

Secondly, this work seeked to determine whether the sensitivity of any of these 

materials can be improved by synthetic introduction of crystal defects. This can be 

done by using high dose of particulate radiation such as neutron or electron. 

Thirdly, methods of sample preparations were to be evaluated. The aim of this 

evaluation is to determine the most suitable technique that can produce plastic 

composite samples having favourable properties such as uniform physical 

dimensions and uniform distribution of the embedding materials. Once the sample 

preparation technique has been identified, the fourth minor objective is to actually 

fabricate the samples for the rest of evaluation needed in this work. 

Finally, these samples would be evaluated for their radiation dosimetric properties 

using X-ray photon beam from a linear accelerator. They would be evaluated mainly 

for radiation sensitivity, repeatability, fading, and dose linearity. Further dosimetric 

studies, such as energy and dose rate dependency, would be studied if time allowed. 
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1.5 Scope of the study  

The selected radiation sensitive material grains should be embedded uniformly in the 

body of the plastic as the optical response depends on it. Non-uniformities in either 

the number of particles per unit mass of the plastic composite or the thickness of  the 

sample may cause error in observations.    

Since the selected materials are supposedly light sensitive, any exposure to light even 

for a small duration, from the time of irradiation until readouts may result in loss of 

response signal. Performing the whole procedure in light tight condition helps in  

getting the true dose versus response relationship. 

The UV Spectrophotometer, which uses intensity based CCD detectors, is a less  

sensitive instrument compared to fluorescence spectrophotometer, which uses PMT's 

as detectors. Hence the radiation sensitivity of the final plastic composite dosimeter 

may appear to be less with UV spectrophotometer than with fluorescence 

spectrophotometer.  
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CHAPTER 2 
 

LITERATURE  REVIEW 

 

2.1 Radiation dose and dosimetry  
 
Ionizing   radiations  interacts  with  matter in  different  ways. The  possibility of  a  

mode  of interaction depends upon the type and energy of radiation and the physical  

properties of the  interacting matter.  Ionizing   radiations  may lose  its  energy in  

matter either  by  ionizing,  exciting  or   by  making  the  atoms  or  molecules 

vibrate. Deposition  of   radiation  energy within the interacting material is termed as  

dose, whose unit is Gray (Gy), defined as joule of deposited energy per unit  

mass(kg) (Khan, 2010). 

Dosimetry   is the  measurement or  estimation of  dose,  ideally  at  a defined  point  

within  the  interacting material, but it  could  also  be  performed for a  plane  of  2D 

or  for  a  volume of   3D. The   properties of   ionizing  radiations,  their   interacting    

mechanisms,  and   the    relationship    between   doses  versus   different    material's    

responses, has  been  successfully  exploited  in   health  services, different industries,   

scientific research and  technologies. The  use  of  ionizing radiation in  plastic 

industry, sterilizing of  medical  stuff  and food items, quality assurance of different 

goods such as metal sheets, environmental monitoring, archaeological and  

geological  dating,  forensic applications, development of new materials for space 

crafts and in medical sciences  are  examples of its usage.  
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2.2 Medical dosimetry 
 

The dose measurements in medical  sciences was  rapidly advancing and becoming   

ever   complexing. The  needs of radiation dosimetry  for,  personal  monitoring  or   

radiation  protection, diagnostic radiology or for therapeutic  radiology were different 

leading   to  different   methods,  and  related  sophistications.   Although    the  basic  

concern of  medical dosimetry  is to  estimate  the  biological damages resulting from 

ionizing radiation exposures, the radiation therapy differs in that, the exposures were 

pre planned.     

The goal of   radiation   therapy  is  to deliver  uniform and homogeneous  prescribed   

dose  to   treatment  volume but at   the same time, save the  adjacent  healthy  tissues  

from   radiation   exposure or  keep the doses  to  un-avoidable  healthy  tissues,  well  

below their radiation tolerance (Khan, 2010). 

 

2.3 Importance of dosimetry for radiation therapy  

The challenges in radiation dosimetry is due to the variety in cancer tumours, types,   

its  anatomical site, its  shape,  and adjacent healthy tissues. The diagnostic  images  

used for  marking  treatment volumes  may  not be  used for  a  particular  radiation  

treatment plan as the geometries of organs may change during the planned  posture.    

The  cure   or  control  of  cancerous  tumour, depends  upon  the  coverage  of  the  

treatment volume in the prescribed dose. Hence radiation treatments  were  needed  

to be  planed and  must be validated prior  to  the actual  treatments to  optimize the 

 goals of radiation therapy.         

Ideally, the 3D  dose distribution of  a  treatment plan,   within  a  tissue equivalent  

phantom, similar to patients treated anatomy, is needed to be validated. New types  
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of radiation therapy machines and techniques generally made the dose delivery faster 

and  its distribution over a treatment volume more precise, however due to the 

sophistications involved, it is increasingly desirable that  the actual dose delivered to  

the patient be checked possibly for each treatment plan.    

In   more  complicated  treatment techniques  such as stereotactic  radio  surgery,  

conformal  radiotherapy,  Intensity modulated radiation therapy  (IMRT),  

Brachy therapy, in which are situations may arise where junctions between two fields  

or regions of steep dose gradient exists, or the  un-avoidable  inclusion of  some vital  

organ  or  healthy   tissues in the  prescribed  radiation fields. In  such  conditions 3D  

dosimetry will  be very useful,  with  spatially detailed  point to  point  accurate  dose  

measurements,  for  the quality  assurance of  a  treatment  plan and  hence to get  the  

ultimate benefits of the radiation therapy.  

 

2.3.1 Treatment planning, treatment planning systems and dosimetry  
 
The  treatment planning  systems (TPS)  used   the dose  distribution  data in water  

phantom. These doses were delivered with standard protocols and field sizes, used 

 in therapeutics. The  TPS  then   interpolate   or  extrapolate  the  dose  values   for  

different depths to calculate  three  dimensional  doses  distributions  for  a  particular   

treatment  plan. 

The   beam   data of  every machine for a  given field  size  is  generally   different, 

 due  to  different  scatter  factors, may  be  due to  different  machine  design   and  

variations   during   production. Since  TPS   used    interpolated   or   extrapolated  

values  of  parameters, it  might show different dose  distributions, from the   actual  

treatment machines even for standard  field sizes.  
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Serious  dosimetric errors such as under dosing, over dosing, missing the treatment  

volume or inclusion of healthy tissues or vital organs, which were considered in the  

treatment  plan   but   may   wrongly   appeared  in TPS.  Such errors especially may  

occurred  at  the junction of different density tissues or at the field  junctions  where   

dose   gradient   appeared. Such  errors  ultimately  cause unsuccessful  treatment.    

 
2.3.2 Requirement of validating treatment plan  
 
 
The treatment plans are made with the patients radiographic images  X-rays, CT scan  

and   MRI. The  requirement  for  validating a  treatment  plan   is also to   match  the  

patient's  planed  and  the  actual  treatment  setup. This  matching   of   the   patient's    

planned   treatment   positioning with   the   actual treatment set-up is very  important  

as   the   treatment volumes  are   related  to the surface marking of the beam entrance  

points. This  set up   matching has to be done  with a  tissue   equivalent   phantoms  

similar to the patient's treatment  anatomy, whose 3D dose measurement will then 

validate a treatment  plan.  Further, in  the  cases  where  the  treatment volume  or  

the  surface anatomy changed post irradiations, any modification in the plan needed 

to be verified the same way. Due to current treatment complexity raising the risk for 

target  miss or unnecessary  irradiation of  healthy  tissues,  pre-treatment dosimetric   

verification of each treatment plan is highly recommended. 

Ideally, validations of the treatment plans are performed on real treatment machines  

with  real  treatment  parameters   using  tissue  equivalent phantoms  that  faithfully  

represents the anatomy of the patients treatment volume .The 3D dose distribution in  

these phantoms  should  accurately indicates  the actual dose distribution. 

  

 
 



10 
 

2.4 Over view of the dosimeters  
 
Generally,  dosimetry  is  performed   using  radiation  sensitive  volumes,  whose  

responses should  be dose dependent and measurable using suitable read out system.  

The response of any new dosimeter  should be  able to be confirmed  and calibrated  

with a standard dosimetry system, i.e. using  ionization chambers and electrometers.   

The   performance of  a  dosimetry   system   is  the  net  performances  of   its  two  

components, that is the radiation sensitive material and its response read out  system. 

 
2.4.1 Ionization chambers  
 
Among  all  types of  dosimeters, ionization  chambers are  accepted  to  standard  

dosimeters  in  clinical applications. Generally,  ionization  chambers  have  basic  

construction of a cylindrical shell of air equivalent material that contain a suitable  

gas of known volume and density. There is a fine electrode at  the  centre  of  this  

 cylindrical   construction,  maintained   at   high  voltage,  normally  around  

 300-400 volts (Khan, 2010). 

The thickness of the solid shell was made such that all the charges produced by the  

ionization  due  to   photons  within   a  range  of  specified  energies,  reached   the  

electrodes   and   an electronic  equilibrium  establishes  between  the  outgoing and  

incoming  electrons in  measuring volume. The charge  collected  was  proportional  

to absorbed dose.Using relation between  average  energy  required  for producing  

an  ion  pair  in  air  as  33.85  eV / ion   pair  (Khan, 2010), amount  of  charge    

collected   can   be converted to absorbed dose.   

The doses of different energy photons could by measured by using a  build up cap  

whose   thickness  corresponds  with   the   range of  electronic  equilibrium to   the  
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measuring volume of the chamber. Ionization  chambers  with   build-up caps were  

near to  tissue equivalent  and considered as  standard point dose detectors .For dose 

measurement  temperature pressure and humidity corrections are required.  

   

2.4.2 Film dosimetry  
 
Radiographic film was originally used for diagnostic radiography, later  it found its  

uses in  personal monitoring.  Now the use of radiographic films were also common  

for portal imaging in therapeutic radiology. 

 

2.4.2.1. Silver halide Radiographic films  
 
Radiographic   films  consists  of   a  transparent  thin  base  cellulose   acetate    or  

polyester  resin sandwiched between emulsion layers put together using  thin layers  

of  adhesive. The emulsion is a mixture of  gelatine  and  photosensitive  grains  of   

silver  halide  micro crystals. The  finished  surfaces  of   film  was   protected with  

layers  known  as  super  coating. The  silver  iodo bromide  crystals  embedded   in  

layers are  sensitive  to light  and ionizing  radiations.  Unfortunately, the sensitivity  

to   ionizing   radiations  is  generally  much  more  lower  to   that   of    light.   

The crystal defects enable  silver ions Ag+  which moves freely with in the crystal.   

 Upon radiation exposure, bromide ion of the crystal absorbs light  and  gives  off  

 electron, and left in gelatine as neutral bromide atom.  

The electrons are then captured by the wandering  silver  ions  converting them  to  

silver atoms. Depending on the amount of radiation received ,the silver atoms form  

clumps   together,   forming   latent  image, i.e. a   map  of   the  radiation   intensity.  

 Upon irradiation the exposed  crystals were   reduced to   grains of   metallic  silver. 

During  the  fixation of  film  processing, the  unexposed grains are washed   away,  
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 leaving  behind a clear film. The silver grain within the film appeared black  hence,  

areas with   higher radiation exposures  have  higher  accumulation of silver  grains,   

leading to appearance.  

Densitometers  with  suitable calibration are  used  to estimate  the  doses  of   the  

different areas of exposed  film, using the varying optical  transparencies in a unit   

known as  optical density (Akselrod et al.) (Thomas III et al., 1984).   

Although the radiographic film's response to radiation is  nonlinear and  depend  on  

radiation energy and processing parameters, their ease of use, inexpensiveness, high  

spatial resolution and long period  record  keeping  capability, keeps them in use  for  

general dsoimetric field checks of  megavoltage  therapy machines, both for photons  

and  electrons (Khan, 2010). With suitable choice of filters, radiographic films served  

as personal monitoring  device.  

 
2.4.2.2. Radiochromic films  

Radio  chromic  films are   commonly used  in  therapeutic  dosimetry.   These  films  

are  transparent  and  almost tissue  equivalent. They contain  grain  less dye, which  

 upon irradiation  gets  polymerized and  turn to blue colour. The change  in  optical    

transparency was  then  determined  with  densitometer  with  proper calibration, the  

results  can  be  used to  estimate  absorbed  dose. These  films   are   self-developing,   

thus  they do  not  require  chemical  processing.  

The response is dose rate independent. In standard to ambient conditions ,i.e. except  

excessive  humidity, they  are comparatively less energy dependent than silver halide 

films. Although  radio chromic  films are generally less  sensitive  than  silver  halide  

films, however  they  provide  higher  resolution  dose  measurement,  attributed  due   

to grain less feature of the dye, therefore they are found to be valuable   in validating  
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multi field radiotherapy plan with high dose gradient regions. Gafchromic HS (high 

sensitivity), EBT  (External beam therapy),  films  were found to  be  useful  in the 

dose  ranges 0.1 Gy to 8 Gy and  0.5 Gy  to 40 Gy and  ranges respectively 

(Jordan, 2006). These  and  many other  radio chromic films with  little  differences  

in,  sensitivity, energy dependency,  linearity   and   read   out   methods  were    

successfully  used   in therapeutic  radiology.        

 
2.4.3. Luminescence dosimetry 

 
Luminescence  is  the  process  of  emission  of  visible and near  visible  light from  

certain materials, upon stimulation . A more detailed classification of luminescence  

 according to the with emission delay includes  fluorescence and  phosphorescence  

 with emission times ~ 10 - 8 s  and >> 10-8 s  respectively. It  was  found  t hat  some  

solids, after  irradiating  with  ionizing  radiations  upon  heating or illuminating with 

lights of suitable frequencies, emits light. In most cases, the light intensity was found 

to be proportional to the absorbed doses.  

This  property of stimulated  luminescence was exploited for dosimetry and named  

according  to the  used  mode of  stimulation, as  thermally simulated  and  optically  

stimulated,  luminescence dosimetry. The  stimulated luminance used for dosimetry  

was explained with the band theory of solids  (Podgorsak, 2003). 

 
 
2.4.3.1. Thermoluminescence dosimetry  (TLD) 
 
In   solids  insulators,  defects  in the  crystal lattice  modifies  the forbidden  energy  

bands between valence and conduction band by creating discontinuous energy levels 

within the forbidden band, and create cites (L,T) where a hole or electron could  be 

tapped. Figure 2.1 gives a simplified model  of these defects  in term of  the  energy  
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band. These  defects   may  be intrinsic, extrinsic  or   result  of  some  ionizing   

radiation  exposures,  causing   displacement of negative ion and hence generating a   

vacancy  for an electron. When   such  an insulator  is  irradiated with  ionizing  

radiations, the  generated  electrons  and  holes from the  valence  band may  trapped  

in these sites. 
 

 
                          
                                                       Figure  2.1.  Model for thermo luminescence 

 

If  the  natural  de-trapping  is negligible and the  energy  depth  'E'  of   the   electron  

trapping site below the conduction band is large, the life time of the trapped electrons   

would  be  significantly large, establishing  a meta  stable  state. When the  irradiated  

material  is  heated  with constant rate of  elevating temperature trapped electrons get  

energized    after  receiving their  energy from  lattice  vibrations  leading to electron  

ejection.  The  radioactive  recombination  of   these    liberated  electrons  with  the  

trapped  holes, known  as  luminescence centres, gives out  luminescence  that  

corresponds with some temperature   is  known as  glow  peaks. These  glow  peaks  

could  give   information  about  the traps and the structural defects of the material   

(Mandavia, 2011).  

After  heating the TLD  to  a  specific high temperature, all  the traps  are emptied.  

The TLD was  then termed as zeroed as it was prepared for its re usage . 

Thermo  luminescence  was originally used  for  measuring  nuclear  radiations by   
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Daniel in early 1950's. Successful use of TLD for archaeological dating was  done in  

1960's  by Aitken and Mejdahl   and  for  geological dating  in 1980's  by  Wintle  

 and Huntley, ( Botter-Jensin, 1997). 

TLD's having favourable properties such as  high sensitivity, reusability, reliability  

and ease of use are now established as a popular  tool for dosimetry.   Nowadays   

commercially TLD'S are available  that varies in  the  physical  forms(rods, tablets , 

ribbons, small  size  grain,  powder),  tissue  equivalency,  sensitivity,    operational  

conditions  making  them suitable  for a  wide range of dosimetric application . In   

medical  dosimetry,  near   tissue   equivalent   TLD's   such   as    LiF:  Mg, Ti, LiF: 

Mg, Cu, P,  Li2B4O7: Mn  and    non tissue  equivalents   such as CaSO4: Dy, 

 Al2O3: C, CaF2:Mn , as   most  sensitive  dosimeters, are    in   common   use 

 (Mandavia, 2011).   

 

2.4.3.2.  Optically stimulated dosimeters   

The  phenomenon of optically  stimulated  luminescence is the same as thermally  

stimulated luminescence except that  the mode of de-excitation which is optical  

rather than thermal. This   technique was originally used for  dating  by  Huntley 

 in  1985, and further studied  by, Hutt  in  1988 , Aitken  and Smith  in 1988,  

Spooner and Questiaux in 1990, Poolton and Bailif  in 1989, Bùtter-Jensen in 1991. 

Bùtter-Jensen  and Duller in 1992, established  it  as  a   tool  for dating,  and  

Godfrey-Smith and Haskell in 1993, Haskell in 1993, Bailiff in 1995, Bøtter- Jensen  

in 1995 used for   dosimetry  for  Hiroshima  and  Chernobyl  nuclear events.     

An insulator  with defects  in its  lattice, either by  some impurity or  dislocation of  

an   ion,   naturally  present   or  synthetically  produced,   when   irradiated    with  

ionizing  radiation, generates electrons by leaving behind holes in the valence band.  
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These  electrons  and  holes   may  get  trapped  at   the  cites of   defects, below the   

conduction band and above the valence band  respectively. Upon Illumination  with  

suitable frequency of light, luminescence may be observed. The emitted light may be  

longer or of shorter wave length than stimulation  wave length.  The emitting  light is  

a  characteristic of the material but the intensity was found to be  proportional to the  

absorbed   dose. Different   modes   of  optical  excitations  used  were    namely,    

Continuous  wave optically stimulated  dosimetry (CW-OSL), Linear modulated  

(LM-OSL) and Pulse OSL (P-OSL). 

 
 
2.4.3.2.a. CW- OSL  

In this mode of stimulation, samples  were stimulated with constant  intensity light  

source  which may be either laser  or a broad band source. The luminescence was  

measured  simultaneously with the stimulating  illumination. The  luminescence  

wavelength are distinguished  from excitation wave lengths, using  mono chromoters.  

The  decay curve of   luminescence may or  may not  be  exponential,  revealing   

different   de trapping  modes of  trapped electrons and   information  about  the   

lattice defects. The   total   luminescence i.e. the   total  area  under   luminescence   

curve, was proportional to the absorbed dose (McKeever, 2001). 

 

2.4.3.2.b.  LM-OSL   

In  this   technique, instead  of constant  intensity  of    excitation   wave lengths,  

continuously increased intensity was used. The continuous increase in the intensity  

of  light, emptied trapped electrons, at their different intensity values and hence can  

 easily distinguished. This intensity with verses emptied electrons  gives information 

about the depth of the traps. The   luminescence   peaks  at  different  points  in  time   
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of  a   linearly  increased intensity  ramp, gives  information  about  the   contribution   

of  different  electron traps of different photo ionization cross section ,to the total  

luminescence (McKeever, 2001). 

 
2.4.3.2.c.  Pulsed OSL  
 
In Pulsed OSL, the excitation wavelengths are used to  illuminate  the  samples for  

such short intervals of time that suits the life time of the  luminescence    

(Bøtter-Jensen, 1997).   

Since luminescence does not depleted much  in a short pulse,  multiple  observations  

could   be  made   for  single dose  (McKeever, 2001).  Further, since  measurement 

was  done  after  illumination, the  stimulation  and emitted  wavelengths  are  easily  

distinguishable   without   any  aid   of  filters,  which  simplifies  the   method   and 

increased  the measuring efficiency of  the luminescence.     

 

2.4.3.3. OSD  VERSUS  TLD 
 
The  general features of  the  two modes of luminescence dosimeters  i.e, TLD  and  

OSLD can be summarized as follows :- 

1.  Thermo luminescence dosimetry, as a single time dose measuring technique, with    

comparatively   complex   method   and   thermal   quenching,  is  a    less   sensitive      

technique  than non-destructive optically stimulated luminescence  dosimetry, which  

offers  multiple observations for single dose . 

2.  Thermoluminescence output is a whole sample's response, where as in OSL, with  

thin  laser beams as optical  exciting  tool, even a grain could  be  selected  from  the  

whole  sample  to  get  an  optical response. This ease of site selection from a  sample  

for  dose  estimation   could  be  exploited  in  re assessment of  absorbed  or  in  dose  

mapping .    
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3.  It   was  observed   that  TL  observations  could   be  taken   after   taking   OSL  

observations from  the same sample and that in many cases separate samples  with  

same  dose  gave  same  response,  either  use  TL  or OSL. This  suggests that   the  

electron traps for TL and OSL  may not be the same.          

 

2.4.4. Semi conductor detectors 

Semi-conductors  have   offered a good choice for  many   dosmetric   applications.  

Commonly  used  semi-conductor radiation  detectors includes, PN diodes, MOSFET  

(Metal-Oxide Semiconductor  field effect Transistor), and  Diamond detector  

(Rosenfeld, 2011). 

   

2.4.4.a.  Diodes 

Semiconductor  diodes  has  been  used as  radiation  detectors  since  last 30 years.  

Due to   their merits, of being very small sized and hence offering  high resolution,  

and  ease of  use  for  real  time   dosimetry, they are popular dosimeters for  quality   

assurance in radiation therapy (Podgorsak, 2003). 

 

2.4.4.b. PN diodes  

Silicon diodes are commercially available as n-type and p-type. They are fabricated  

by  counter doping the surfaces to produce opposite type material. The pn junction in  

semi-conductor  diodes, provides  an in build, very high electric  field (103 V/m)  

across the junction. 

When  diode  was  exposed to ionizing  radiations,  electrons and  holes  pairs  were  

generated in the diode, which then diffused through the pn junction and collected by  

an electrometer. This induced  current  through  the diode was  known   as  radiation  
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current   and was  proportional to  dose  rate. The total current  was  proportional  to  

absorbed  dose  rate  in  silicon. The silicon diode  and  MOSFET  have  near  tissue  

equivalency in MV energy range as  silicon to   water mass stopping collision power  

ratio  is  almost  independent  of energy in MV  range  for  photons  and  electrons  

conventionally used in radiotherapy.  There  small sensitive volume and low  

ionization energy compare to that of air made them  18000  times more sensitive   

than  same volume ionization chamber (Rosenfeld, 2011).The Diodes are commonly  

used in vivo dosimetry as relative  dosimeter, for example in   bladder  and  rectum   

dose  measurements, entrance and exit dose. It is  used with beam entrance dose  

measurements  routine checks of treatment parameters and setup errors  such  as   

correct   technique (SSD OR SAD), use  of  correct  radiation  and applicator, dose  

rate change are able to be performed (Yorke et al., 2005). 

As a relative dosimeter, they have proven to be suitable for dose  measurements  in  

phantoms , especially for small field, high dose gradient regions as in radio surgery,  

for  depth   dose  measurements and  for beam profiles of photons and  electrons, in   

commercially  available  2D and  3D systems serves as  quality assurance  tools  for  

IMRT treatment plans. In spite of its merits, commercially available  diodes  could   

not be  used for surface dosimetry, because of its packing which behaves as build up  

region. Diodes responses are sensitive  to dose rate, temperature,  accumulated doses   

and  the material used. Diodes  suffers radiation degradation over time, the  degree of   

which   depend  on   type  of  radiation  and  dose. Hence  the  use  of   diodes  as   

radiation   detectors   needs   calibration   against   many   factors. The   response  of   

diodes  were  found directional    dependent  and   also  affected  by   spectral    

composition of   beam  (Rosenfeld, 2011).  
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2.4.4.c.  MOSFET  

MOSFET Metal-Oxide Semiconductor Field Effect Transistor, due to its very small  

size  1μm, and   sensitivity   to   full   range  of   photons  and  electrons,   has   been  

successfully   used  for   measuring relative doses in  brachy therapy,  radio surgery,  

surface dose measurements diagnostic radiology.  

These short life  detectors  have  the same drawbacks  as the  diodes detectors  have  

Their  responses were dependent  on  temperature, dose rate,  direction of detection,  

radiation quality,  absorbed doses, and bias voltage during irradiation 

(Podgorsak, 2003).     

 

2.4.4.d. Diamond  detector 

Diamonds,   either   natural   or   artificial, when exposed   to   ionizing   radiations,  

shows   change   in   its  resistance. The  detector  with   a   suitable  biased  voltage     

100 V  and  charge  integrating amplifier, when   exposed   to    ionizing   radiations  

gives  signal proportional  to the charge induced  electron hole pair, which in turn  

proportional to the absorbed dose.  

Diamonds  are  low  Z material  and  near  to  tissue equivalent  therefore  almost  no 

energy correction is required. These  detectors,  have small  effective  volumes  order   

of   few  mm3,very  small directional   dependency,  negligible ;  dose   rate  and   

temperature  0.1 %   per oC  dependence  and high radiation damage resistance. Prior  

irradiation of the detectors were required for stable responses for each usage, 

(Podgorsak, 2003).These detectors are  specially suitable for small field   high dose   

gradient  regions  such  as in  radio surgery  (SRS),  routine treatment   set  up  

checks,  and  relative dosimetry, (Rosenfeld, 2011).      
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2.4.5.  Chemical dosimetry  

Chemical   dosimeters  are   the  oldest  of    all   kinds of   dosimeters.  Originally  

the  chemical dosimeters were in  liquid form but now later it  was  modified as  a 

gel dosimeters  

 

2.4.5.a.  Frick dosimeter  

Fricke  &  Morse  1927   developed   a  ferrous    sulphate   solution  as    radiation  

dosimeter  with the  irreversible oxidation of  ferrous ion to ferric ion by  ionizing  

radiations (Nemtanu et al., 2008). The absorbed doses were measured by the Fe+3 ion  

concentration which changes the  absorption  of   UV  radiation  of   wave   lengths   

224 nm   and  303 nm   with spectrophotometer. The absorbance of  light at those  

particular wavelengths and is directly proportional to the absorbed dose. It was  used  

for the  determination of the doses between 40  Gy to 400  Gy  (Soares et al., 1987). 

The   dosimeter was dose rate radiation  quality  ( photon and electron)   independent 

 and   relatively temperature 0.12%  per 0C.  It was   also  found to be  very  precise   

0.15%.  However  it is easily affected by  contaminations  and  does not  show very  

good stability over the periods of few years.  

Being  a  contamination  sensitive  solution dosimeter  it is  difficult  to use it  on  a 

routine   bases.   Furthermore   the     Fricke  dosimeter  could   not   be   used  for  

measurement requiring high  spatial resolution. Since  it  is an  irreversible chemical  

process  Fricke dosimeter could not be recycled.   Other chemical dosimeters  

includes  ferrous–cupric  dosimeter  measurable range of   doses   5×102   to  104 Gy,   

with    accuracy  of    ±02%  and   found to be  LET dependent, Ceric sulphate 

dosimeter dose  range 102 to 2×105 with  accuracy   ±02%  and  the   ethanol – chloro  

benzene dosimeter dose range   4×102 Gy   to  5 ×102  6 × 104  Gy, accuracy ±03%.    
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2.4.6. Gel dosimetry  
 
Gel  dosimetry is relatively a  new technique. Many different kinds of Gels  are used  

for the purpose . Most of them are  modified formulas of the few basic gels originally  

introduced. They  offer  3D dosimetry with good accuracy.           

 
 2.4.6.a. Fricke gel dosimetry  

Fricke  chemical dosimeters Ferrous sulphate solution could  be  considered  as  the   

first dosimeter with potential to be extended as 3D dosimeters .Gore in1984, have  

showed  that   Fricke  dosimeters  could  be  probed   with  MRI  to  have 3D  dose   

distribution , (Baldock et al., 2010).  

Gels such as gelatine, Agarose   were used with infused ferrous sulphate ions to have  

some stable 3D dose distribution, the concentration of  radiation   induced  Fe+3  ions,  

which   is  proportional to  the  absorbed doses,  changes the  colour of  gel.  The Fe+3  

concentration  remained fix in gelatine matrix  for some time  and  could   be  probed  

with   suitable  technique  such  as  MRI, OCT, Ultra   sound.  (Baldock et al., 2010)   

Fricke  gels are water equivalent, hence  considered  as  tissue equivalent, for a  large  

range of  therapeutic radiation (Schreiner, 2004a).  It is easy to prepare, inexpensive,  

non-toxic  since it is  prepared in liquid form the dosimeter can  have complex  

phantom  shapes and shows very good  reproducibility. 

However  the   Fricke  gels  have  high  threshold  such as  50  Gy to 75  Gy  making   

it not suitable for  low or intermediate  radiation  doses  applications as encountered   

in hospitals. Furthermore, the  ferrous ions tends to diffuse in the gel after irradiation,  

losing  the spatial distribution information within a few hours. Attempts  to solve the  

problem of ferrous ion diffusion were made through the use of different  gels   such 

as   ge la t ine ,   agarose ,   sephadex   and   po lyvinyl   a lcohol   PVA.  
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Chelating  agent agents such as  Xylenol Orange XO were tried, which made  a small  

improvement in the stability ( Baldock el at 2010) but  reduces  the sensitivity of  the  

dosimeter (Schreiner, 2004b).When  optical CT   (OCT) was used noticed for  that     

readout   the   dose  sensitivity  depends   on    the   wave   lengths   chosen.  Optical    

CT   for   dose   readout     of     Fricke-Agarose –Xylenol  Orange gel uses  a  fast  

CCD camera to acquire the   image. (Luciani et al., 2006).  

The  results  of   OCT  readout  were  found  to  have  good  linear relationship in the  

dose   range  up to  10  Gy  and  with  spatial  resolution  approximately  0.5 mm 

 (Viti et al., 2006). It  was  observed  that the  use of  MRI  for dose  data  acquisition  

requires relatively longer  time  than OCT  readout ,  hence the optical  technique 

was better  in  limiting the effect of diffusion the 3D gel dosimeter.  

 

2.4.6.b. Polymer  gel  dosimetry  

Historically, the polymer gel dosimetry was successfully introduced by Hoecker and  

Watkins  in 1958.  Boni  in 1961, used  poly acrylamide  as  a  gamma  dosimeter.  

(Baldock et al., 2010). 

The  polymer gel  dosimetry  was  based  on  radiation  induced   polymerization  in  

solutions of  monomers and polymers (McJury et al., 2000). The polymerization was  

proportional to  the absorbed  dose. The  extent of  polymerization  thus  changes the  

density of the set materials. This change in  density  is  proportional  to  the  absorbed   

dose. The change in  density  detectable   upon   viewing   with   X-ray  CT  scanners.  

The   colour  or  opacity  of irradiated gels also changes and hence could be detected  

and measured  with  optical devices such  as  optical CT OCT.  Additionally   MRI   

was also used  as  a   readout method. Maryanski  in 1996  introduced  polymer  gel   

dosimetry  which   was   based  on  the   polymerization  of   acrylamide  AAm  and   
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Bis  monomers  infused  in  an aqueous agarose  matrix.  

He  gave it the name BANANA, (Baldock et al., 2010). The dosimeter was found to  

be  a  tissue  equivalent  and  its   performance  evaluation a  3D dosimeter  was done  

using  stereotactic  radio  surgery and  HDR  brachy therapy plans. MRI   scans  were   

used  for  3D  dose  data  acquisition  and  was  found  in  good  agreement  with  the  

planned  doses  (Maryanski et al., 1996). With  small change in  the  formulation   of  

BANANA, Maryanski in 1994 introduced BANG. This name later changes to PAG  

to  distinguish it  with from  the  in house manufactured gels,   (Baldock et al., 2010).   

BangTm3  and   PAG gels  were  investigated  for  use  in 3D dosimetry  with   XCT 

(Oldham et al., 2001)  OCT  and  MRI  (Audet et al., 2002),  and  was   found   good   

for  the  purpose. Although the  polymer  gels were tissue equivalent and do not have  

the  problem of  ion  diffusion  as  in  Fricke gels, it is very sensitive to  atmospheric  

oxygen  which  inhibited  the  polymerization  process. For  this  reason  the  polymer    

gels  has  to be  prepared  in  oxygen  free  environment. This is found  to be  an  in- 

convenient procedure for daily use. 

Fong in 2001, introduced  a  normoxic gel ‘MAGIC’ in which atmospheric oxygen  

was   bounded  in  metallo    organic   compound  matrix without   the  gel  for  its  

preparation   (Baldock et al., 2010).  Thus gel does not  require  for  an  Oxygen  free  

environment.  

Different gels with little changes in the formulation were investigated with different  

techniques.  Mather in  2002  make  use  of  Ultrasound  for   acquiring  3D  dose  

distribution data, Rintoulet  in 2003 showed how to use Raman spectroscopic  

technique  to  probe  depth   dose   distribution   in   electron   beams   for    PEG  

(Baldock et al., 2010). Bheag gel (Rabaeh et al., 2008)  uses  MRI to evaluate  its  

dosimetric  performance, Anthromorphic  Barex  (Duthoy et al., 2004) was  
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