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PENGECAMAN UNIT TINDAKAN WAJAH BERDASARKAN TEKNIK

SPATIAL-TEMPORAL KEBARANGKALIAN BAYESIAN

ABSTRAK

Pengecaman Unit Tindakan muka sering digunakan sebagai kerja-kerja asas untuk

mengkaji ekspresi wajah atau aplikasi pergerakan manusia seperti pemantauan video

dan pengenalan muka. Unit Tindakan (AUs) bekerja sebagai unit asas dalam Sistem

Kod Tindakan Muka (FACS) untuk taksonomi pergerakan muka, yang mengaitkan se-

tiap AU dengan pengaktifan satu atau lebih otot muka khusus. Pembinaan sistem pe-

ngecaman Unit Tindakan yang stabil tetap menjadi cabaran bagi penyelidik disebabkan

aksi, pencahayaan dan gabungan rumit ekspresi wajah. Sehubungan dengan itu, kerja

penyelidikan ini mencadangkan satu pendekatan kebarangkalian yang model hubung-

an statik dan tempoh antara AUs dari urutan imej menggunakan Dynamic Bayesian

Network (DBN). DBN yang menggabungkan imej ukuran kepada model DBN dire-

ka untuk menjadi satu struktur umum untuk hubungan AU. Support Vector Machine

(SVM) digunakan untuk mendapatkan ukuran AU dari pangkalan data dengan meng-

klasifikasikan setiap AU daripada ciri imej. Ukuran AU tersebut kemudian digunakan

sebagai bukti kepada DBN untuk membuat kesimpulan kewujudan pelbagai AU. Ke-

muncak penyelidikan ini adalah bahawa parameter AU dalam model DBN dipelajari

daripada kaedah data tidak lengkap, dengan nod AU pembolehubah tersembunyi dan

disimpulkan daripada ukuran imej secara langsung dan dimodelkan dengan cara ke-

barangkalian yang dinamik. Kerja penyelidikan ini mencadangkan bahawa setiap AU

mempunyai keputusan ambang berbeza kerana sambungan yang berbeza daripada AU

xix



dalam model dengan mencari ambang yang terbaik bagi setiap AU. Keputusan eksperi-

men menunjukkan bahawa dengan membuat kesimpulan AU dari ukuran imej sebagai

model terdahulu, model yang dicadangkan mencapai keputusan yang setanding de-

ngan model yang dipelajari sepenuhnya daripada pangkalan data tertentu. Sistem ini

mencapai kadar pengiktirafan purata sebanyak 94.78% dengan kadar positif benar se-

banyak 70.54% dan kadar penggera palsu 2.31% menggunakan pangkalan data Cohn-

Kanade (CK). Pendekatan kebarangkalian yang dicadangkan itu juga telah digunakan

untuk cabaran Pengiktirafan Ekspresi Wajah dan Analisis (FERA) yang dianjurkan

oleh Pemprosesan Isyarat Rangkaian Sosial (SSPNET) pada tahun 2011. Cabaran ini

bertujuan untuk membolehkan perbandingan yang adil di antara sistem dengan mem-

punyai keperluan untuk prosedur penilaian yang seragam. Cabaran ini digunakan se-

bagai penanda aras sistem ekspresi wajah di seluruh dunia. Pendekatan kebarangkalian

yang dicadangkan itu telah direka bentuk semula dengan mengikut arahan yang dibe-

rikan oleh cabaran dan model baru dibina dan dilatih untuk cabaran FERA. Sistem

yang dicadangkan mencapai prestasi lebih baik daripada kaedah asas dalam cabaran

dan ia telah menunjukkan hasil yang setanding dengan keadaan-keadaan lain dan pe-

serta dalam cabaran tersebut. Metrik prestasi yang digunakan di FERA ialah ukuran F1

dan keputusan keseluruhan mencapai ukuran F1 pada 0.494 mengatasi kerja-kerja lain

termasuk satu-satunya pasukan yang menggunakan pendekatan kebarangkalian dalam

kerja mereka. Oleh itu, sistem yang dicadangkan telah memenuhi objektif kajian de-

ngan pembelajaran parameter dari kaedah data tidak lengkap, umum kepada pangkalan

data yang berbeza serta keadaan yang berbeza untuk bersaing dengan kerja-kerja lain

di dunia.
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RECOGNITION OF FACIAL ACTION UNIT BASED ON

SPATIAL-TEMPORAL BAYESIAN PROBABILISTIC TECHNIQUE

ABSTRACT

Facial Action Unit recognition is often used as elementary works for facial ex-

pressions analysis or human motions applications such as video surveillance and face

identification. Action Units (AUs) are employed as basic unit in Facial Action Cod-

ing System (FACS) to taxonomize facial movements; by associating each AUs with

the activation of one or more specific facial muscles. A stable Action Unit recogni-

tion system still remains a challenge for researchers due to pose, illuminations and

complicated combination of facial expression. With this regards, this research work

proposes a probabilistic approach which models spatial and temporal relationships of

AUs from image sequence using Dynamic Bayesian Network (DBN). The state-of-

the-art DBN, which incorporates AU measurements from images to a DBN model

is designed to be a generic structure for AU relationships. Support Vector Machine

(SVM) is used to obtain AU measurements from database by classifying each AUs

from image features. Such AU measurements are then applied as evidence to the DBN

for inferring existence of various AUs. The highlight of this work is that AU parame-

ters in DBN model are learned from incomplete data method, where the AU nodes are

hidden variables and directly inferred from image measurements and modeled in dy-

namic and probabilistic way. This research work proposed that each AUs has different

decision threshold due to different connections of AUs in the model by searching the

best threshold for each AUs. Experimental results show that by inferring AU from im-

xxi



age measurements, the proposed model achieves comparable results to the model that

learned completely from specific database. This system achieves average recognition

rate at 94.78% with a true positive rate of 70.54% and false alarm rate of 2.31% using

Cohn-Kanade (CK) database. The proposed probabilistic approach has also been ap-

plied to the Facial Expression Recognition and Analysis (FERA) challenge which was

hosted by the Social Signal Processing Network (SSPNET) in 2011. The challenge

aims to allow a fair comparison between systems, by having a need for standardized

evaluation procedures. This challenge is used as the benchmark of facial expression

system around the world. The proposed probabilistic approach has been redesigned to

follow the instructions given by the challenge and a new model is built and trained for

FERA challenge. The proposed probalisitic approach is proven to be applicable and

generalized to different conditions. The proposed system is compared against the base-

line system for the challenge provided by the FERA organizers. The proposed system

achieved better performance than the baseline system and achieved comparable results

with other state-of-the-art and participants in the challenge. The performance metric

used in FERA is F1-measure and the overall result achieves 0.494 for F1-measure,

outperforming other works including the one and only team which use probabilistic

approach in their work. Hence, the proposed system has met the objectives of research

by learning parameters from incomplete data method, generalized to different database

as well as different conditions to compete with other works in the world.
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CHAPTER ONE

INTRODUCTION

1.1 Background

A facial expression is indeed the clues for human behavior. A person’s internal emo-

tional states and intention can be figured out through his facial changes. Facial be-

havior analysis has gained extensive attentions from researchers across many areas of

studies such as biometrics, computer vision and psychological studies (Matsumoto and

Hwang, 2011). Facial expression recognition is one of very active topics in research in

recent years.

Face is one’s identity and unique for everyone (Novotney, 2011), and it changes

with age. It is a complex study due to different expressions for different people and

the expressions differ at different age. A facial expression is generated by activation or

relaxation of facial muscle focusing around eyes and mouth (Ekman, 2009). Around

the world, more than 500 people including neurologists, psychiatrists and psycholo-

gists have learned Dr. Ekman’s research tool called FACS, or Facial Action Coding

System, for deciphering which of the 43 muscles in the face are working at any given

moment, even when an emotion is so fleeting that the person experiencing it may not

be conscious of it (Foreman, 2003).

Facial expression is important for market researchers and product developers (nViso,

2011b). The emotional response of consumers are measured to involve customers ear-

lier in the development cycle so improving likelihood of success in launching new

1
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