RECOGNITION OF FACIAL ACTION UNIT BASED ON SPATIAL-TEMPORAL BAYESIAN PROBABILISTIC TECHNIQUE

LOH YEE KOON

UNIVERSITI SAINS MALAYSIA

2016

RECOGNITION OF FACIAL ACTION UNIT BASED ON SPATIAL-TEMPORAL BAYESIAN PROBABILISTIC TECHNIQUE

by

LOH YEE KOON

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2016

ACKNOWLEDGEMENTS

With the completion of this thesis, I would like to show my deepest gratitude to many people who had assisted and guided me in generating research ideas and giving me mental support in completing this thesis.

First of all, I would like to thank Universiti Sains Malaysia for providing the research grants that support this project. This project was supported in part by the Universiti Sains Malaysia's Postgraduate Research Grant Scheme (1001/PELECT/8046014), and Universiti Sains Malaysia's Research University Grant (1001/PELECT/814208).

I would like to express my greatest appreciation to my supervisor, Assoc. Prof. Dr. Shahrel Azmin Suandi for providing invaluable guidance, advice, support and criticism throughout the years. Assoc. Prof. Dr. Shahrel has always been motivating, encouraging and inspiring. Thanks to Assoc. Prof. Dr. Shahrel for introducing me to the fundamental concepts of Artificial Intelligence and Machine Learning. He has provided me with a large scale of freedom in exploring the opportunities to excel in my research. Besides that, he has encouraged me to attend conferences to deepen and widen my foresight by meeting with people from academia and industry. His knowledge and instructions helped me to conquer a lot of challenges throughout the journey.

Furthermore, I would like to express my appreciation to my comrades Jing Huey, Boon Tatt and Alex. They have shared knowledge and experience and being supportive and cheery. I truly appreciate their companion, sharing of ideas as well as their concern.

My warmest regards to my beloved family for their caring encouragement and

moral support throughout this journey. They are always being understanding and believing in me for these years. Last but not least, I would like to thank all whoever directly or indirectly help in making this thesis successful.

Loh Yee Koon 2016

TABLE OF CONTENTS

ii	
iv	
viii	

Page

LIST OF TABLES	viii
LIST OF FIGURES	Х
LIST OF ABBREVIATIONS	xv
LIST OF SYMBOLS	xvii
ABSTRAK	xix
ABSTRACT	xxi

CHAPTER ONE : INTRODUCTION

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

1.1	Background	1
1.2	Problem Statements	4
1.3	Research Objectives	7
1.4	Research Scopes	7
1.5	Organization of Thesis	8

CHAPTER TWO : LITERATURE REVIEW

2.1	An Ov	verview of	Facial Expression Analysis	10
2.2	2 Facial Feature Measurement			15
	2.2.1	Spatial A	Approaches	15
		2.2.1(a)	Geometric Feature-Based Approach	16
		2.2.1(b)	Appearance Feature-based Approach	20
	2.2.2	Tempora	I-Spatial Approaches	27
2.3	AU re	lationships	s modeling using DBN	31

2.4	Super	vised vs Unsupervised Learning	39
	2.4.1	Support Vector Machine	40
	2.4.2	Expectation-Maximization Algorithm	44
2.5	AU CI	assification	46
	2.5.1	Classification using computer vision techniques	48
	2.5.2	Classification using probabilistic graphical model (PGM)	50
	2.5.3	Probabilistic inference on AU for classification	51
	2.5.4	Bayesian Network	55
	2.5.5	Dynamic Bayesian Network	58
		2.5.5(a) Definition	58
		2.5.5(b) The semantics of a DBN	59
		2.5.5(c) DBN Inference	60
2.6	Dimer	nsionality Reduction	64
	2.6.1	Principal Component Analysis	65
	2.6.2	Linear Discriminant Analysis	66
2.7	Summ	ary	68

CHAPTER THREE : ACTION UNIT RECOGNITION SYSTEM

3.1	Introd	uction	70
	3.1.1	Facial Database	74
		3.1.1(a) Cohn-Kanade (CK) database	75
		3.1.1(b) ISL Database	76
3.2	Featur	re Extraction	77
3.3	AU R	elationships Modeling	78
	3.3.1	Static AU relationships	78
	3.3.2	Structure Learning Algorithm	82
	3.3.3	Dynamic AU relationships modeling	85

3.4	AU Measurements from Database		87
3.5	3.5 Dynamic Bayesian Network for AU Recognition System		89
	3.5.1	Representation	89
	3.5.2	Conditional Probability Tables and the Joint Probability Distribution	91
	3.5.3	Learning Parameters	92
3.6	Decision Threshold and AU Classification		94
3.7	5.7 Experimental results		98
	3.7.1	Performance metric	99
	3.7.2	Evaluation on AU relationships modeling	101
	3.7.3	General AURS performance on Specific Database	111
	3.7.4	Generalization of AURS to different database	115
3.8	Summ	nary	118

CHAPTER FOUR : IMPROVED-ACTION UNIT RECOGNITION SYSTEM

4.1	Introd	uction	122
4.2	PCA+	LDA	125
4.3	New Marginal Probability Distribution for I-AURS		126
4.4	Best I	Decision Threshold for Optimization	128
4.5	Exper	imental results	130
	4.5.1	Comparison on different number of features	130
	4.5.2	Comparison between Incomplete and Complete Data Learning method	132
	4.5.3	Comparison with other works	133
	4.5.4	Generalization ability of the system	136
4.6	Evalua	ation on GEMEP-FERA2011 dataset	140
4.7	Summary		143

CHAPTER FIVE : THE FERA CHALLENGE

5.1	Introduction of the FERA challenge	145
5.2	The GEMEP-FERA2011 dataset	147
5.3	Our Approach	149
5.4	Experiments results on FERA challenge	153
	5.4.1 Cross validation results	153
	5.4.2 Experiments on test data	156
5.5	Summary	160

CHAPTER SIX : CONCLUSIONS AND FUTURE WORKS

6.1	Conclusion	162
6.2	Thesis Contribution	166
6.3	Future Works	167

REFERENCES

169

APPENDICES

Appendix A : Thresholding
Appendix B : Parameter Selection For RBF-kernel SVM
Appendix C : Generalization Ability of AURS
Appendix D : Generalization Ability of I-AURS
Appendix E : Computed Scores For FERA Challenge

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Comparison of AU recognition methods (Koelstra et al., 2010)	48
Table 2.2	Comparison results of work by Yongqiang et al. (2013) with other works on CK database	48
Table 3.1	Co-occurrance and Co-absence table for 14 AUs (Tong et al., 2007)	80
Table 3.2	Evidence set for observation nodes and marginal probability.	96
Table 3.3	Comparison on learning time for structure learned from prior and randomly constructed structure with constraints on different maximum number of parents per node.	106
Table 3.4	Comparison on structure scores for learned structure after learning from prior and randomly constructed structure with constraints on different number of parents per node.	108
Table 3.5	Comparison with some earlier works on CK database. AUs= No. of AUs recognized, CR=Classification Rate, F1=F1-measure, NA = Not available.	113
Table 3.6	Comparision result with baseline result in Yongqiang et al. (2013).	114
Table 4.1	Comparision result for different number of features	131
Table 4.2	Comparison results with state-of-the-art methods. CR = Classification rate, TPR = True positive rate, FAR = False alarm rate, F1 = F1-measure, NA = Not Available	133
Table 4.3	Comparison with baseline result in Valstar et al. (2011).	142
Table 5.1	The list of AU in GEMEP-FERA2011 dataset	146
Table 5.2	Data distribution of GEMEP-FERA2011 dataset. Positive images = Number of positive images for each AUs out of total 5264 images.	149
Table 5.3	Comparison on F1-measure for different dimensionality reduction methods	154

Table 5.4	Data distribution by subject for train and test dataset.	154
Table 5.5	Comparison on F1-measure for SVM and DBN classification on 300 and 450 features	155
Table 5.6	F1-measure for test data	156
Table 5.7	F1-measure for Action Unit Detection Results on the Test Set.Performance is shown for the Person Independent (PI), Person Specific (PS), and Overall Partitions.	157
Table 5.8	Average F1-measure over all AUs for the AU detection sub-challenge.Performance is shown for the Person Independent (PI), Person Specific (PS), and Overall Partitions	159
Table 5.9	F1-measures per AU, for every participant in the AU-detection sub-challenge.	160
Table B.1	Best parameters for each AU. Best G = best γ	186

LIST OF FIGURES

Page

Figure 1.1	Six basic emotion expressions. From left to right. (Top) Anger, fear and disgust. (Bottom) Suprise, happiness and sadness (Sun,	
	2009).	3
Figure 1.2	The list of AUs and its interpretations.	5
Figure 2.1	The methodology in Khatri et al. (2014)	11
Figure 2.2	Basic structure of facial expression analysis (Lonare and V.Jain, 2013).	12
Figure 2.3	Basic structure of facial expression analysis in Tian et al. (2005)	14
Figure 2.4	20 facial fiducial points by a facial point detector (Valstar and Pantic, 2006)	17
Figure 2.5	Outline of the proposed fully automated system for recognition of AUs and their temporal activation models (Valstar and Pantic, 2012)	18
Figure 2.6	Difference images between neutral pose and fully expressive one. They are split into facial regions containing the most expressive difference information (Kotsia et al., 2008).	19
Figure 2.7	An example of the Candide grid for every facial expression (Kotsia et al., 2008).	20
Figure 2.8	Overview of system in Bartlett et al. (2006)	21
Figure 2.9	AAM points in Mahoor et al. (2011).	22
Figure 2.10	Example of coding one dynamic feature unit $u_{i,j}$ (Yang et al., 2009).	24
Figure 2.11	The process of dynamic features extraction in Yang et al. (2009)	24
Figure 2.12	Illustration of the estimation of a motion vector field from an MHI (Koelstra et al., 2010).	25
Figure 2.13	Example of MHI and FFD techniques in Koelstra et al. (2010).	27

Figure 2.14	The BN causal model of six basic emotional expressions in Zhang and Ji (2005). Note: HAP – Happiness; SAD – Sadness; ANG – Anger; SUP – Surprise; DIS – Disgust; FEA – Fear. Node HP means primary AUs for Happiness; while HA means auxiliary AUs for happiness, and so forth.	30
Figure 2.15	The temporal links of DBN for modeling facial expression in Zhang and Ji (2005).	31
Figure 2.16	The DBN model in Tong et al. (2007).	32
Figure 2.17	Facial action model in Tong et al. (2010)	33
Figure 2.18	Facial action model in Li et al. (2013)	36
Figure 2.19	DBN model in Yongqiang et al. (2013)	38
Figure 2.20	Examples of VC dimension.	41
Figure 2.21	Linear separating hyperplanes for the separable case. The support vectors are circled.	43
Figure 2.22	SVM solution for non-separable case.	43
Figure 2.23	RBF kernel-based SVM.	44
Figure 2.24	A Simple Bayesian Network	57
Figure 2.25	The Semantics of a DBN.	60
Figure 2.26	DBN Inference.	61
Figure 2.27	Comparison on PCA and LDA	65
Figure 3.1	Block diagram for AURS.	71
Figure 3.2	Face Extraction Process	74
Figure 3.3	Sample peak image from CK database.	76
Figure 3.4	Gabor filter at 5 spatial frequencies and 8 orientations.	77
Figure 3.5	Prior Bayesian Network for 14 AUs taken from Tong et al. (2007).	79
Figure 3.6	Learned Bayesian Network for 14AUs.	85
Figure 3.7	AU inter-slice relationships from time slice $t - 1$ to t	87
Figure 3.8	Process of getting AU measurement from database.	88

Figure 3.9	The learned DBN structure from ISL database	90
Figure 3.10	Simple example of the relation between three AUs and the CPT.	92
Figure 3.11	Learning parameters to get CPD for each node in the structure. (Evidence for O nodes is examples for illustration purpose only)	94
Figure 3.12	Marginal probability distribution against class for 16384 combination of evidence sets for each AU.	98
Figure 3.13	An illustration of TP, TN, FP and FN.	100
Figure 3.14	Prior BN structure.	102
Figure 3.15	Randomly constructed BN structure	103
Figure 3.16	Prior versus learned BN structure with maximum 2 parents per node.	104
Figure 3.17	Learned BN structure with maximum 2 parents per node from randomly constructed structure.	105
Figure 3.18	Learned structure from prior structure with constraints on maximum of the parents for each node.	107
Figure 3.19	Overall results for structures comparison	110
Figure 3.20	Results of each AU for structures comparison. 2pa = maximum 2, 3pa = maximum 3, 4pa = maximum 4 and 5pa = maximum 5 parents per node	110
Figure 3.21	Comparison result using SVM and DBN in AURS.	112
Figure 3.22	AU recognition results for Sequence 1.	116
Figure 3.23	AU recognition results for Sequence 2.	116
Figure 3.24	AU recognition results for Sequence 3.	117
Figure 3.25	AU recognition results for Sequence 4.	117
Figure 3.26	AU recognition results for Sequence 5.	118
Figure 3.27	AU recognition results for Sequence 6.	118
Figure 4.1	The Improved-AU Recognition System (I-AURS)	123

Figure 4.2	A DBN consists of spatial and temporal AU relationships from time slice $t - 1$ to time slice t . Square nodes are hidden nodes, shaded circle nodes are observed nodes. Dark blue arcs denote inter-slice connections, light blue arcs connect AU within the intra slice and black arcs connects AU nodes to its respective measurement node.	125
Figure 4.3	New marginal probability distribution against class for 16384 combination of evidence sets for each AU.	127
Figure 4.4	A sample to illustrate the gap between class 0 and class 1	129
Figure 4.5	Overall results for different number of features used in PCA.	131
Figure 4.6	Comparison results of AUs for different number of features.	131
Figure 4.7	Comparison results of AUs for SVM and DBN.	135
Figure 4.8	Comparison result with state-of-the-art by Bartlett et al. (2006)	136
Figure 4.9	AU recognition results for Sequence 1.	138
Figure 4.10	AU recognition results for Sequence 2.	138
Figure 4.11	AU recognition results for Sequence 3.	139
Figure 4.12	AU recognition results for Sequence 4.	139
Figure 4.13	AU recognition results for Sequence 5.	140
Figure 4.14	AU recognition results for Sequence 6.	140
Figure 4.15	Comparison result with work under real-world condition.	142
Figure 5.1	An example of image sequence in FERA dataset: one of the actors displaying an expression associated with the emotion 'anger'.	148
Figure 5.2	BN structure for FERA dataset	151
Figure 5.3	The inter-slice relationships of 12 AUs.	151
Figure 5.4	The full DBN structure for FERA dataset.	152
Figure 5.5	F1-measure for the action unit detection results on the test set compared with baseline method.	158
Figure A.1	Accuracy for DBN1 at different thresholds.	179
Figure A.2	Accuracy for DBN2 at different thresholds.	180

Figure A.3	Accuracy for DBN3 at different thresholds.	181
Figure A.4	Results for DBN at threshold 0.7 compared with SVM.	182
Figure A.5	Comparison result on accuracy of AURS using SVM and DBN. DBN-1 use Eq. (3.5), DBN-2 = use Eq. (3.6).	184
Figure B.1	Function code for SVM parameter selection.	186
Figure B.2	Function code for SVM parameter selection (continued).	187
Figure C.1	AU recognition results from AURS and the ground truth for Sequence 1 and Sequence 2.	188
Figure C.2	AU recognition results from AURS and the ground truth for Sequence 3 and Sequence 4.	189
Figure C.3	AU recognition results from AURS and the ground truth for Sequence 5 and Sequence 6.	189
Figure D.1	AU recognition results from I-AURS and the ground truth for Sequence 1 and Sequence 2.	190
Figure D.2	AU recognition results from I-AURS and the ground truth for Sequence 3 and Sequence 4.	191
Figure D.3	AU recognition results from I-AURS and the ground truth for Sequence 5 and Sequence 6.	191
Figure E.1	Email request for FERA database test set labels.	192
Figure E.2	Classification rates for AU detection results.	193
Figure E.3	F1-measure for AU detection results, person independent.	193
Figure E.4	F1-measure for AU detection results, person specific.	194
Figure E.5	F1-measure for AU detection results, overall.	194

LIST OF ABBREVIATIONS

2D	2 Dimensional
2TBN	2-slice Temporal Bayes Net
AAM	Active Appearance Model
AdaBoost	Adaptive Boosting
AURS	Action Unit Recognition System
AUs	Action Units
BIC	Bayesian information criterion
BN	Bayesian Network
СК	Cohn-Kanade
CPD	Conditional Probability Distribution
СРТ	Conditional Probability Table
CR	Classification Rate
DAG	Directed Acyclic Graph
DBN	Dynamic Bayesian Network
DNMF	Discriminant Non-negative Matrix Factorization
EM	Expectation-Maximization
FACS	Facial Action Coding System
FAR	False Alarm Rate
FERA	Facial Expression Recognition and Analysis
GERG	Geneva Emotion Research Group
HMM	Hidden Markov Model
I-AURS	Improved-Action Unit Recognition System
KFM	Kalman Filter Model
LBPs	Local Binary Patterns
LGBPs	Local Gabor Binary Patterns
LDA	Linear Discriminant Analysis
LPQ	Local Phase Quantization

MDL	Minimum Description Length
MML	Minimum Message Length
ML	Maximum likelihood
NN	Neural Network
PCA	Principal Component Analysis
PGM	Probabilistic Graphical Model
PHOG	Pyramid of Histogram of Gradient
PI	Person Independent
PS	Person Specific
ROI	Region Of Interest
SSPNET	Social Signal Processing Network
SSS	Stochastic Structure Search
SVM	Support Vector Machine
TPR	True Positive Rate
VC	Vapnik-Chervonenkis

LIST OF SYMBOLS

heta	Parameters for a node
d-	Shortest distance from the separating hyperplane to the closest negative example
d+	Shortest distance from the separating hyperplane to the closest positive example
ε	Error
f(x)	Function of x
h(x)	Weak classifier
H(x)	Strong classifier
i	Integer
Ι	Image
J	Junction tree
K(x,x')	Kernel function of <i>x</i>
$L(\boldsymbol{ heta})$	Log likelihood of parameters
М	Marginal value
n	Positive integer
Pa(Z(i,t))	Parent nodes of $Z(i,t)$
$P(Z_t Z_{t-1})$	Conditional probability of Z at time slice t given the probability of Z at previous time slice $t - 1$
P(X)	Joint probability distribution for X
$P(X_i Pa_i)$	Conditional probability of X_i given the probability of the parents of node X_i
S	Seconds
S	Network structure
t	Time
Т	Total time slice
$W_{t,i}$	Weights
W	The normal to hyperplane

- *x*, *y* The spatial coordinates on the image
- *X* Set of variables in a network structure
- *y_T* Threshold marginal value
- Z(i,t) A node at time slice t

PENGECAMAN UNIT TINDAKAN WAJAH BERDASARKAN TEKNIK SPATIAL-TEMPORAL KEBARANGKALIAN BAYESIAN

ABSTRAK

Pengecaman Unit Tindakan muka sering digunakan sebagai kerja-kerja asas untuk mengkaji ekspresi wajah atau aplikasi pergerakan manusia seperti pemantauan video dan pengenalan muka. Unit Tindakan (AUs) bekerja sebagai unit asas dalam Sistem Kod Tindakan Muka (FACS) untuk taksonomi pergerakan muka, yang mengaitkan setiap AU dengan pengaktifan satu atau lebih otot muka khusus. Pembinaan sistem pengecaman Unit Tindakan yang stabil tetap menjadi cabaran bagi penyelidik disebabkan aksi, pencahayaan dan gabungan rumit ekspresi wajah. Sehubungan dengan itu, kerja penyelidikan ini mencadangkan satu pendekatan kebarangkalian yang model hubungan statik dan tempoh antara AUs dari urutan imej menggunakan Dynamic Bayesian Network (DBN). DBN yang menggabungkan imej ukuran kepada model DBN direka untuk menjadi satu struktur umum untuk hubungan AU. Support Vector Machine (SVM) digunakan untuk mendapatkan ukuran AU dari pangkalan data dengan mengklasifikasikan setiap AU daripada ciri imej. Ukuran AU tersebut kemudian digunakan sebagai bukti kepada DBN untuk membuat kesimpulan kewujudan pelbagai AU. Kemuncak penyelidikan ini adalah bahawa parameter AU dalam model DBN dipelajari daripada kaedah data tidak lengkap, dengan nod AU pembolehubah tersembunyi dan disimpulkan daripada ukuran imej secara langsung dan dimodelkan dengan cara kebarangkalian yang dinamik. Kerja penyelidikan ini mencadangkan bahawa setiap AU mempunyai keputusan ambang berbeza kerana sambungan yang berbeza daripada AU

dalam model dengan mencari ambang yang terbaik bagi setiap AU. Keputusan eksperimen menunjukkan bahawa dengan membuat kesimpulan AU dari ukuran imej sebagai model terdahulu, model yang dicadangkan mencapai keputusan yang setanding dengan model yang dipelajari sepenuhnya daripada pangkalan data tertentu. Sistem ini mencapai kadar pengiktirafan purata sebanyak 94.78% dengan kadar positif benar sebanyak 70.54% dan kadar penggera palsu 2.31% menggunakan pangkalan data Cohn-Kanade (CK). Pendekatan kebarangkalian yang dicadangkan itu juga telah digunakan untuk cabaran Pengiktirafan Ekspresi Wajah dan Analisis (FERA) yang dianjurkan oleh Pemprosesan Isyarat Rangkaian Sosial (SSPNET) pada tahun 2011. Cabaran ini bertujuan untuk membolehkan perbandingan yang adil di antara sistem dengan mempunyai keperluan untuk prosedur penilaian yang seragam. Cabaran ini digunakan sebagai penanda aras sistem ekspresi wajah di seluruh dunia. Pendekatan kebarangkalian yang dicadangkan itu telah direka bentuk semula dengan mengikut arahan yang diberikan oleh cabaran dan model baru dibina dan dilatih untuk cabaran FERA. Sistem yang dicadangkan mencapai prestasi lebih baik daripada kaedah asas dalam cabaran dan ia telah menunjukkan hasil yang setanding dengan keadaan-keadaan lain dan peserta dalam cabaran tersebut. Metrik prestasi yang digunakan di FERA ialah ukuran F1 dan keputusan keseluruhan mencapai ukuran F1 pada 0.494 mengatasi kerja-kerja lain termasuk satu-satunya pasukan yang menggunakan pendekatan kebarangkalian dalam kerja mereka. Oleh itu, sistem yang dicadangkan telah memenuhi objektif kajian dengan pembelajaran parameter dari kaedah data tidak lengkap, umum kepada pangkalan data yang berbeza serta keadaan yang berbeza untuk bersaing dengan kerja-kerja lain di dunia.

RECOGNITION OF FACIAL ACTION UNIT BASED ON SPATIAL-TEMPORAL BAYESIAN PROBABILISTIC TECHNIQUE

ABSTRACT

Facial Action Unit recognition is often used as elementary works for facial expressions analysis or human motions applications such as video surveillance and face identification. Action Units (AUs) are employed as basic unit in Facial Action Coding System (FACS) to taxonomize facial movements; by associating each AUs with the activation of one or more specific facial muscles. A stable Action Unit recognition system still remains a challenge for researchers due to pose, illuminations and complicated combination of facial expression. With this regards, this research work proposes a probabilistic approach which models spatial and temporal relationships of AUs from image sequence using Dynamic Bayesian Network (DBN). The state-ofthe-art DBN, which incorporates AU measurements from images to a DBN model is designed to be a generic structure for AU relationships. Support Vector Machine (SVM) is used to obtain AU measurements from database by classifying each AUs from image features. Such AU measurements are then applied as evidence to the DBN for inferring existence of various AUs. The highlight of this work is that AU parameters in DBN model are learned from incomplete data method, where the AU nodes are hidden variables and directly inferred from image measurements and modeled in dynamic and probabilistic way. This research work proposed that each AUs has different decision threshold due to different connections of AUs in the model by searching the best threshold for each AUs. Experimental results show that by inferring AU from image measurements, the proposed model achieves comparable results to the model that learned completely from specific database. This system achieves average recognition rate at 94.78% with a true positive rate of 70.54% and false alarm rate of 2.31% using Cohn-Kanade (CK) database. The proposed probabilistic approach has also been applied to the Facial Expression Recognition and Analysis (FERA) challenge which was hosted by the Social Signal Processing Network (SSPNET) in 2011. The challenge aims to allow a fair comparison between systems, by having a need for standardized evaluation procedures. This challenge is used as the benchmark of facial expression system around the world. The proposed probabilistic approach has been redesigned to follow the instructions given by the challenge and a new model is built and trained for FERA challenge. The proposed probalisitic approach is proven to be applicable and generalized to different conditions. The proposed system is compared against the baseline system for the challenge provided by the FERA organizers. The proposed system achieved better performance than the baseline system and achieved comparable results with other state-of-the-art and participants in the challenge. The performance metric used in FERA is F1-measure and the overall result achieves 0.494 for F1-measure, outperforming other works including the one and only team which use probabilistic approach in their work. Hence, the proposed system has met the objectives of research by learning parameters from incomplete data method, generalized to different database as well as different conditions to compete with other works in the world.

CHAPTER ONE

INTRODUCTION

1.1 Background

A facial expression is indeed the clues for human behavior. A person's internal emotional states and intention can be figured out through his facial changes. Facial behavior analysis has gained extensive attentions from researchers across many areas of studies such as biometrics, computer vision and psychological studies (Matsumoto and Hwang, 2011). Facial expression recognition is one of very active topics in research in recent years.

Face is one's identity and unique for everyone (Novotney, 2011), and it changes with age. It is a complex study due to different expressions for different people and the expressions differ at different age. A facial expression is generated by activation or relaxation of facial muscle focusing around eyes and mouth (Ekman, 2009). Around the world, more than 500 people including neurologists, psychiatrists and psychologists have learned Dr. Ekman's research tool called FACS, or Facial Action Coding System, for deciphering which of the 43 muscles in the face are working at any given moment, even when an emotion is so fleeting that the person experiencing it may not be conscious of it (Foreman, 2003).

Facial expression is important for market researchers and product developers (nViso, 2011b). The emotional response of consumers are measured to involve customers earlier in the development cycle so improving likelihood of success in launching new