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KAJIAN PENGKOMPUTERAN DINAMIK BENDALIR TERHADAP MODEL 

RONGGA HIDUNG  

 

ABSTRAK 

Pemahaman terhadap sifat-sifat aliran udara di dalam rongga hidung adalah sangat 

penting dalam menentukan fisiologi hidung dan dalam membantu diagnosis penyakit 

yang berkaitan dengan hidung. Setiap manusia mempunyai anatomi rongga hidung yang 

berbeza. Perubahan dari segi morfologi fisiologi hidung manusia juga telah ditentukan 

berdasarkan jantina. Terdahulu, tiada sebarang kajian pemodelan numerik yang khusus 

telah dilakukan bagi membanding serta memastikan pengaruh jantina terhadap 

pembolehubah aliran dalam rongga hidung. Tambahan pula, pelbagai langkah 

pemudahan yang berkaitan dengan perubahan postur badan dan penetapan keadaan 

persempadanan telah diambil bagi melaksanakan pemodelan numerik sehingga 

mempengaruhi hasil kajian pengaliran udara. Oleh itu, dalam kajian ini, permodelan  

rongga hidung dalam bentuk tiga dimensi telah dibangunkan dengan menggunakan imej 

tomografi milik individu perempuan Malaysia yang sihat. Sebuah kesinambungan 

keadaan mantap dan persamaan Navier Stoke telah diselesaikan dalam kedua-dua 

mekanisme inspirasi dan ekspirasi dengan tingkat aliran di antara 7.5-15 L/min sebagai 

laminar manakala nilai tingkat aliran di antara 20-40 L/min telah disimulasikan dalam 

keadaan aliran turbulen. Analisis menggunakan pengkomputeran dinamik bendalir 

(CFD) menghasilkan visualisasi yang sangat efektif terhadap ciri-ciri aliran di dalam 

rongga hidung. Nilai tegasan ricih maksimum pada bahagian dinding vestibule 
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meningkat melebihi 2000 % dengan penigkatan kadar aliran udara daripada 7.5 kepada 

40 L/min. Perbandingan di antara mekanisme inspirasi dan ekspirasi serta pengaruh 

tahap pernafasan yang berbeza terhadap fungsi hidung telah dibentangkan. Anatomi 

rongga hidung yang kompleks ini telah dicipta bagi memenuhi keperluan fungsi fisiologi 

dalam membantu proses pernafasan secara normal. Hasil kajian ini telah mengenalpasti 

beberapa perbezaan anatomi dan fisiologi berdasarkan jantina. Penggunaan 

pengkomputeran dinamik bendalir telah membantu dalam memahami perbezaan yang 

wujud berdasarkan jantina yang tidak dapat diukur berdasarkan alat perubatan dan 

pemerhatian semata-mata. Pengaruh perubahan postur badan terhadap rongga hidung 

juga telah dikaji. Semasa perubahan posisi duduk kepada posisi baring, purata tekanan 

statik diperhatikan berubah pada nilai sekitar 0.3%. Perubahan arah graviti akibat 

daripada perubahan postur badan juga mempunyai pengaruh yang penting terhadap 

parameter aliran. Kebanyakan penyelidik menggunakan keadaan sempadan plug flow 

dalam menganalisis masalah yang berkaitan dengan aliran di dalam rongga hidung. 

Kajian ini telah mendedahkan kesilapan dalam menentukan keadaan sempadan dan 

mendapati wujudnya perbezaan yang jelas di antara hasil kajian yang telah diperolehi 

daripada kedua-dua kes. Pada bahagian injap rongga, rintangan pada  plug flow adalah 

0.311 Pa-min/L dan 0.147 Pa-min/L pada pull flow. Perubahan maksimum nilai 

rintangan yang berlaku pada bahagian vestibule adalah sebanyak 0.3578 Pa-min/L. Nilai 

purata halaju pada bahagian vestibule hidung adalah 1.4 m/s ketika plug flow dan 0.96 

m/s ketika pull flow. Nilai purata halaju pada injap rongga pula adalah 1.6 m/s untuk 

plug flow dan 1.41 m/s untuk pull flow. Pendekatan yang lebih tepat bagi memodelkan 

mekanisme fisiologi inspirasi adalah dengan menggunakan model aliran pull flow.  
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COMPUTATIONAL FLUID DYNAMICS STUDY OF NASAL CAVITY MODEL  

 

ABSTRACT 

 

Understanding the properties of airflow in the nasal cavity is very important in 

determining the nasal physiology and in diagnosis of various anomalies associated with 

the nose. Inter-human anatomical variation for the nasal cavity exists and also 

differences on physiological morphology are observed based on gender. No specific 

numerical modeling studies have been carried out to compare and ascertain the effect of 

gender on flow variable inside the nasal cavity. Also numerical modeling involves 

various simplifications, for example the postural effect and appropriate boundary 

conditions which affect the outcome of the airflow studies. The present work involves 

development of three-dimensional nasal cavity models using computed tomographic 

images of healthy Malaysian females. A steady state continuity and Navier stoke 

equations were solved for both inspiratory and expiratory mechanism with flow rates 

ranging from 7.5 to 15 L/min as laminar and 20 to 40 L/min studies were simulated 

depicting turbulent flow conditions. Computational fluid dynamics (CFD) analysis 

provided effective visualization of the flow features inside the nasal cavity. The 

comparison between inspiratory and expiratory mechanism and the effect of different 

breathing rates on nasal function have been presented. The value of maximum wall shear 

stress at the vestibule region increased by more than 2000 % as the flow rate increased 

from 7.5 to 40 L/min. The complicated anatomy of the nasal cavity has been naturally 

designed to attain the physiological function desired to facilitate normal breathing. The 
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current study has identified certain gender based anatomical and physiological 

differences. The use of computational fluid dynamic has assisted in the understanding of 

these differences which could not be earlier quantified based on mere medical 

observation and measurement devices. The influence of postural changes in nasal cavity 

has also been investigated. Around 0.3% change in the average static pressure is 

observed while changing from sitting to supine position. The change in the direction of 

gravity due to change of posture significantly influences the flow parameters and hence 

should be considered in all future studies involving nasal flow.  Most of the researchers 

employ plug flow boundary definitions to address the flow problems associated with 

nasal flow. This study has revealed the fallacy of such a definition and found significant 

differences in values obtained in either case. Comparative study of the pull flow model 

and the plug flow model has found significant variations highlighting the need for using 

the right boundary conditions. At the nasal valve, the resistance for plug flow was 0.311 

Pa-min/L and for pull flow the value was 0.147 Pa-min/L. Maximum variation was 

noticed at the vestibule region with 0.3578 Pa-min/L. The average velocity for nasal 

vestibule and nasal valve is 1.4m/s and 1.6m/s for plug flow. Whereas, for pull flow 

case, the average velocity value in nasal vestibule and nasal valve region was observed 

to be around 0.96m/s and 1.41m/s respectively. A correct approach therefore to the 

numerical model is the pull flow model, which more directly represents the 

physiological inspiratory mechanism. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

 

Nasal cavity is one of the most important components of human respiratory 

system. It provides the first line protection for lung by warming, humidifying and 

filtering the inspired air. The success of nasal function is highly dependent on the fluid 

dynamics characteristic of airflow through the nasal cavity. Better understanding of 

airflow characteristic in nasal cavity is essential to understand the physiology of nasal 

breathing.  

Airflow through human nasal passages has been studied numerically and 

experimentally by a number of researchers (Wen et al., 2008; Mylavarapu et al., 2009; 

Segal et al., 2008; Weinhold et al., 2004). Also, several researchers have undertaken 

studies pertaining to airflow through nasal cavity using measuring devices such 

rhinomanometer and acoustic rhinomanometry (Hilberg et al., 1989, Sipilia et al., 1997, 

Jones et al., 1987, Shelton et al., 1992, Suzina et al., 2003). Rhinomanometry is used to 

measure the pressure required to produce airflow through the nasal airway and acoustic 

rhinomanometry is used to measure the cross sectional area of the airway at various 

nasal planes. However, measuring the precise velocity of airflow and evaluating the 

local nasal resistance in every portion of the nasal cavity have proven to be difficult 

(Ishikawa et al., 2006). The anatomical complexity of the nasal cavity makes it difficult 

for the measurement of nasal resistance. The small sizes of the nasal cavity and its 

narrow flow passage can cause perturbations in the airflow with any inserted probe. 
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Moreover, the reliability of the result obtained using this device depends on optimal 

cooperation from the subject, correct instructions from the investigator, and standardized 

techniques (Kjærgaard et al., 2009). There are reports of failure rates of between 25% 

and 50% in the subjects examined by rhinomanometry (Austin et al., 1994). 

Due to the inherent limitations of these measuring devices, Computational Fluid 

Dynamics (CFD) has been proposed as a viable alternative. CFD which refers to use of 

numerical methods to solve the partial differential equation governing the flow of a 

fluid, is becoming an increasingly popular research tool in fluid dynamics. The non-

invasive CFD modelling allows investigation of a wide variety of flow situations 

through human nasal cavities.  

In order to investigate the physiology of human nasal function, many researchers 

have conducted numerical analysis to study the airflow profile in nasal respiration (Wen 

et al., 2008, Mylavarapu et al., 2009, Segal et al., 2008, Weinhold et al., 2004, Xiong et 

al., 2008, Croce et al., 2006, Garcia et al., 2007). However, most of the researchers 

employed male human subject in the determination of the nasal patency. Individual 

variation in nasal cavity anatomy existed and also differences on physiological 

morphology are observed based on gender. No specific numerical modelling studies 

have been carried out to compare and ascertain the effect of gender on flow variable 

inside the nasal cavity. Also CFD modelling involves various simplifications, for 

example the postural effect which affect the outcome of the airflow studies. Despite of 

the popularity of CFD in the study of nasal airflow, uncertainty still surrounds the 

appropriateness of the various assumptions made in CFD modelling, particularly with 

regards to the definition of boundary condition.  
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In the present study, inspiratory and expiratory steady airflow numerical 

simulations were performed using 3D nasal cavity model derived from computed 

tomography scan images. A comparative study is made of the female nasal cavity flow 

dynamics with that of the male nasal cavity as determined by other researchers. The 

effect of gravity on modelling nasal airflow and its effect on wall shear stress are also 

examined. Also plug and pull flow boundary conditions were compared to evaluate the 

effect of different boundary conditions on the flow parameters.  Studies are carried out 

for various flow rates of 7.5 L/min, 10 L/min, 15 L/min, 20 L/min, 30 L/min and 

40L/min suggesting various breathing rates.   

 

1.2 Aims and Objectives 

 

The overall objective of the present study is focused on the investigation of the 

airflow characteristic along the nasal airway during inspiration and expiration. The aims 

include the following objectives: 

• To develop a three dimensional nasal cavity using the CT scans data. 

• To carry out inspiratory steady state numerical simulation. 

• To study the effect of different breathing conditions on the nasal physiology. 

• To analyze the effect of different boundary conditions on the flow behavior.  

• To investigate the effect of gravity and posture on flow properties inside the 

nasal cavity. 
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1.3 Scope of work 

 

This research work was preliminarily performed by procuring CT scan images of 

human nasal cavity. The CT scan data was provided by Prof Ibrahim Lutfi Shuaib, a 

radiologist from Advanced Medical and Dental Institute (AMDI), Universiti Sains 

Malaysia. A normal nasal cavity of 39 year old Malaysian female was selected for the 

study case. The selected CT scan data was imported into MIMICs in order to process the 

scan images and to generate an accurate three-dimensional computational-aided design 

(CAD) model of the nasal airway. This was then followed by 3D surface geometry 

creation by using CATIA. The 3D nasal cavity model was imported into GAMBIT for 

mesh generation. Numerical simulation was further carried out by using FLUENTTM and 

the result obtained was validated with previous published work. 

 

1.4 Organization of the thesis 

 

This thesis contains 5 chapters. The first chapter provides an introduction that 

reviews relevant research objectives, and related outlines of the purposes of this study. 

Chapter 2 presents an in-depth review of the background for this research. The chapter 

begins with an introduction to the anatomy and physiological function of the human 

nasal cavity and is followed by a review of previous studies related to the research. 

Chapter 3 presents the method used to construct a three dimensional human nasal cavity 

from CT scan and approach to CFD simulation. Chapter 4 presents the results obtained 

from the study cases. Finally, a summary of the results of the various studies and general 

conclusions reached, as well as suggestions for future work, are presented in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

 

This chapter discusses nasal anatomy and physiology function of the human 

nasal cavity. The conventional method used in the measurement of the nasal cavity has 

been highlighted. A brief summary of the numerical modelling studies carried out by 

other researchers has been presented. The importance of gender comparison, effect of 

posture and the necessity for adopting the appropriate boundary condition in the 

numerical analysis of the nasal airflow has been literally evaluated. 

 

2.2 Anatomy and physiology of the human nasal cavity 

The anatomy and physiology of the human nasal cavity are presented in this section.  

 

2.2.1 Nasal anatomy  

 

The nose is the only external part of the respiratory system. It is made of bone 

and cartilage and fibro fatty tissues. As illustrated in Figure 2.11, the nasal cavity is 

divided into right and left cavities by a thin plate of bone and cartilage called the nasal 

septum. The nasal cavity lies above the hard plate. The hard portion of the palate forms 

the floor of the nasal cavity, separating it from the oral cavity below. The two openings 

in the nose called nostrils, allow air to enter or leave the body during breathing. Just 

beyond the external naris is a funnel shaped dilated region called the vestibule. The 
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narrow end of the funnel leads to a region referred to as the nasal valve. The nasal valve 

is the narrowest region of the nasal passage and has a special significance to the nasal 

function and nasal airflow pattern (Probst et al., 2006). At the end of the nasal valve the 

cross-sectional area of the airway increases, which mark the beginning of the main nasal 

passage (see Figure 2.1).  

 

 
Figure 2.1: Diagram of the Nasal Cavity-reproduced from the Gray's anatomy of the 

human body, reproduced from Henry Gray, (1918) 

 

On the lateral wall, there are three horizontal projections called turbinate or 

conchae, which divide the nasal cavity into three air passage. The three turbinates are 

named as inferior, middle and superior turbinates, according to their position and 

function (see Figure 2.2). The airway gap in between the turbinates and the central nasal 

septum walls is the meatus. The meatus are very narrow, normally being about 0.5-1mm. 

(Proctor and Andersen, 1982). At the posterior end of the main nasal passage, the 

turbinates and the septum end at the same point. The point at which the two nasal 

cavities merge into one and marks the beginning of the nasopharynx. At this point, the 
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cross section area of the airway is reduced and the path of the air-stream bends about 90º 

downwards towards the trachea (see Figure 2.3). 

 
Figure 2.2: Coronal section of the main nose airway- reproduced from Zamankhan et al., 

(2006) 

 

 
Figure 2.3: Simplified structure of the nasal cavity- reproduced from Tsui Wing Shum, 

(2009) 
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2.2.2 Nasal physiology 

 

The human nose has two primary functions. The first is olfaction, the sense of 

smell. The second function is air-conditioning. Inspired air is conditioned by a 

combination of heating, humidification and filtering to provide the first line protection 

for the lung (Elad et al., 2008).   

The nasal conchae help to slow down the passage air, causing it to swirl in the 

nasal cavity. The nasal cavity is lined by mucous membrane containing microscopic 

hairlike structures called cilia. The cells of the membrane produce mucus, a thick gooey 

liquid. The mucus moistens the air and traps any bacteria or particles of air pollution. 

Microscopic finger-like projections on the surface of the mucosal cells lining the nasal 

cavity called cilia. The cilia wave back and forth in rhythmic movement. Cilia will 

slowly propel the mucus backwards into the pharynx where it is swallowed. The nose is 

so effective that inspired air is cleared of all particulate matter larger than 6 microns-

smaller than the size of a red blood cell. 

The nose also acts as the organ of olfaction and has a specially adapted mucosal 

lining along its roof for this purpose. In order to stimulate the olfactory system (sense of 

smell), the odorant particles must interact with olfactory receptors located in the 

olfactory mucosa. Odorants must therefore be capable of being delivered to the olfactory 

region by inspired air and be able to dissolve sufficiently in the mucus covering the 

olfactory mucosa (Ishikawa et al., 2009).  
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2.3 Objective measurement methods 

 

Objective measurement methods are the conventional tools utilized by medical 

practitioners to measure the physiology and anatomy of the nasal cavity. In this section, 

the main objective measurement methods are discussed namely rhinomanometry and 

acoustic rhinometry. 

 

2.3.1 Rhinomanometry 

 

Rhinomanometry is a tool which is used to measure nasal airway resistance by 

making a quantitative measurement of nasal flow and pressure. The European committee 

of standardization of Rhinomanometry has selected the formula 𝑅𝑅 = ∆𝑃𝑃/𝑉𝑉 at a fixed 

pressure of 150Pa; to facilitate comparison of results. (where 𝑅𝑅=resistance, ∆𝑃𝑃=pressure 

drop, 𝑉𝑉 is the velocity of flow). Rhinomanometry can be performed by anterior or 

posterior approaches. However this technique is time consuming and requires a great 

deal of patient cooperation, particularly difficult with children. It cannot be used in the 

presence of septal perforations and when one or both cavities are totally obstructed. It is 

affected by nasal cycle and errors as high as 25% are reported for repetitions within 15 

minute (Hilberg et al., 1989). It cannot accurately assess a specific area of the nasal 

cavity. Rhinomanometry is time consuming, requires technical expertise, a high degree 

of subject cooperation and is impossible in subjects with severely congested nasal 

airways. There are reports of failure rates of between 25% and 50% in the subjects 

examined by rhinomanometry (Austin et al., 1994). 
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2.3.2 Acoustic Rhinometry (AR) 

 

Acoustic Rhinometry analyses ultrasound waves reflected from the nasal cavity 

to calculate the cross sectional area at any point in the nasal cavity as well as the nasal 

volume. Acoustic rhinometry was first described for clinical use in 1989. The list of 

clinical problems that can be analyzed objectively with acoustic rhinometry has 

expanded to include turbinoplasty, sleep disorders, more types of 

cosmetic/reconstructive procedures, sinus surgery, vasomotor rhinitis, maxillofacial 

expansion procedures, and aspirin and methacholine challenge (Corey, 2006). Acoustic 

rhinometry is a tool that can aid in the assessment of nasal obstruction. The test is 

noninvasive, reliable, convenient, and easy to perform. Common clinical and practical 

uses of acoustic rhinometry for the rhinologic surgeon include assessment of “mixed" 

nasal blockage, documentation of nasal alar collapse, and preoperative planning for 

reduction rhinoplasty.  

Acoustic rhinometry can also be used to document the positive effect of surgery 

on nasal airway obstruction (Devyani et al., 2004). However, AR may be unreliable due 

to artifacts (Tomkinson et al., 1998) & errors can occur in cross sectional area estimation 

(Tomkinson et al., 1995). Suzina et al., (2003) concluded that AAR is a sensitive but not 

a specific tool for the detection of abnormalities in NAR and it failed to relate to the 

symptom of nasal obstruction.  There is a poor correlation between subjective sensation 

of nasal airflow and objective measurements (Ecckes, 1998). Reichelmann et al., (1999) 

found unreliability of acoustic rhinometry in pediatric rhinology. Mean cross-sectional 

areas measured by AR were constantly less than those measured by CT of the nasal 

cavity up to 33 mm from the nostril, whereas areas measured by AR were greater than 



11 
 

those measured by CT scans beyond that point (Min et al., 1995, Mamikoglu et al, 2000). 

AR is not a reliable method for the indication or evaluation of surgery for nasal 

obstruction (Reber et al., 1998). 

 

2.4 Numerical study of flow through the nasal cavity 

 

Better understanding of airflow characteristic in nasal cavity is essential to study 

the physiological and pathological aspect of nasal breathing. The success of nasal 

function is highly dependent on the fluid dynamics characteristic of airflow. The 

anatomical complexity of the nasal cavity makes direct measurements within the nasal 

cavity highly impossible. CFD has the ability to provide quantitative airflow information 

at any location within the nasal airway model. These airway models were reconstructed 

from magnetic resonance (MRI) or computed tomography (CT) imaging data of patients. 

Recent developments in medical imaging coupled with computational science have 

opened new possibilities for physically realistic numerical simulations of nasal airflow. 

A number of researchers have shown the validity and potential use of CFD in 

evaluating the flow conditions inside the nasal cavity.  Early work regarding this topic 

was performed by Elad et al., (1993) who conducted numerical simulations of steady 

laminar flow through a simplified nose-like model which resemble the complex anatomy 

of human nasal cavity using the finite element software package FIDAP (Fluid 

Dynamics International) (see Figure 2.4). The number of mesh created for this nasal 

model is approximately <3000 elements. They found that during expiration, flow pattern 

spread uniformly into nasal cavity until it reached turbinate. The turbinate is an obstacle 

in the airway that increases the resistance to airflow.  The lowest resistance in the model 
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was located along the floor of the nasal cavity. The flow pattern was also found to be 

similar during inspiration and expiration but in opposite direction. 

 

 
Figure 2.4: Nose-like model- reproduced from Elad et al., (1993) 

 

Due to computational limitation, Naftali et al., (1998) in their early work 

constructed a 2D nose-like model based on averaged data of human nasal cavities to 

study the transport phenomena of normal and diseased human noses for inspiration 

under various ambient conditions. They treated the nasal airflow as laminar and 

simulated the nasal airflow for average breathing rates about 15 m/s with Reynolds 

number approximately 500. The results demonstrated that the turbinates increase the rate 

of local heat and moisture transport by narrowing the passageways for air and by 

induction of laminar swirls downstream of the turbinate wall.  

Another early study was that of Keyhani et al., (1995) who performed a finite 

element analysis of steady laminar flow through one side of the human nasal cavity. The 
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3D nasal model was reconstructed from 42 coronal CAT scans using an imaging 

software called VIDA (Cardiothoratic Imagaing Research Section, University of 

Pennsylvania). A computer program was developed in order to convert the coordinate 

data into a format that could be processed by the mesh generator module of FIDAP. As 

seen in Figure 2.5, the final domain contained 76,950 brick shape mesh elements. 

 

 
 Figure 2.5: Medial slide of the three-dimensional finite element mesh of the right nasal 

cavity- reproduced from Keyhani et al., (1995) 

 

The laminar flow was simulated for breathing rates of 125 ml/s and 200 ml/s 

using computational fluid dynamics (CFD) software, FIDAP. Their numerical results 

were validated with the experimental measurements obtained by Hahn et al., (1993). 

According to this study, the majority of the airflow passes through the inferior turbinate. 

Results obtained also confirmed that airflow through the nasal cavity is laminar during 

quiet breathing.  
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Airflow in the main nasal cavity is generally described as laminar by several 

researchers for flow rates of 7.5 L/min to 15 L/min. Segal et al., (2008) performed 

numerical simulation of steady state inspiratory laminar airflow for flow rate of 15 

L/min. In their study, three dimensional computational models of four different human 

nasal cavities which constructed from coronal MRI scans were used (see Figure 2.6). 

The nasal model then was meshed with hexahedral elements using a semi-automated 

process MAesh which was developed in-house using Matlab (The MathWorks, Inc., 

Natick, MA, USA). In their study, they found that in all four nasal models, the majority 

of flow passed through the middle and ventral regions of the nasal passages. The amount 

and the location of swirling flow differed among the subjects. 

 

 

Figure 2.6: Computational meshes for subjects A, 12, 14 and 18. Nostrils are shown in 

blue on the right side of the models and the nasopharynx is on the left- reproduced from 

Segal et al., (2008) 
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Wen et al., (2008) also simulated steady laminar nasal airflow for flow rates of 

7.5 to 15L/min using computational fluid dynamics software FLUENT. An anatomically 

correct three dimensional human nasal cavity computed from CT scan images were used 

(see Figure 2.7). The solution was found to be mesh-independent at approximately 

950,000 cells. Results shows that the nasal resistance value within the first 2-3 cm 

contribute up to 50% of the total airway resistance. Vortices were observed in the upper 

olfactory region and just after the nasal valve region. 

 

 
Figure 2.7: Nasal cavity model constructed by Wen et al., (2008) 

 

Inthavong et al., (2007) constructed 3D nasal passage based on nasal geometry 

which obtained through a CT scan of a healthy human nose. A constant laminar flow 
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rates about 7.5 L/min was used to simulate light breathing. The mesh in the 

computational domain is unstructured tetrahedral and the size of the mesh is 

approximately 950,000 cells. The airflow analysis showed vortices present in nasal valve 

region which enhanced fibre deposition by trapping and recirculating the fibre in the 

regions where the axial velocity is low. 

Another work was done by Croce et al., (2006), who also simulated steady state 

inspiratory laminar airflow for flow rate of 353 ml/s in both nostril using FLUENT. The 

3D computational geometry used in Croce et al., (2006) numerical study was derived 

from CT scan images of a plastinated head using a commercial software package, 

AMIRA (Mercury Computer System, Berlin). The final adapted mesh consisted of 

1,353,795 tetrahedral cells. The results obtained from this study shows that airflow was 

predominant in the inferior median part of nasal cavities. Vortices were observed 

downstream from the nasal valve and toward the olfactory region. 

Other studies include Zamankhan et al., (2006), who study the flow and transport 

and deposition of nano-size particle in a three dimensional model of human nasal 

passage. The nasal cavity model was contructed from a series of coronal MRI scans. 

They simulated the steady state flows for breathing rate of 14 L/min and the Reynolds 

number bases on the hydraulic diameter was about 490. The airflow simulation results 

were compared with the available experimental data for the nasal passage. They found 

that, despite the anatomical differences of the human subjects used in the experiments 

and computer model, the simulation results were in qualitatively agreed with the 

experimental data. 
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Several researchers treated the nasal airflow as turbulent flow. Liu et al., (2007) 

constructed 3D human nose model based on coronal CT scans. A nostril pointing 

downwards was added to the nasal geometry model. Unstructured mesh were created 

with the size of the mesh was approximately 4,000,000 elements. Turbulent flows were 

simulated for inhalation flow rates ranging from 7.5 to 60 L/min by using Reynolds 

Averaged Navier-Stokes (RANS)/ Eddy Interaction Model (EIM). Large Eddy 

Simulation (LES) modelling was simulated for intermediates flow rates of 30 and 45 

L/min. The simulations study showed that the total particle deposition result using LES 

indicate that the particle deposition efficiency in the nasal cavity show better agreement 

than standard RANS/EIM approach when compared to the in vivo data.  

Zhao et al., (2006) also treated the nasal airflow as turbulent in their study. They 

constructed 3D nasal model based on CT scans in order to investigate the left nasal valve 

airway which was partially obstructed. Then, they modified the nasal valve region 

volume to simulate the narrowing of the nasal valve during human sniffing. The airflow 

was assumed as turbulent and total nasal flow rates was between 300 and 1000ml/s. 

Result from this study revealed  that the increase in airflow rate during sniffing can 

increase odorant uptake flux to the olfactory mucosa but lower the cumulative total 

uptake in the olfactory region when the inspired air/odorant volume was held fixed. 

Another nasal airflow analysis using the turbulence model was conducted by 

Mylavarapu et al., (2009). They investigated the fluid flow through human nasal airway 

model which was constructed from axial CT scans. TGRID was then used to create an 

unstructured hybrid volume mesh with approximately 550,000 cells. Flow simulations 

and experiments were performed for flow rate of 200 L/min during expiration. Several 

different numerical approaches within the FLUENT commercial software framework 
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were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-

Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, 

standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation 

Spalart-Allmaras model. Among all the approaches, standard k-omega turbulence model 

resulted in the best agreement with the static pressure measurements, with an average 

error of approximately 20% over all ports. The largest pressure drop was observed at the 

tip of the soft palate. This location has the smallest cross section of the airway. 

Numerical study on human nasal airflow with abnormal nasal cavity cause by 

several chronic diseases also has been the subject of several studies. Wexler et al., 

(2005) constructed 3D nasal model of a patient with sinonasal disease. They investigated 

the aerodynamic consequences of conservative unilateral inferior turbinate reduction 

using computational fluid dynamics (CFD) methods to accomplish detailed nasal airflow 

simulations. Steady-state, inspiratory laminar airflow simulations were conducted at 

15L/min. They found that inferior turbinate reduce the pressure along the nasal airway. 

Also, the airflow was minimally affected in the nasal valve region, increased in the 

lower portion of the middle and posterior nose, and decreased dorsally. 

Garcia et al., (2007) constructed 3D nasal geometry by using medical imaging 

software (MIMICs, Materialise) to investigate airflow, water transport, and heat transfer 

in the nose of an Atrophic Rhinitis (AR). The patient underwent a nasal cavity-

narrowing procedure. Rib cartilage was implanted under the mucosa along the floor of 

the nose, and septum spur was removed. The reconstructed nose was simulated and the 

nasal airflow was assumed as laminar with 15 L/min corresponding to resting breathing 

rate. This study showed that the atrophic nose geometry had a much lower surface area 
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than the healthy nasal passages. The simulations indicated that the atrophic nose did not 

condition inspired air as effectively as the healthy geometries. 

Lindemann et al., (2005) produced 3D model of human nose to investigate the 

intranasal airflow after radical sinus surgery.  The human nasal model was constructed 

based on CT scans of the nasal cavities and the paranasal sinuses of an adult. The 

numerical simulation was performed by assuming the nasal airflow as laminar at 14 

L/min for quiet breathing rate. Result showed that aggressive sinus surgery with 

resection of the lateral nasal wall complex and the turbinates cause disturbance of the 

physiological airflow, an enlargement of the nasal cavity volume, as well as an increase 

in the ratio between nasal cavity volume and surface area. 

 

2.5 Gender comparison 

 

Several researchers have shown the benefits of computational fluid dynamics 

(CFD) in better understanding of flow through the nasal cavity. Some of the main 

players are Wen et al., (2008), Mylavarapu et al., (2009), Segal et al., (2008), Weinhold 

et al., (2004), Xiong et al., (2008).  However, most of the researchers employed male 

human subject in the determination of the nasal patency. Inter human anatomical 

differences exists and also differences on anatomical and physiological morphology are 

observed based on gender. No specific numerical modelling studies have been carried 

out to compare and ascertain the effect of gender on flow variable inside the nasal 

cavity. Gender differences is said to be the important determinant of clinical 

manifestations of airway disease. Even though obstructive sleep apnea, is prevalent in 

both the gender, its effect on male subjects is more prominently observed (Rowley et al., 
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2002).  Also a higher prevalence of irregular breathing phenomenon among men when 

compared to women during sleeping and also the fact that men have a larger upper 

airways in sitting and supine positions (Thurnheer et al., 2001) makes it all the more 

important to study the effect of gender on breathing phenomenon. It would be an 

importance too to study the effect of anatomical variation based on gender on the flow 

parameter. 

 

2.6 Gravity Effect 

 

Also CFD modelling involves various simplifications, for example the postural 

effects which drastically affect the outcome of the analysis. The postural changes in 

nasal airway resistances are of clinical importance when accessing patients with nasal 

obstruction. Mohsenin, (2003) demonstrated the effect of decrease in pharyngeal cross 

sectional area and occurrence of OSA. The gravitational force is considered to be one 

significant determinant of the closing pressure (Watanabe et al., 2002). Study performed 

by Tvinnereim et al., (1996) showed that nasal and pharyngeal resistance doubles upon 

assumption of supine posture; however the difference obtained was not statistically 

significant. Beaumont et al., (1998) found that at sea level, gravity forces that cause the 

soft palate and tongue to fall back in the supine posture would narrow upper airways in 

all its length. A study by Hsing-won Wang, (2002) on the effect of posture on nasal 

resistance varied from 0.612 Pa/mL/sec in sitting position to 0.663Pa/mL/sec in the 

supine position. 
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Matsuzawa et al., (1995) observed that the MRI data obtained in supine, lateral 

and prone position revealed that the upper airway was narrowest in the supine position, 

and widest in the prone position indicating the anatomical narrowing of the upper airway 

especially the pharyngeal area. Martin et al., (1995) showed in the supine position all the 

upper airway dimensions decreases with increasing age in both men and women, except 

the oropharyngeal junction. Hence, it is very important to study the effect of gravity on 

the flow through the nasal cavity. 

 

2.7 Plug flow and pull flow boundary condition 

 

Keyhani et al., (1995), Wexler et al., (2005), Zamankhan et al., (2006), Segal et 

al., (2008), and Ishikawa et al., (2009) constructed 3D nasal computational models and 

simulated the airflow by utilizing plug flow boundary condition. For plug flow, fixed 

airflow rate with a uniform velocity profile was imposed at the nostril. While a stress 

free boundary condition was used at the outflow boundary condition. On the other hand, 

the pull flow boundary condition is based on negative pressure set at the nasopharynx. 

Garcia et al., (2007) used pull flow boundary condition to study the airflow and water 

transport simulation in the nasal cavity. Wexler et al., (2005) also attempted to conduct 

the nasal airflow simulation using pull flow boundary condition. However, this 

simulation has been unsuccessful due to the failure of residuals to converge. There is still 

no unanimity among the researchers with respect to the use of exact boundary 

conditions. Most researchers employed the plug flow model in order to stimulate the 

flow features inside the nasal cavity. The natural physiological inspiratory mechanism is 

based on pull flow conditions, wherein the expansion of the lungs sets in negative 
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pressure gradient enabling the air from the ambient atmosphere to rush inside the nasal 

cavity through the nostril inlets. 

 

2.8  Summary 

 

In summary, the literature reviewed shows that all the previous numerical studies 

on nasal airflow have generalized the behavior to both gender. No specific numerical 

modelling studies have been carried out to compare and ascertain the effect of gender on 

flow variable inside the nasal cavity. Also CFD modelling involves various 

simplifications, for example the postural effects which drastically affect the outcome of 

the analysis. It was also found that there is no unanimity with respect to the use of exact 

boundary conditions. Hence there is no standardization of the boundary definition with 

respect to the study concerning the nasal flow using numerical methods. Therefore the 

current work will investigate the effect of different boundary condition on nasal airflow 

behavior through the human nasal cavity. Also the effects of gravity and posture on flow 

properties inside the nasal cavity will be investigated. Finally, the gender effect on nasal 

airflow characteristic due to variation in nasal anatomy will be studied. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

 This chapter presents the method used to reconstruct the three-dimensional 

model of the human nasal cavity, mesh generation and numerical setup for the nasal 

airflow simulation. The overall process of the present numerical study has been 

illustrated in the flow chart below. 
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3.2 3D computational model of the nasal cavity 

 

 Reconstruction of 3D anatomical model of the human nasal cavity can be very 

time consuming. The general process of developing the 3D anatomical model basically 

consist of selection of CT scan data of human nasal cavity followed by converting the 

2D CT scan images into 3D CAD data using medical image processing software, 

MIMICs and finally construct the surface geometry by using CAD software, CATIA. 

 

3.2.1 Procuring CT scan data of human nasal cavity 

 

 The anatomical model of the nasal airway used for this numerical study was 

derived from CT scan images of a healthy 39 year old Malaysian female. The CT scan 

image of the nasal airway was taken from pre-existing CT scan data sourced from 

Universiti Sains Malaysia, Medical Campus Hospital.  The nasal anatomy was attested 

to be normal by the ear, nose and throat (ENT) surgeon. Figure 3.1 shows a series of 

coronal CT scan images along the axial distance of the nasal cavity of the female human 

subject. The scans produced a total 385 slices of axial, coronal and sagittal images which 

accounted for the complete nasal cavity area, from nostril to nasopharynx. 

 The increment between each slice of the scan images is 0.8mm and the scan pixel 

resolution is 0.434mm. It is important to make sure that the scan interval is less than 2 

mm in order to accurately capture the complex geometry of the nasal cavity and to avoid 

stair-step artifact which usually appear on the curved surface of the model (Bailie et al., 

2006). However, reduction of the layer thickness requires more expensive machines and 

a slower build process. The CT scan data was imported into medical image processing 
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software MIMICs for the reconstruction of the 3D human nasal cavity for this case 

study. 

 

 

 

 
Figure 3.1: Coronal CT scan images along the axial distance of the human nasal cavity 

 

3.2.2 Convert 2D CT scan images to 3D CAD data using MIMICs 

 

 MIMICs is an image processing and editing software which provides the tool for 

the visualization and segmentation of CT images and also for the 3D rendering of 

objects. Before the scan data can be processed, MIMICs reads the 2D CT scan images 

from the DICOM (*.dcm) file format and convert it into MIMICs (*.mcs) file format. 
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MIMICS will compress and merge all the axial, coronal and sagittal scan images into a 

single volume file project based on the similar pixel size value.  

 

 

Figure 3.2: CT scan images from A: axial, B: coronal and C: sagittal plane and 3D 

model of the female human nasal cavity 

  

 The main step of nasal geometry reconstruction from the CT scan data is the 

segmentation process in which the regions of interest, nasal passage is identified. The 

segmentation was developed based on the Hounsfield Units (HU) in the CT images. HU 

is a measure of the electron density of the tissue. Segmentation was performed by 

defining a range of threshold values to create the segmentation mask. The range of the 

threshold value used for this case study is between -444 to 2037 HU (see Figure 3.2). A 

correct threshold value is vital in capturing the important features of the nasal cavity. 

The threshold value is used to differentiate between bone and soft tissues and to 

A B 

C 
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determine the set of structures to be included in the 3D nasal model. Medical 

reconstruction requires a good understanding of anatomy, which can only come with 

experience, and understanding the types of tissue that are preferentially imaged by 

radiographers. Hence the presence of an expert radiologist and ENT practitioner is 

essential in deciding the threshold and editing of the geometry.  

 An automatic region growing function was used to reconstruct the nasal airway 

from the nostril to nasopharynx based on the segmented mask. The purpose of the region 

growing function was to reduce the noise, remove floating pixels and to split the 

unconnected structure. However, manual segmentation is also required to edit the mask 

which leak to surrounding region and remove the unwanted parts which are still 

connected to the nasal cavity model. Manual editing function also makes it possible to 

draw and restore parts of image on the segmented mask. By using the MIMICs editing 

tools, the scan images were segmented slice by slice on axial, coronal and sagittal plane 

by using the local threshold value.  

 MIMICs has the ability to generate and display the 3D anatomical model of the 

nasal cavity from the segmented scan images. After all the necessary threshold editing, 

the 3D anatomical model of the nasal cavity was generated from the segmented mask. 

By using the 3D rendering tools, the 3D nasal cavity model was examined to ensure the 

suitability of the selected threshold and to confirm the presence of all the required 

structure for the physical anatomical model. 

 MIMICs also provide the export function which can be use to export the 3D 

object produced from the segmented CT scan images into IGES file and can be directly 

used in any CAD system. As seen in Figure 3.3, the polylines was created based on the 

segmented mask of the 3D object on each slice of the project by using ‘calculate polyline 
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function’. Later the 3D polylines data was exported as IGES (*.igs) file format, for the 

surface model generation using the CAD software, CATIA. 

 

  

Figure 3.3: Polyline data of the 3D human nasal cavity 

  

3.2.3 Geometry creation using CATIA  

 

 The coordinates of the contour point extracted from the CT scan data of the 

human nasal cavity was imported into CAD software package, CATIA using Digitized 

Shape Editor (DSE) workbench for surface model generation. DSE is usually used at the 

initial stages of the reverse engineering and it also provides tools for various operations 

on the imported digitized data. The IGES (*.igs) file can be imported and displayed in 

DSE workbench in the form of cloud of points or polylines. However, due to anatomical 
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complexity, it is not possible to edit and manipulate the 3D anatomical model in the 

cloud of points form.   

 Therefore, facets were created directly from the polylines which is as shown is 

Figure 3.4a using the mesh creation tools. The neighborhood parameter value was set to 

7.5mm to define the maximum length of the facet edge. The function of the 

neighborhood value is to close the unwanted holes of the mesh. Increasing the 

neighborhood parameter will lead to a non manifold mesh. After the mesh surfaces have 

been created from the polylines, the next stage is to edit the 3D nasal mesh geometry by 

removing the unwanted mesh part. As seen in Figure 3.4d, all the paranasal sinuses have 

been removed in order to simplify the geometry and to reduce the computational cost. 

Editing was carefully carried out to preserve the original shape of the anatomical model 

of the human nasal cavity (see Figure 3.4e).  

 By using the cleaning mesh function, the defective mesh was removed to 

improve the quality of the mesh. The mesh cleaner helped analyze and delete all the 

defective mess which consisted of non manifold edges, non manifold vertices, isolated 

triangle, triangle with inconsistent orientations and the corrupted triangles. After all the 

necessary mesh cleaning, the 3D mesh geometry was smoothened using the mesh 

smoothing tool to improve mesh surface quality. Finally, the 3D computational model of 

the human nasal cavity was created based on the smooth mesh surface by using the 

automatic surface tool in Quick Surface Reconstruction workbench. Figure 3.4f shows 

the final 3D model of the nasal cavity obtained from CATIA which can be used for 

computational modelling. 
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a) Polyline data

 

f) The final 3D reconstructed model of the 

nasal cavity

 

b) Surface mesh generation

 

e) Smoothing operation 

 

c) Nasal cavity with paranasal sinuses

 

d) Nasal cavity with paranasal sinuses 

removed

 

Figure 3.4: Steps involved in developing 3D model of the nasal cavity using CATIA 
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3.3 Mesh generation using GAMBIT 

 

The 3D anatomical model of the human nasal cavity was imported into GAMBIT 

using STEP (*.stp) file format where the surface generated are detected as faces. Figure 

3.5 shows the multiple faces of the nasal geometry. The multiple faces are then stitched 

together to form a complete volume which acts as the airflow domain. Before 

performing the face mesh generation, the nasal geometry was simplified by merging all 

the small faces into one face. This step is important in order to control the quality of the 

face and volume mesh of the domain to avoid creating high aspect ratio and highly 

skewed mesh. 

 

 
Figure 3.5: 3D computational model of the nasal cavity with surface geometry 

 

A mesh with highly skewed cells can decrease accuracy and destabilize the 

solution. CFD simulations with structured grids usually give faster solutions compared 
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to unstructured grids. However, in the present case, due to the anatomical complex 

structure of the human nasal cavity, it is not only time consuming but almost impossible 

to create structured grids. Hence, unstructured mesh consisting of tetrahedral elements is 

preferred for developing the mesh. 

 
 

Figure 3.6: Volume mesh of the 3D computational model of human nasal cavity 

 

The accuracy of the CFD study depends primarily on quality and quantity of the 

mesh distribution. An initial model with 106,393 cells was created and used to solve the 

airflow field at a flow rate of 7.5L/min. The schematic diagram of the grid is show in the 

Figure 3.6. The grid independency test was carried out using the gradient adaptation 

technique. The original mesh was refined based on the velocity gradient. This process 

was repeated, with each repetition produce a model with a higher cell count than the 

previous model.  

 The grid independence test resulted in an optimized grid with 577,010 elements. 

This was considered sufficient taking into account the computational time and system 

INLET: NOSTRIL 

WALL 

OUTLET: NASOPHARYNX 
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memory. Variation in pressure and velocity with higher grid were negligible. Hence, the 

mesh with 577,010 elements was used for our simulation. In order to ensure the accuracy 

of the flow simulation near the wall surfaces, the y+ values obtained for the nasal cavity 

model is less than 5. The wall y+ value is the distance between the cell centroid to the 

wall for wall-adjacent cell. 

 

𝑦𝑦+ = 𝑢𝑢𝜏𝜏𝑦𝑦
𝑣𝑣

                                                                                                    (3.1) 

 

Where y is the normal distance of the first grid point from the wall, 𝑢𝑢𝜏𝜏  is the friction 

velocity and 𝑣𝑣 is the kinematic velocity of the fluid flow. 

 

3.4 Numerical analysis  

 

 This sub-chapter provides the governing equations for the current fluid flow 

problem and numerical models used for the numerical simulation.   

 

3.4.1 Governing equation  

 

CFD is fundamentally based on the governing equations of fluid dynamics. They 

represent mathematical statements of the conservation laws of physics. For a general 

fluid property defined by Ф, can be cast into transport equation form as: 

 

𝜕𝜕(𝜌𝜌Ф)
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝜌𝜌Ф𝒖𝒖) = 𝑑𝑑𝑑𝑑𝑑𝑑(Г𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Ф) + 𝑆𝑆Ф      (3.2) 
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The first and second terms on the left are time derivative term and the convective terms. 

The terms on the right are the diffusive terms and the source terms. In words, equation 

above can be read as: 

 

Rate of increase 

of Ф in a fluid 

element 

 

+ 

Net rate of flow 

of Ф through a 

fluid element 

 

= 

Rate of increase 

of Ф due to 

diffusion  

 

+ 

Rate of increase 

of Ф due to 

additional sources 

The governing equation of fluid flow for an incompressible fluid, such as the airflow in 

the respiratory system can be written as: 

 

𝜕𝜕Ф
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑢𝑢Ф)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑣𝑣Ф)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑤𝑤Ф)
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�Г 𝜕𝜕Ф

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�Г 𝜕𝜕Ф

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�Г 𝜕𝜕Ф

𝜕𝜕𝜕𝜕
� + 𝑆𝑆Ф       (3.3) 

 

Where t is time, u, v, w represent velocity components, Г is the diffusion coefficient, and 

𝑆𝑆Ф is a general source term. This equation is commonly used as the starting point for 

computational procedures in the finite volume method.  

 

3.4.2 Turbulence models 

 

In the current study, the simulation is based on the numerical solution of the 

Reynolds Averaged Navier-Stokes equation representing the general equation for 3D 

flow of incompressible and viscous fluids. The SST k-ω turbulence model, a two 

equation turbulence model was employed. The SST k- ω model accounts for transport of 
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turbulent shear stress and gives highly accurate predictions of the amount of flow 

separation under adverse pressure gradient.  

 The SST model is a blend between the k-𝜔𝜔 turbulence model, which is applicable 

near the walls, and the k-𝜀𝜀 turbulence model which is applied at the core of the 

computational domain, with an additional limiter in the formulation of the eddy viscosity 

to provide proper account of the turbulent SST. Therefore SST combines the advantages 

of both the k-𝜀𝜀 and k-𝜔𝜔 methods. The k-𝜔𝜔 turbulence model has a near wall treatment 

allowing accumulation of nodes towards the wall without any special non-linear 

damping function, whereas the k-𝜀𝜀 model is less sensitive to free stream and inlet 

conditions.  

 The combination is ideal for a flow in a complex geometry like the nasal cavity 

(Liu et al., 2007). The suitability of SST k-ω model also has been experimentally 

validated by Mylavarapu et al., (2009), Ahmad et al., (2010) and Zubair et al., (2010). 

 

3.4.3 Numerical solver procedure 

 

The governing transport equations were discretized using the control volume 

based technique. The domain is discretized into control volumes based on the created 

computational mesh. The governing equations were converted into integral form to 

allow integration of the equation on each computational mesh. A set of algebraic 

equations for dependent variables such as velocities, pressure and temperature are then 

set up and solved.  
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The segregated pressure based solver within FLUENT was chosen which solved 

the governing equations. Figure 3.7 shows the flow chart of the iteration procedure based 

on the segregated pressure-based solution method. FLUENT stores discrete values of the 

scalar Ф at the cell center. However, face values Фf required for convection terms and 

must be interpolated from the cell center values. This is accomplished by using an 

upwind scheme. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Pressure-based solution method (FLUENT User manual) 

 

In the present study, first order upwind scheme was used initially to stabilize the 

flow. Smaller under relaxation factors value was applied in order to gain flow stability. 

After the first order converged, the second order upwind scheme was then utilized to 

Update properties 
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pressure, and velocity 
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accomplish higher order accuracy of the flow solution. The quality of the second order 

upwind scheme has been proved for its reliability and accuracy in evaluating the scalar 

variables on unstructured meshes (FLUENT User manual). 

The SIMPLE algorithm was used to obtain the relationship between velocity and 

pressure corrections to enforce mass conservation and also to obtain the pressure. 

Convergence was considered complete only when the residuals for all equations dropped 

by six order of magnitude (10-6) and when the residuals had flat-lined.  

3.4.4 Boundary condition definition  

 

The boundary conditions are defined in Table 3.1. The nasal wall was assumed to 

be rigid and the simulation ignored the presence of mucus. A no-slip boundary condition 

was defined at the walls. For plug flow inspiration case, mass flow rate was imposed at 

the nostril inlet and outflow boundary was defined at the nasopharynx outlet. Since, the 

velocity or pressure at the nasopharynx are not known prior to solution of the flow 

problem, we used outflow boundary condition to model the nasopharynx exit during 

inspiration. Expiration for plug flow was defined as pressure outlet at the nostril and 

mass flow rate at the nasopharynx.  

 

Table 3.1: Boundary condition for pull flow and plug flow 

 Inspiration Expiration 

PLUG FLOW 
Inlet Mass flow inlet Pressure outlet 

Outlet Outflow Mass flow inlet 

PULL FLOW 
Inlet Inlet Pressure Pressure outlet 

Outlet Pressure outlet Pressure inlet 
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The pull flow inspiration model was simulated using negative pressure value set 

at the nasopharynx and pressure inlet with athmospheric pressure equivalent of 0 Pa was 

adopted at nostrils accounting for the desired mass flow rate.  An expiration case was 

simulated using pressure outlet at the nostril and positive pressure value defined at 

nasopharynx. The pressure gradient was selected so as to maintain the required mass 

flow rate entering the system. 

Steady state laminar and turbulent airflow simulations were modelled. At 

15L/min the Reynolds number obtained at the nostril inlet was around 1,600 and for 

20L/min the Reynolds number was 3,100. The airflow was therefore laminar for flow 

rates up to 15L/min and the flow was treated as turbulent flow beyond 15L/min. This 

was also in general agreement with previous researchers (Wen et al., 2008, Segal et al., 

2008), who determined laminar nature of the flow, for flow less than 15 L/min. 

In turbulent flow computations, additional boundary conditions for turbulence 

parameters need to be specified at inlet locations. Turbulent intensity at the nostril inlet 

was set to 5%, and the viscosity ratio value is 10 (Liu et al., 2007). The simulation was 

carried out on an IBM platform, Intel, Xenon(R) CPU, 2GB RAM which typically took 

nearly to 2 days to complete the simulation. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Overview 

 

This chapter presents and discusses the results obtained from the numerical 

simulation of the human nasal cavity. Each of the cases studied are presented as different 

subchapters.  The case study includes the basic understanding of the nasal physiology, 

comparison between different flow rates for both inspiration and expiration, effect of 

gender based anatomical variations on the nasal airflow, gravity effect and boundary 

condition prescription for nasal airflow simulation.  

 

4.2 Grid dependency analysis 

 

A grid dependency study has been performed for the nasal cavity computational 

model. The model was initially developed using unstructured tetrahedral mesh with 

106,393 numbers of elements. Gradient adaptation was performed based on the average 

velocity values obtained from the nasal airflow simulation during inspiration for flow 

rates of 7.5 L/min. As seen in Figure 4.1, the grid independence test has been conducted 

in the same nasal cavity model with different size of mesh. Each adaptation resulted in a 

new mesh and the variation in velocity parameter was noted for different locations till 

the variations were negligibly small.  
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Figure 4.1: Grid independence plot 

 

The results obtained shows that the average velocity values do not change as the 

mesh resolution increased to 591878. Hence, the mesh with 577010 elements was used 

for our simulation. This was considered sufficient taking into account the computational 

time and system memory. Near wall model approach was applied, where the mesh close 

to the wall was refined in order to resolve the near wall flow for turbulent airflow. In 

order to ensure the accuracy of the flow simulation near the wall surfaces, the y+ values 

obtained for the nasal cavity model is less than 5. 
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4.3 Geometry comparison 

 

Figure 4.2 shows the ten planes created along the axial distance of the nasal 

cavity. Ten cross-sectional areas were created and used to calculate the flow properties 

as shown in Figure 4.2. The nasal cavity extends from anterior to posterior region along 

the axial length. The anterior region of the nasal cavity is in the range of x ≤ 3 cm and 

the posterior region is in the range of x > 5 cm. The planes were created perpendicular to 

the airflow through the nasal cavity. 

 

 

Figure 4.2: Ten cross section area along the axial distance of the nasal cavity 

 

The first plane, Figure 4.3a, which is located at the nostril was created to capture 

the flow characteristic at the vestibule region. Figure 4.3b shows the smallest cross 

section area of the nasal cavity which represents the nasal valve region. The planes in 

Figure 4.3c and 4.3d were produced in order to capture the flow feature at the diverging 

Nostril 

Nasopharynx 

a 

f 
e d 

c 

b 

i 
h 

g 

j 



42 
 

region after the nasal valve location and before the airflow enter the turbinate section. 

Planes in Figure 4.3e, 4.3f and 4.3g allow capturing flow pattern through the inferior, 

middle and superior turbinate region. It is also important to study the flow characteristic 

near nasopharynx (Figure 4.3h) and at the nasopharynx region at (Figure 4.3i). Figure 

4.3j shows the plane created to capture the airflow through the nasal outlet.  

 

 
Figure 4.3: Ten cross section area through the nasal cavity 

 

Figure 4.4 shows the cross-sectional area plot of the present computational model 

compared to the existing data of the male nasal cavity from others published work. In 

Figure 4.4, it was observed that the cross section area of the left nasal cavity was greater 

than the right nasal cavity at the most of the location along the nasal cavity. This shows 

that the nasal cavity is not symmetric and therefore should not be simplified by 

modelling only one side of the cavity. Also another important observation was the 

decrease in the cross-sectional area of the female subject when compared to male in the 
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posterior region. The female nasal cavity is smaller in length (8.5 cm) when compared 

with the male subjects as determined by Cheng et al., (1996) and Wen et al., (2008) to 

be 9.5 cm and 9.7 cm respectively. 

 

 
Figure 4.4: The comparison of cross-sectional area vs. axial distance from anterior to the 

posterior of the nasal cavity 

 

Although inter human differences in nasal anatomy and geometry exist, a general 

trend can be observed. The smallest cross section area was found at the nasal valve 

region. The cross section area for the present model is 1.46 cm2 while 1.9 cm2 and 1.4 

cm2 for Cheng et al., (1996) and Wen et al., (2008) respectively. An increase in the 

cross-sectional profiles was also observed after the nasal valve region. This will cause 

the inspired airflow reach the olfactory region and at the same time spread the airflow 

into the inferior, middle and superior turbinate region. For the present geometry, the 

nasal valve region is located about 2.0 cm from the anterior tip of nose, which compares 
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with the other models that are located at 3.3 cm and 2.0 cm for Cheng et al., (1996) and 

Wen et al., (2008) respectively. 

 

4.4 Model comparison 

 

Figure 4.5 shows the nasal resistance plot for various flow rate obtained from the 

present computational model compared with the existing data available. The average 

pressure drop between the nostril and nasopharynx was obtained at flow rates from 

7.5L/min to 40 L/min. A laminar model for the flow rates 7.5 to 15 L/min and the SST 

k-ω turbulent model for the flow rates 20 to 40L/min were used to simulate the flow 

fields. For the laminar flow rates (<15 L/min) the slope of the impedance curve for our 

simulation is almost the same as found by other researchers. However, as flow rate 

increases, turbulence plays a significant role, the impedance curve start to depart from 

each other as seen in Figure 4.5.  

From the observation, the nasal resistance in the case of female model also 

follows the same pattern as that of the male subject. However the slope of the resistance 

curves as seen in Figure 4.5 is steeper in case of the female subject. This may be 

attributed to the anatomical differences; female model is shorter in length and has 

smaller posterior cross sectional area. At low velocity, the flow is laminar. It was 

observed that the flow is smooth and properly arranged. Hence, the nasal area is not the 

critical factor that determines the pressure drop. But when the flow is turbulent, it 

consists of chaotic, highly disordered flow and also exhibit higher flow speed. Hence the 

nasal area plays an important role and also results in recirculation and reverse flow. 

Furthermore, incomparison to the male models, the current female model exhibited 
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smaller cross sectional area at the nasopharynx. This is also the reason for the current 

female model to have higher value of pressure drop.  

 

 

Figure 4.5: Pressure drop vs. inspiratory flow rates compared with previous data 

 

The pressure drop obtained for the female nasal cavity was around 22.6 Pa for 20 

L/min when compared with male model at around 18 Pa & 20 Pa for the same flow rate 

as obtained by Wen et al., (2008) and Weinhold et al., (2004) respectively. Hence, in 

spite of the anatomical differences a close resemblance of result can be seen with the 

respect to the previous studies, thereby validating of our present study. 
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4.5 Basic flow studies  

 

Understanding the properties of airflow in the nasal cavity is very important in 

determining the nasal physiology and in diagnosis of various anomalies associated with 

the nose. However, the conventional methods like rhinomanometer and acoustic 

rhinometry fail to accurately predict and quantify the flow properties at every location 

inside the nasal cavity. Airflow simulations based on computational fluid dynamics is 

most useful for better understanding of flow phenomenon inside the nasal cavity. Hence, 

in the present study, the numerical simulation of nasal airflow was performed in order to 

obtained details of flow characteristic along the nasal cavity. This chapter present the 

results obtained from numerical study of nasal airflow for 20 L/min during inspiration. 

 

4.5.1 Reynolds number calculation 

 

The Reynolds number usually is used to characterize the type of the flow, 

whether the flow is laminar or turbulent. Reynolds number is a dimensionless number 

which also present the ratio of inertial forces to viscous forces acting on a fluid element. 

Reynolds numbers of the nasal airflow can be obtained from: 

                                                  𝑅𝑅𝑅𝑅 = 𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

     (4.1) 

Where 𝜌𝜌 the air density (1.225 𝑘𝑘𝑘𝑘/𝑚𝑚3), u is the airflow velocity, d is the diameter of the 

nasal inlet and 𝜇𝜇 is the dynamic viscosity of the air (1.7894 × 10−5 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚). The initial 

prediction of the Reynolds number value is important in order to properly simulate the 

nasal airflow. The flow will be defined as laminar for 𝑅𝑅𝑅𝑅 < 2100 and turbulent for 𝑅𝑅𝑅𝑅 >
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2100. In the present work, numerical simulation were carried out for flow rates of 7.5 

L/min, 10 L/min, 15 L/min, 20 L/min, 30 L/min and 40 L/min. The Reynolds number 

value for flow rates of 1 5L/min calculated from the equation above is 1,597. Based on 

the Reynolds number obtained, the airflow was treated as laminar for flow rates up to 15 

L/min. This was in general agreement with previous researchers (Wen et al., 2008; Segal 

et al., 2008) who determined laminar nature of the flow, for flow less than 15 L/min. 

The Reynolds number obtained for 20 L/min based on the equation above is 

approximately equal to 2,129. Hence, the flow was treated as turbulent for flow rates of 

20 L/min and above.  

 

4.5.2 Velocity  

 

Figure 4.6 shows the contour plot of the average velocity value along the nasal 

cavity during inspiration. As seen in Figure 4.6, the flow was observed to be fully 

developed along the middle meatus region. The superior and inferior meatus pathway 

received lesser flow. Low velocity value was also observed at the inferior and superior 

turbinate regions. As seen in Figure 4.6 and 4.7, sudden increase of average velocity 

value was noticed at the nasopharynx region. This is due to decrease in cross section 

area at the posterior region of the nasal geometry. 
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Figure 4.6: Average velocity contour along the nasal cavity 

 

As seen in Figure 4.7, the nasal valve located at a distance of around 2cm from 

the anterior region of the nasal cavity. The maximum velocity attained at the nasal valve 

location varies from 4.18 m/s as against 4.82 m/s & 3.1 m/s obtained by Xiong et al., 

2008 and Croce et al., 2006 respectively. The peak airspeed in each plane decreases 

posteriorly beyond nasal valve region as the cross sectional area increase.  

Figure 4.8 shows the streamline plot of the inspired nasal flow through the 

nostril. As seen in Figure 4.8, the low velocity re-circulating stream was found just 

posterior to the nasal valve region. The re-circulatory flow propagates the flow to the 

olfactory region thus making contact with the olfactory sensor. The aerodynamic shape 

of the nasal cavity facilitates the re-circulatory flow caused by adverse pressure gradient 

due to sudden increase in cross section area after the nasal valve region.  
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Figure 4.7: Variation of average velocity along the length of the nasal cavity 

 

 

  
Figure 4.8: Flow recirculation at the olfactory region 
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As can be seen from Figure 4.9, the velocity in the left cavity is higher than the right 

cavity. The velocity variation was significant in the anterior region. The result obtained 

for the left and right side nasal cavity varies due to the non-symmetrical shape of the 

nasal cavity. 

 

 
Figure 4.9: Comparison between left and right nasal cavity 

 

 

4.5.3 Pressure 

 

As shown in Figure 4.10, the average static pressure across each sectional plane 

decreases along the axial length and remain almost the same for over a length of 2 cm 

from the nasal valve. Further downstream along the posterior region, the average static 

pressure value keeps decreasing. It has been found that there is sudden decrease in the 

average static pressure in the nasopharynx region where a bend is encountered. During 
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inspiration, the lungs suck in air from the ambient atmosphere. Hence negative pressure 

profile is observed for the inspiratory flow. 

 

 

Figure 4.10: Average static pressure along the nasal cavity during inspiration 

 

4.5.4 Wall Shear Stress  

 

Figure 4.11 shows the maximum wall shear stress across various sections along 

the axial length of the nasal cavity. As seen in Figure 4.11 and Figure 4.12, the highest 

wall shear stress can be observed at the anterior and the posterior ends. This may be 

attributed to the sudden change in cross section area at the inlet and outlet. The 

maximum wall shear stress obtained at the nasal vestibule and nasal valve region is 

1.044 Pa and 0.9452 Pa accordingly. The wall shear stress value decrease significantly 

after the nasal valve region where the velocity decreases. The wall shear stress value can 

be expressed as  
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(4.1) 

 

where μ is the dynamic viscosity, u is the flow velocity parallel to the wall and y is the 

distance to the wall. The changes in flow direction at the nasopharynx due to the bend 

and this result in increased in wall shear stress value at the posterior end. The maximum 

wall shear stress value obtained at the nasopharynx region approximately equal to 

0.8372 Pa. 

 

Figure 4.11:  Maximum wall shear stress along the axial distance of the nasal cavity (full 

model) 

 

Figure 4.12 shows the contour plot of the average wall shear stress value through 

the nasal cavity during inspiration. As seen in Figure 4.12b, the protruding middle 

turbinate in the left nasal cavity results in the high wall shear stress effect. The geometry 

of the septum offers resistance to flow at the wall surface and results in the increased 

wall shear stresses. At the nasal valve where there is sudden increase in velocity due to 
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its narrow cross- sectional area, hence result in higher value of maximum wall shear 

stress. The comparison between left and right nasal cavity as indicated by Figure 4.13, 

shows the prevalence of higher wall shear stresses in the left nasal cavity due to variation 

in cross section area. The maximum wall shear stress value obtained at the nasal 

vestibule region for the left nasal cavity is equal to 0.9503 Pa and 0.4013 Pa for the right 

cavity. At the nasal valve region, the maximum wall shear stress value obtained for the 

left cavity is 0.9452 Pa and 0.5949 Pa for the right cavity. This is due to the 

unsymmetrical shape of the nasal cavity and the variation of the wall contour between 

the left and the right nasal cavity. 

 

 

 

 

Figure 4.12: Average wall shear stress contour 

 

a b 
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Figure 4.13: Maximum wall shear stress across left and right nasal cavity 

 

4.5.5 Inspiration vs expiration 

 

In this section, the comparative study of the inspiratory and expiratory states 

have been extensively carried out demonstrating the usefulness of numerical models in 

better understanding of flow phenomenon inside the nasal cavity and as such should be 

of benefit to the medical practitioners.  

 

4.5.5.1 Velocity and pressure comparisons 

 

The flow current that enters the nostril during inspiration progresses towards the 

nasal vestibule with a velocity of around 1.8 m/s. Figure 4.14 shows the variation of 

velocity along the length of the nasal cavity. The velocity is observed to be higher at the 

posterior region during expiration when compared with inspiration. Pressure distribution 

as shown in Figure 4.15 showed marked variations while inspiration and expiration. The 
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Expiratory mechanism is defined by positive pressure gradients. The flow is thrown out 

from the lungs and therefore there is prevalence of higher values of pressure during 

expiration. Whereas inspiration is the mechanism in which the lungs suck the air from 

the ambient atmosphere. Hence negative pressure profile is observed for the inspiratory 

flow.  

 

 

Figure 4.14: Velocity profile comparison during inspiration and expiration 
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Figure 4.15: Average static pressure along the axial length of the nasal cavity 

 

 

 

4.5.5.2 Resistance 

 

Different resistance plots are obtained for inspiration and expiration, indicating 

the variation of resistance in both processes (see Figure 4.16). Lower resistance values 

are obtained on expiration when compared to inspiration. There is ambiguity with 

respect to observations on resistance during inspiration and expiration. Haight and Cole, 

(1983) noted that during quiet respiration the resistance to airflow was higher during 

inspiration when compared with expiration. However Kenyon, (1987) observed the 

opposite and found the expiratory resistance to be higher than the inspiratory one. Viani 

et al., (1990) found the expiratory resistance to be higher when measured at a pressure 

gradient of 150 Pa. 
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Figure 4.16: Pressure drop value during inspiration and expiration for various flow rates 

 

However the situation was reversed for low flow rates, with the inspiratory flow 

demonstrating lesser resistance than the expiratory one. Further studies need to be 

performed to ascertain the current simulated observation. Since the present simulation 

study does not take into account the collapse of the nasal vestibule from the negative 

pressures generated during inspiration, the results obtained might not be actual 

physiological observations.  

 

4.5.5.3 Wall shear stress 
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stress compared with the inspiratory phase. It can therefore be inferred that the high 

velocity jet expelled during sneezing much higher values of stress having adverse effect 

on the nasal wall. Continuous sneezing phenomenon may damage the nasal valve and 

destroy the cell lining and blood vessels attached to walls. However, to the author 

knowledge, there is no work have quantified the wall shear stress value that could 

damage the soft tissue and rupture the blood vessel on the nasal cavity. 

 

 
Figure 4.17: Maximum wall shear stress along the axial distance of the nasal cavity 
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4.6 Various breathing rates for inspiration and expiration 

 

Humans exhibit different breathing rate under different conditions. While 

sleeping humans tend to have low breathing flow rates then while working or being 

awake. The normal breathing approaches 20 L/min. Under heavy exercise or while 

running, the flow rate may increase beyond 40 L/min. Therefore it would be useful to 

understand the effect of different breathing flow rates on the nasal cavity. In this section, 

the flow characteristics inside a female nasal cavity has been evaluated using CFD for 

steady state flow consisting of flow rates varying from 7.5 to 40 L/min in both 

inspiration and expiration mechanism.   

 

4.6.1 Average velocity 

 

The average velocity values have been extracted for both inspiration and 

expiration at some important location like the vestibule, nasal valve and the 

nasopharynx. Figure 4.18 shows the average velocity values for flow rates from 7.5 to 40 

L/min obtained at different sections along the nasal cavity during inspiration. As seen in 

Figure 4.18, irrespective of the flow rates, the highest value of average velocity appears 

at the nasal valve region during inspiration. Under laminar flow rate ranging from 7.5 to 

15 L/min, increment of 7.5 L/min, the average velocity value increased by about 120 %. 

However, under turbulent conditions having flow rate ranging from 20 to 40 L/min, for 

an increment of 20 L/min, the difference in average velocity was only about115 %. The 

maximum velocity at the nasal valve region for the flow rates of 7.5 L/min was 1.54 m/s, 

which increased to 8.66 m/s for flow rate of 40 L/min. Higher values of velocity at the 
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nasal valve is detrimental to the health of the tissues and can potentially damage the 

blood vessels located in that region. 

 

 
Figure 4.18: Average velocity at different flow rates from 7.5 to 40L/min during 

inspiration 

 

The impact of varying flow rates at the olfactory region is also presented. At 7.5 

L/min, only 0.001 % of the total flow reaches the olfactory region. The Figure 4.19 

shows the plane location beyond which the olfactory region is located. Olfactory region 

receives only a small percentage of the total flow that enters the nasal cavity. This re-

circulatory flow which is composed of very low velocity is useful for the olfactory sense 

perception. The average velocity for a flow rate of 7.5 L/min was as low as 0.089 m/s. 

However, as the flow rate increased to 40 L/min, the percentage of flow that reached the 

olfactory sensors also increased to 0.28 % of the total flow. When a large flux of air 

reaches the olfactory sensors, the average velocity at the region also increased to 1.02 

m/s. This explain why when we tend to inhale higher mass flow rate during sniffing, the 
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perception of smell also improves. Studies by Mullins (1955) and Schneider et al., 

(1963) also have shown that an increase in flow rate increases odor detectability. 

 

 

Figure 4.19: Model of the nasal cavity showing the olfactory plane 

 

However, for expiration, the average velocity value attained at vestibule and 

nasal valve region is almost the same as the flow increase from 7.5 to 40 L/min. In 

contrast to inspiration, almost uniform velocity profiles can be observed at all locations 

under lower flow rates. As shown in Figure 4.20, only marginal variations were 

observed between various locations as the flow rate increased.  

 

Olfactory plane 
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Figure 4.20: Average velocity at different flow rates from 7.5 to 40L/min during 

expiration. 

 

4.6.2 Wall shear stress 

 

Figure 4.21 and 4.22 shows the plot of maximum wall shear stresses for 

inspiration and expiration. Figure 4.21 shows the impact of increased flow on the wall 

shear stress value through the nasal cavity. The impact of high velocity with the 

increased flow rate is predominant at the anterior region in case of inspiration. The value 

of maximum wall shear stress at the vestibule region increased by more than 2000 % as 

the flow rate increased from 7.5 to 40 L/min. Such an abrupt increase has significant 

impact on blood vessels in the region. However, expiration demonstrated near uniform 

prevalence of wall shear stress at almost all locations within the nasal cavity. At the 

nasal valve and vestibule region, the stress developed during expiration was much lesser 

than that obtained during inspiration. The value of maximum wall shear stress at the 

vestibule was around 2.92 Pa when compared to 6.89 Pa for the same location during 
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inspiration. Therefore the sneezing phenomenon, which is characterized by abrupt and 

very high expiratory flow rates of greater than 40 L/min, will produce significantly 

lower wall shear stresses than for the same flow rate during inspiration. Hence even 

though sneezing is a sudden jet of flow with high velocity, the stresses produced will be 

much lesser. However, higher flow rates are not desired, since they result in very high 

values of pressure gradients which may result in the collapse of the nasal vestibule as 

well induce more stresses in the nasal cavity thereby damaging the delicate tissue layers 

and blood vessels creating complications.  

 

 
Figure 4.21: Maximum wall shear stress values through the axial distance of the nasal 

cavity during inspiration 
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Figure 4.22: Maximum wall shear stress values through the axial distance of the nasal 

cavity during expiration 
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4.7 Preliminary work on gender comparison 

 

Evidence suggests that there is no gender difference in upper airway size whether 

measured directly by imaging methods or indirectly by measurement of upper airway 

resistance. (Rowley et al, 2001). However some of the problems like obstructive sleep 

apnea are specific to only males (Suzina et al., 2003). The anatomical variations 

contribute to gender based occurrence of certain anomalies. Hence gender is one of the 

contributing factors for the difference in the flow behavior. 

 

4.7.1 Geometry comparison 

 

In order to verify the anatomical differences based on gender, the length of the 

nasal cavity was measured from a sample of available CT images. As a result a sample 

of 4 cases each of male and female CT nasal images were measured.  Table 4.1 shows 

the total length of the nasal cavity obtained from the CT scan images of four male and 

four female human subjects. It was found that the female models were slightly smaller in 

length when compared to the male models. Based on the results shown in Table 4.1, we 

can conclude that female have shorter length of nasal cavity when compared to their 

male counterparts. However, this is just sample evidence which need to be corroborated 

with much higher samples to verify the observations reported in Table 4.1.  
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Table 4.1: The total length of the nasal cavity based on the gender comparison 

Name Length (mm) 
Female 1 85.72  
Female 2 89.78 
Female 3 88.90 
Female 4 90.97 
Male 1  96.69  
Male 2 91.73 
Male 3 98.48 
Male 4 97.37 

 

The current work is focussed on computational study of nasal cavity, hence in 

order to further the understanding of the effect of gender based anatomical differences 

on the flow behaviour; numerical analysis has been carried out. Most of previous works 

on numerical studies of nasal cavity based their observation on male models while the 

current research is using female models that developed from CT images.  

 

 

Figure 4.23: The comparison of cross section area through the nasal cavity of the human 

male and female subjects 
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Figure 4.23 shows the cross section area obtained based on the planes created 

across the nasal cavity. The female computational models are compared with the 

available male nasal cavity models from the previous published works. As seen in Figure 

4.23, the total length of the nasal cavity for female subjects is shorter compared to the 

male model developed by Cheng et al., 1996 and Wen et al., 2008. The location of the 

nasal valve region also varied for each nasal model. Irrespective of gender this 

difference in location has also been reported in previous literature (Keyhani et al., 1995, 

Subramanium et al., 1998, Cheng et al., 1996). It also can be observed that the cross 

section area at the turbinate region for the female nasal cavity is wider compared to 

male. As seen in Figure 4.23, at the posterior region of the nasal airway, a substantial 

increase in cross section area was observed after the turbinate region for male. 

Conversely, the cross section area of the female nasal airway decreased drastically after 

the turbinate region. Thus it was observed that the female possessed smaller cross 

section area at nasopharynx. The cross section area at the nasopharynx is 5.8 cm2 and 

5.25 cm2 for male and 2.85 cm2, 3.52 cm2 and 2.96 cm2

The nasal resistance in the case of female model also follows the same pattern as 

that of the male subject for laminar flow conditions. However under turbulent 

conditions, resistance curves as seen in Figure 4.24 is steeper. There are significant 

differences in the values of pressure drop obtained for all the 3 female models. Model 1 

exhibited higher values of resistance compared to the male model. The value of 

resistance for female case 2 was much lesser than that of the male model and the female 

case 1. Also the female case 3 showed lower values of resistance than its male 

counterparts. 

 for female nasal cavity. Thus the 

female nasal cavity is shorter in length and has smaller posterior cross sectional area.  
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Figure 4.24: the pressure drop value across the nasal cavity 

 

These variations in values for the three processed female case studies maybe 

attributed to the inter-human anatomical differences that exist between humans. 

Secondly, the values of resistance for the female case 1 having higher values of 

resistance maybe due to artifacts associated with the model itself. Also the female case 1 

had the smallest cross section area at the nasopharnyx outlet which may contribute to the 

increased resistance. In general, the female model displayed lower values of pressure 

drop when compared with the male models.   

A gender based study is carried out as observed in Table 4.2. Four male nasal 

cavity models from previous publications were considered for the current study on the 

basis of data available in the literature. Most of the researchers used male subjects to 

determine the nasal patency (Wen et al., 2008; Weinhold et al., 2004; Cheng et al., 

1996, Subramaniam et al., 1998).  
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Table 4.2: Characteristic description of nasal cavity for male and female nasal cavity 

models 

Particulars Male Female 

Total  length of the nasal 
cavity  

9.2 cm (Wen et al., 2008) 
9.3 cm (Cheng et al., 1996) 

8.5 cm (Model 1) 
8.0 cm (Model 2) 
9.0 cm (Model 3) 

Nasapharynx cross 
sectional area  

5.25 cm2 (Wen et al., 2008) 
5.8 cm2 (Cheng et al., 1996) 

2.85 cm2 (Model 1) 
3.52 cm2 (Model 2) 
2.96 cm2 (Model 3) 

The location of the nasal 
valve region 

3.3 cm (Cheng et al., 1996) 
2.0 cm (Wen et al., 2008) 

2.0 cm (Model 1) 
1.65 cm (Model 2) 
2.0 cm (Model 3) 

Nasal valve cross section 
area 

1.4 cm2 (Wen et al., 2008) 
1.8 cm2 (Cheng et al., 1996) 

1.5 cm2 (Model 1) 
1.26 cm2 (Model 2) 
1.84 cm2 (Model 3) 

Pressure drop  
(for flow rate of 20L/min) 

18 Pa (Wen et al.,  2008) 
20 Pa (Weinhold et al., 2004) 

22.6 Pa (Model 1) 
4.88 Pa (Model 2) 
13.88Pa (Model 3) 

Maximum velocity at nasal 
valve 
(for flow rate of 15L/min) 

4.2 m/s (Subramaniam et al., 1998) 
 

 
3.17 m/s (Model 1) 
2.68 m/s (Model 2) 
2.23 m/s (Model 3) 
 

 

 

As seen in Table 4.2, the female model has shorter length of nasal cavity (8.5 cm, 

8 cm and 9 cm) when compared with that of the male subjects as determined by Cheng 

et al., (1996) and Wen et al., (2008) to be 9.3 cm and 9.2 cm respectively. Also another 

important observation was the decrease in the cross-sectional area of the female subject 

when compare to male in the posterior region. The nasopharynx cross section area 
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obtained for this study was 2.85 cm2, 3.52 cm2 and 2.96 cm2; while 5.25 cm2 and 5.8 cm2

Although we do find anatomical variation between male and the female model, a 

general trend can be observed. An increase in the cross-sectional profiles was observed 

after the nasal valve region. For the present geometry, the nasal valve region was located 

about 2.0 cm, 1.65 cm and 2 cm from the anterior tip of nose, which compares with the 

other models that were located at 3.3 cm and 2.0 cm as obtained by Cheng et al., (1996) 

and Wen et al., (2008) respectively. As stated earlier, irrespective of gender, the 

difference in location has also been reported in previous literature (Keyhani et al., 1995, 

Subramanium et al., 1995, Cheng et al., 1996). 

 

was determined by Wen et al., (2008) and Cheng et al., (1996) respectively. This clearly 

indicated that the male nasal cavity had larger posterior cross sectional area, emphasising 

the variation based on gender. 

One of the advantages of using CFD is its accurate presentation of the 

physiological function associated with the nasal cavity. It presents useful quantification 

between the male and the female physiological function. The pressure drop at 20 L/min 

obtained for the female nasal cavities was 22.6 Pa for model 1, 4.8 Pa for model 2, and 

13.88 Pa for model 3 when compared with male model at around 18 Pa & 20 Pa for the 

same flow rate obtained by Wen et al., (2008) and Weinhold et al., (2004) 

Nasal valve being the critical area of the nasal cavity, comparison between the 

male and female models resulted in the female models exhibiting lesser value of 

respectively. 

The female model 1 had the smallest cross section area at the nasopharnyx outlet hence 

the higher value of pressure drop was obtained in comparison to model 2 and model 3. 

However, in general the value of pressure drop for female case 2 and 3 is lower than the 

male models reported in the literature. 
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maximum velocity when compared with the male model developed by Subramanian et 

al., 1998 the value of maximum velocity obtained for the three female models are 3.17 

m/s, 2.68 m/s, and 2.23 m/s respectively as against 4.2m/s for similar flow rate obtained 

for the male model. This shows the relative difference between the male and the female 

flow behaviour. 

The current study has identified certain gender based anatomical and 

physiological differences. The use of computational fluid dynamic has assisted in the 

understanding of these differences which could not be earlier quantified based on mere 

medical observation and devices. Also, it has highlighted the fact that numerical models 

cannot be generalized for quantification because gender based differences exists. Hence 

in all the future numerical study of flow through the nasal cavity, it is imperative to 

mention the gender of the model under consideration.  
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4.8 Gravity effect on nasal airflow due to the change of posture 

 

The influence of postural changes in nasal cavity has been investigated in this 

section. Many reasons have been cited for the increase in the nasal resistance, from 

increase in the central venous pressure resulting in congestion of the nasal mucosa, also 

pressing of some of the body areas result in the change in nasal resistance (Roithmann et 

al., 2005). Hence the posture change is an important determinant of upper airway 

dimensions. The aggravating effect of the supine body position on breathing 

abnormalities during sleep is attributed to the effect of gravity on the upper airway 

(Oksenberg and Silverberg, 1998). 

 Several medical literatures cite the changes in variation in the pharyngeal area 

with change in posture. But due to the difficulty involved in obtaining CT scan of the 

person in sitting posture, the CT data obtained in the supine position is utilized to study 

the effect of posture on the flow. Therefore, this study assumes no changes in the 

dimension of the nasal cavity with the change in posture. However, the change in the 

direction of the gravity force acts based on the change of posture is considered for this 

study. Four cases namely sitting, supine, prone and recumbence right are considered. 

The acceleration due to gravity is taken to be 9.81 m/s2

 

 at sea level. The body force 

weighted pressure discretization scheme is adopted in the numerical simulation where 

the discontinuity of explicit body forces (e.g. gravity, swirl) was taking into account. 
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Figure 4.25: Variation of Average static pressure with posture 

 

 

Figure 4.26: Effect of change of posture on velocity at 15L/min 
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As seen from the Figure 4.25, around 0.3 % change in the average static pressure 

is observed while changing from sitting to supine position. Along the middle region the 

average static pressure decreases as we change position from sitting to supine. Also 

significant changes were observed on shifting to right recumbency position. These 

results show the influence of gravity associated with the change in posture. 

Figure 4.26 shows the variation in the maximum velocity beyond the nasal valve 

region (3.5 cm to 7.5 cm). Significant drop in velocity can be seen while shifting from 

sitting to supine position.  Not much variation in velocity was observed between the 

supine and the prone position. 

 

 
Figure 4.27: Variation in maximum wall shear stresses with change of posture 
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nasal cavity decreases when changing posture from sitting to supine. The flow is fully 

developed in the right nasal cavity in sitting position (Figure 4.28A) in comparison with 

the supine posture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: A: Sitting B: Supine, shows flow variations along a horizontal plane at 

middle meatus region 

 

 

A 
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4.9 Effect of different boundary condition on flow parameters 

 

The authors investigate the effect of various boundary conditions classified as 

plug flow for boundary values defined at nostril inlet and pull flow which simulates the 

natural physiological breathing conditions with boundary defined at nasopharynx. 

 

 

 

 

Figure 4.29: Plug flow boundary condition for inspiration A and expiration B 

 

 

 

Figure 4.30: Pull flow boundary condition for inspiration A and expiration B. 

 

 Inspiratory steady airflow numerical simulations were carried out using 3D nasal cavity 

model derived from tomography scan images. Figures 4.29 and 4.30 show the plug and 

pull flow boundary condition definition for inspiration and expiration. Plug and pull flow 

boundary conditions were employed on the same model and compared to evaluate the 

effect of different boundary conditions on the flow parameters. Studies are carried out 
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for various flow rates of 7.5 L/min, 10 L/min, 15 L/min, 20 L/min, 30 L/min and 40 

L/min suggesting various breathing rates. 

 

4.9.1 Nasal Resistance comparison for plug-flow and pull-flow 

 

Numerical methods are subjected to various assumptions especially with respect 

to boundary definition. In order to acquire a more realistic value of nasal resistance, 

comparative study is performed to understand the effect of boundary condition on the 

values of resistance determined. Figure 4.31 gives the plot of pressure drop across nasal 

airway for different flow rates. The pressure drop value increases as the flow rate 

increases in both cases. The plug flow condition produced substantially high value of 

pressure drop when compared to pull flow boundary condition. Beyond 20 L/min the 

pressure drop value increased more drastically for plug flow.  

 

 
Figure 4.31: Nasal Resistance for different airflow rate 
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It can be observed that the differences between plug flow and pull flow for 

inspiration is quite large as observed in Figure 4.32. At the nasal valve, the resistance for 

plug flow was 0.311 Pa-min/L and for pull flow the value was 0.147 Pa-min/L. 

Maximum variation was noticed at the vestibule region with 0.3578 Pa-min/L.  

In case of the plug flow, the air is forced through the nostrils into the nasal 

cavity. This explains the prevalence of higher values of pressure drop and nasal 

resistance in case of the plug flow boundary condition. Hence, it is clear from the 

pressure drop and the resistance plots that different boundary condition result in 

variation in flow properties. Therefore, it is very important to adopt the most appropriate 

boundary condition to evaluate the nasal physiology.  

 

 
Figure 4.32:  Inspiratory nasal resistance for 15 L/min at vestibule, nasal valve, middle 

section and nasopharynx. 
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4.9.2 Velocity   

 

Figure 4.33 shows the effect of different boundary condition on velocity along 

the length of the nasal cavity. Since it was found that similar pattern for all flow rates 

investigated, the result of only 15 L/min simulation is presented. The average velocity 

values varied along the axial length of the nasal passage. This can be attributed to the 

change of cross section area along the nasal passage. Plug-flow model and pull-flow 

case study exhibited differences in the velocity profile. The nasal vestibule and the 

narrow constrict called the nasal valve showed major variations with respect to velocity 

profile between plug and pull flow boundary. 

 

 
Figure 4.33: Velocity plot along the axial distance (at 15 L/min). 

 

The average velocity for nasal vestibule and nasal valve is 1.4 m/s and 1.6 m/s 
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4.5 7.5

A
vg

. V
el

oc
it

y 
(m

/s
)

Axial distance (cm)

Inspiration- Plug flow

Inspiration-Pull flow



80 
 

Beyond the nasal valve region, the boundary conditions did not have significant effect 

on the velocity patterns. Also it was found that the velocity distribution during expiration 

phase did not show much variation between pull-flow and plug-flow case. The contour 

plot as shown in Figure 4.34A and 4.34B shows the difference in flow patterns for both 

the pull flow and plug flow boundary definitions. 

 

 

A 

 

   B 

Figure 4.34: Velocity profile for pull flow A) and plug flow B) boundary 

condition. 
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4.9.3 Pressure 

 

The major effect of using plug-flow and pull-flow boundary was with respect to 

the pressure distribution inside the nasal cavity. As seen in Figure 4.35A, the pressure 

value decreased significantly for pull flow in case of inspiration. An initial high for 

pressure is obtained for plug flow. This is because, in case of plug flow, a certain mass 

of air is forced through the nostril inlet resulting in the positive pressure value at the inlet 

section of the nasal cavity. This is an artifact when using plug flow boundary.  The pull 

flow demonstrates much higher negative pressure when compared to the plug flow. This 

is due to the fact that, flow is sucked into the nasopharynx from the ambient atmosphere 

in case of pull flow which explains the much lower values of pressure in the posterior 

region. 

Similar observation can be seen in Figure 4.35B for the expiration phase. The 

differences so obtained for plug-flow and pull-flow in both inspiration and expiration 

phases demonstrate the importance of using correct boundary conditions while 

modelling flow through the nasal cavity. Most of the researchers employ plug flow 

boundary definitions to address the flow problems associated with nasal flow. This study 

has revealed the fallacy of such a definition and found significant differences in values 

obtained in either case.  
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A 

 
B 

Figure 4.35: Pressure plot for plug and pull flow boundary condition during A) 

Inspiration B) Expiration. 

 

4.9.4 Wall Shear Stress 
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values of stress compared to pull flow further complimenting the need for using pull-

flow as boundary definition in all future references to modelling nasal airflow. 

Therefore, in order to quantify the results of nasal flow using numerical methods, pull 

flow boundary conditions must be applied. Since pull flow replicates the realistic 

breathing phenomenon, the results obtained using plug flow definitions are not the actual 

results. 

 

 

Figure 4.36: Maximum wall shear stress values during inspiration. 
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CHAPTER 5 

 

CONCLUSION 

 

5.1 Introduction 

 

Three dimensional computational model of female human nasal cavity were developed 

based on the CT scans of Malaysian female subjects. Numerical simulation of 

inspiratory and expiratory airflow was performed for flow rates of 7.5, 10, 15, 20, 30, 

and 40 L/min using the developed models. This work on nasal flow study utilized female 

nasal cavity models as against the male models used by previous researchers. Numerical 

study carried on the female models has been validated with that of the male models from 

the data available in the literature as described in section 4.4. The effect of gender based 

anatomical differences on the flow behaviour also has been investigated. The effect of 

gravity due to change of posture is also studied. Plug flow and pull flow boundary 

conditions are evaluated and its effect on the nasal flow are also analyzed. In this 

chapter, major results, limitations of present work, and recommendation for future study 

are discussed. 

 

5.2 Major conclusions drawn from this study 

The following conclusions are presented based on each study topic. 
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5.2.1 Basic airflow studies 

 

The flow was observed to be fully developed along the middle meatus region 

while the superior and inferior meatus pathway received lesser flow. This finding was 

consistent with that of the previous researchers (Hahn et al., 1993; Segal et al., 2008). 

There was sudden increase of average velocity value at the nasopharynx region which 

could be attributed to the decrease in cross section area at the posterior region of the 

nasal geometry. The nasal valve which is located at a distance of around 2 cm from the 

anterior region of the nasal cavity, attained the maximum velocity at around 4.18 m/s as 

against 4.82 m/s & 3.1 m/s obtained by Xiong et al., (2008) and Croce et al., (2006) 

respectively. The peak airspeed in each plane decreases posteriorly beyond nasal valve 

region as the cross sectional area increase. The average static pressure value decreases 

posteriorly along the nasal cavity. At the nasal valve where there is sudden increase in 

velocity due to its narrow cross- sectional area, resulted in the prevalence of higher wall 

shear stresses. The geometry of the septum also offered resistance to flow at the wall 

surface and results in the increased wall shear stresses. The flow changes direction at the 

nasopharynx due to the bend and this resulted in increase in wall shear stress at the 

posterior end. The low velocity re-circulating stream was found just posterior to the 

nasal valve region. This low velocity recirculatory flow at the olfactory region stimulates 

the olfactory nerves which is responsible for our sense of smell. 

It can therefore be concluded that, the complicated anatomy of the nasal cavity 

has been designed to attain the physiological function desired for normal breathing. It is 

this structure that makes possible the sense of smell and conditioning of inspired air. 
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5.2.2 Various breathing rates for inspiration and expiration 

 

Humans exhibit different breathing rate under different conditions. Irrespective 

of the flow rates, the highest value of average velocity appears at the nasal valve region 

during inspiration. Olfactory region received only a small percentage of the total flow 

that entered the nasal cavity. The perception of smell was improved with increased flow 

rates. The value of maximum wall shear stress at the vestibule region increased by more 

than 2000 % as the flow rate increased from 7.5 to 40 L/min. Such an abrupt increase 

has significant impact on blood vessels in the region. The value of maximum wall shear 

stress at the vestibule was around 2.92 Pa when compared to 6.89 Pa for the same 

location during inspiration. Therefore the sneezing phenomenon, which is characterized 

by abrupt and very high expiratory flow rates of greater than 40 L/min, will produce 

significantly lower wall shear stresses than for the same flow rate during inspiration. 

Hence even though sneezing is a sudden jet of flow with high velocity, the stresses 

produced will be much lesser. However, higher flow rates are not desired, since they 

result in very high values of pressure gradients which may result in the collapse of the 

nasal vestibule as well induce more stresses in the nasal cavity thereby damaging the 

delicate tissue layers and blood vessels creating complications.  

 

5.2.3 Gravity effect on nasal airflow due to the change of posture 

 

From the literature review it was established that the change of posture 

significantly affects the breathing patterns (Beaumont et al., 1998; Hsing-won Wang, 

2002; Matsuzawa et al., 1995; Tvinnereim et al., 1996). Hence the gravity effect due to 
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the change of posture significantly influences the flow parameters and cannot be 

neglected. These findings hold significant importance in the study of numerical analysis 

of flow through the nasal cavity. The 3D model for developing the nasal cavity is 

obtained either from the MRI or the CT scans. Hence the numerical modelling 

associated with posture dynamics comes into effect. Therefore while applying the 

boundary conditions in the study of nasal flow using CFD; we must take into account the 

effect of posture and gravity. As per our knowledge none of the previous studies on 

numerical flow analysis take into account the effect of posture and gravity. Therefore in 

order to accurately predict the flow features inside the nasal airway path, we must 

specify the correct posture and apply appropriate boundary conditions. This study on 

effect of gender and posture can be considered as the major step towards standardisation 

of modelling approach in the domain of nasal flow studies. 

 

5.2.4 Effect of different boundary condition on flow parameters 

 

A 3D computational study of inspiratory airflow using plug and pull flow boundary 

conditions was carried out.  Comparative analysis of plug flow and pull flow boundary 

conditions showed significant variations for various flow parameters like velocity and 

pressure distribution. Velocity at the vestibule and the nasal valve region was higher for 

plug flow when compared with pull flow. There was a very significant difference in the 

pressure distribution across the nasal cavity. Considerable variation was observed for 

resistance across the nasal cavity for pull flow and plug flow cases. The flow patterns 

obtained during either case were different. Hence, in order to account for the natural 

physiological breathing conditions, it is very important to include the correct boundary 
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condition. Since pull flow accounts for the natural physiological boundary definition, 

future research should incorporate pull-flow boundary in order to study the physiology 

of the nasal cavity. Based on the study, it can be concluded that difference in boundary 

condition will result in variation in flow behavior inside the nasal cavity. In the absence 

of standardization of modelling of flow through the nasal cavity, and lack of unanimity 

among the researchers on the type of boundary conditions to be applied, this study holds 

significant importance. 

 

5.3 Future works 

 

Based on the presented research findings, several recommendations can be drawn 

to facilitate and provide future direction of research works. First, higher quality of CT 

scan images with better pixel resolution and smaller number of increment between slice 

of image are need to capture accurately the nasal cavity. Highly quality of CT scan 

images will help reduce the time required to build the complex geometry of the nasal 

cavity and avoid the creation of ‘stair-step’ surface contour which will affect the airflow 

characteristic. 

In order to capture the exact physiological nasal breathing, modelling the 

collapsibility of the nasal vestibule region during inspiration can be considered as a vital 

step. However, the inclusion of this work in the current research study which demands 

the study of fluid structure interaction is not possible due to the complicated structure of 

the nasal cavity and time constraint. 

The implication of the study on posture holds importance in the future study of 

medicine delivery through the nasal cavity. It would be interesting to understand the 
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relationship in arriving at the appropriate posture for the delivery of medicine and the 

effectiveness of this posture for the drugs to reach the desired locations inside the nasal 

cavity. The study of gender effect on the nasal airflow in the future research work may 

also include the age and body size variation which also can be the contributing factors 

that affecting the nasal patency. 

Further study may also be carried out to study the posture effect on nasal 

breathing by simulating the nasal model which developed based on the CT scan images 

obtained according to sitting, supine, prone and right recumbency position. Study of 

nasal abnormality can also be performed in order to assist ENT surgeon in pre-diagnosis 

of the nasal disease and plan for the treatment planning of nasal surgeries. 
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