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PENAMBAHBAIKAN TEKNIK PENINGKATAN KONTRAS IMEJ BAWAH AIR 

BERASASKAN MODIFIKASI HISTOGRAM 

 

ABSTRAK 

Degradasi kontras adalah salah satu masalah imej bawah air yang mengakibatkan 

pengurangan keamatan cahaya. Kontras yang rendah menyumbang kepada masalah imej yang 

mempunyai kurang maklumat. Objek dalam imej dilihat tidak jelas. Tambahan juga, 

penyerapan cahaya menyebabkan imej yang diambil kelihatan berwarna biru-kehijauan 

seterusnya warna objek akan disalah tafsir.  Selain itu, kewujudan kawasan yang gelap dan 

terlalu cerah menyebabkan pengurangan keperincian imej.  Oleh itu, untuk mengurangkan 

masalah yang dinyatakan di atas, tiga teknik untuk meningkatkan kontras imej di bawah air 

telah dicadangkan dalam kajian ini, iaitu model warna bersepadu dengan pengagihan 

Rayleigh (ICM-RD), Rayleigh-regangan dan purata paksi imej (RSAIP), dan regangan-

Rayleigh dua imej spesifikasi histogram penyesuaian terhad (DIRS-CLAHS). ICM-RD 

meningkatkan kontras imej di bawah air dengan mengintegrasikan pengagihan Rayleigh 

dalam proses regangan yang terhad.  Seterusnya, pembetulan warna imej melalui model 

warna Hue-Ketepuan-Nilai (HSV) memperbaiki keseluruhan warna imej. Di samping itu, 

kaedah RSAIP dicadangkan bagi menyelesaikan masalah had regangan bagi proses regangan 

yang dihadapi oleh kaedah ICM-RD.  Kaedah RSAIP menyediakan satu alternatif baharu bagi 

proses regangan, yang mana imej histogram akan dibahagi kepada dua bahagian dan 

diregangkan secara berasingan bagi memenuhi ruang dinamik imej yang ditetapkan.  Proses 

pembahagian dan regangan ini menghasilkan dua imej yang berbeza keamatan.  Kedua-dua 

imej yang dihasilkan akan digabungkan berdasarkan nilai purata dan diaplikasikan dengan 

kaedah pembetulan warna bagi menghasilkan imej akhir.  Kaedah yang ketiga, DIRS-

CLAHS, dicadangkan bagi meningkatkan keupayaan kaedah RSAIP dalam 



xxi 

 

mempertingkatkan kontras imej dengan mengintegrasikan pembetulan kontras global dan 

tempatan.  Proses DIRS-CLAHS bermula dengan pembetulan kontras global yang 

diperkenalkan dalam kaedah RSAIP.  Pembetulan kontras tempatan dilaksanakan dengan 

membahagikan imej kepada bahagian yang lebih kecil. Akhirnya, proses ini diaplikasikan 

dengan proses pembetulan warna yang merupakan modifikasi daripada proses pembetulan 

warna yang diperkenalkan dalam kaedah RSAIP dan ICM-RD.  Secara prinsipnya, semua 

teknik yang dicadangkan mengatasi kualiti teknik terbaharu yang diperkenalkan secara kualiti 

dan kuantiti.   Daripada tiga teknik yang dicadangkan, kaedah DIRS-CLAHS menunjukkan 

satu peningkatan yang baik dalam meningkatkan kontras imej bawah air dan warnanya.  

Secara kuantiti, perbandingan dengan enam teknik terbaharu yang diperkenalkan bagi 300 

sampel imej, kaedah DIRS-CLAHS menghasilkan nilai purata entropi yang tertinggi iaitu 

7.624 dan nilai purata MSE yang terendah  iaitu 646.32.  Malah, dari segi pengukuran 

peningkatan (EME) dan pengukuran peningkatan berdasarkan entropi (EMEE), DIRS-

CLAHS menghasilkan nilai purata tertinggi iaitu masing-masing 27.096 dan 9.670. 
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IMPROVEMENT OF UNDERWATER IMAGE CONTRAST ENHANCEMENT 

TECHNIQUE BASED ON HISTOGRAM MODIFICATION 

 

ABSTRACT 

Contrast degradation is one of the problems of underwater image that resulted from the light 

attenuation.  Low contrast contributes towards the less usable image where less information 

could be extracted from the image. The objects seen in the image are unclear.  In addition, 

light absorption phenomenon causes the underwater image to be dominant by the blue-green 

illumination, resulting in misinterpretation of objects color.  Therefore, to reduce the 

aforementioned problems of underwater image and increases underwater image contrast, three 

techniques of improving underwater image contrast are proposed in this study, namely 

integrated color model with Rayleigh distribution (ICM-RD), Rayleigh-stretching and 

averaging image planes (RSAIP), and dual-images Rayleigh-stretched contrast limited 

adaptive histogram specification (DIRS-CLAHS).  ICM-RD improves the underwater image 

contrast by integrating the Rayleigh distribution in the limited stretching process. The 

correction of image color through Hue-Saturation-Value (HSV) color model further improves 

the overall image color.  On the other hand, RSAIP method solves the limitation of stretching 

process that faced by ICM-RD method.  The RSAIP method provides an alternative stretching 

technique, where the histogram of the original image is divided into two independent regions 

and stretched independently to occupy the limited dynamic intensity range.  The dividing and 

stretching processes produce two different intensity images.  These images are then combined 

by means of average value and applied with color correction technique to produce final 

resultant image.  The third proposed method, DIRS-CLAHS method is designed to improve 

the capability of the RSAIP method in enhancing image contrast by integrating global and 

local contrast correction.  DIRS-CLAHS is first applied with global contrast correction which 
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is introduced in the RSAIP method.  Local contrast correction is then applied by dividing the 

image into smaller tiles.  Finally, the method is applied with a new color correction process 

which is a modification of color correction process introduced in RSAIP and ICM-RD 

methods.  All proposed techniques, principally outperform the state-of-the-art methods, 

qualitative and quantitatively.   Out of the three proposed methods, DIRS-CLAHS method, is 

the best method and demonstrates a significant enhancement in improving the underwater 

image contrast and its color.  Quantitatively, in comparison with six state-of-the-art methods 

for 300 samples of underwater images, the proposed DIRS-CLAHS produces the highest 

average entropy of 7.624 and the lowest average MSE value of 646.32.  In addition, in terms 

of measure of enhancement (EME) and measure of enhancement by entropy (EMEE), DIRS-

CLAHS produces the highest average values which are 27.096 and 9.670, respectively. 
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