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PEMBANGUNAN MEMBRAN SERAMIK CAMPURAN KONDUKTOR IONIK 

DAN ELEKTRONIK CuO-TiO₂-La0.6Sr0.4Co0.2Fe0.8O3-δ UNTUK PEMISAHAN 

OKSIGEN  

 

ABSTRAK 

  

Kajian ini memfokuskan kepada penyediaan membran La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF) untuk pemisahan oksigen pada suhu persinteran yang lebih rendah menggunakan 

campuran 83.3 mol% CuO-16.7 mol% TiO₂ (0-3% berat) sebagai aditif. Kesan 

penambahan aditif terhadap sifat persinteran, struktur kristal, mikrostruktur, modulus 

Young, kekuatan lenturan dan kadar penelapan oksigen bagi membran LSCF telah dikaji. 

Penambahan campuran CuO-TiO₂ tidak menganggu struktur kristal membran LSCF. 

Penambahan 1% berat campuran CuO-TiO₂ telah menurunkan suhu persinteran 

membran LSCF sebanyak 200°C. Membran LSCF dengan 1% berat campuran CuO-TiO₂ 

yang disinter pada suhu serendah 1100°C menghasilkan kemampatan relatif melebihi 94% 

serta mempunyai kekuatan lenturan dan modulus Young yang tinggi. Kadar penelapan 

oksigen pada suhu 600°C bagi membran tersebut adalah yang tertinggi (0.079 ± 0.001 

ml/cm².min); iaitu 1.8 kali ganda lebih tinggi berbanding membran LSCF tanpa campuran 

CuO-TiO₂ yang disinter pada 1300°C (0.04 ± 0.003 ml/cm².min). Justeru, membran LSCF 

dengan 1% berat campuran CuO-TiO₂  yang disinter pada 1100°C telah dipilih untuk 

mengkaji kadar penelapan oksigen pada kondisi yang berbeza. Data eksperimen 

menunjukkan bahawa kadar penelapan oksigen meningkat dengan peningkatan suhu, 

tekanan separa oksigen dalam komposisi suapan dan kelajuan gas penyapuan; dan 

menurun dengan peningkatan ketebalan membran. Untuk membran dengan ketebalan 1.10 



xix 

 

mm, kondisi eksperimen optimum bagi kadar penelapan oksigen ialah pada suhu 600°C, 

tekanan separa oksigen dalam komposisi suapan 1 atm dan kelajuan gas penyapuan 100 

ml/min. Kadar penelapan oksigen sebanyak 0.180 ± 0.02 ml/cm².min telah diperoleh 

dengan gabungan kondisi eksperimen tersebut. Model matematik yang bersesuaian telah 

diusulkan untuk menentukan parameter penelapan oksigen berdasarkan data eksperimen. 

Data prediksi telah dibandingkan dengan data eksperimen untuk pengesahan model 

matematik yang diusulkan. Perbandingan antara data eksperimen dengan data prediksi 

menunjukkan keselarasan yang baik. Model matematik yang diusulkan juga menunjukkan 

bahawa kadar penelapan oksigen bagi ketebalan membran dalam julat 1.10-2.70 mm yang 

digunakan dalam kajian ini dipengaruhi oleh mekanisma difusi ruah. 
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DEVELOPMENT OF CuO-TiO₂-La0.6Sr0.4Co0.2Fe0.8O3-δ MIXED IONIC-

ELECTRONIC CONDUCTING CERAMIC MEMBRANE FOR OXYGEN 

SEPARATION 

 

ABSTRACT 

 

This study focuses on the preparation of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membrane 

for oxygen separation at low sintering temperature by using 83.3 mol% CuO-16.7 mol% 

TiO₂ mixture (0-3 wt.%) as additives. The effect of the additives on the sintering behavior, 

crystal structure, microstructure, Young’s modulus, flexural strength and oxygen 

permeation flux of the LSCF membrane have been investigated. The crystal structure of 

the LSCF membrane has not been affected by the CuO-TiO2 mixture addition. The addition 

of 1 wt.% CuO-TiO2 mixture has reduced the sintering temperature of the LSCF membrane 

by 200°C. The LSCF membrane with 1 wt.% CuO-TiO2 mixture sintered at 1100°C has 

obtained a relative density of over 94% with high flexural strength and Young’s modulus. 

Its oxygen permeation flux at 600°C is also the highest (0.079 ± 0.001 ml/cm².min); which 

is about 1.8 times higher than the pure LSCF membrane sintered at 1300°C (0.044 ± 0.003 

ml/cm².min). The LSCF membrane with 1 wt.% CuO-TiO2 mixture sintered at 1100°C has 

been chosen for further oxygen permeation performance studies at different conditions. 

The experimental results show that the oxygen permeation flux increases with the increase 

of temperature, oxygen partial pressure in the feed side and sweep gas flow rate; and 

decreases with the increase of membrane thickness. For the 1.10 mm thick membrane, the 

optimum experimental conditions for oxygen permeation flux have been found to be 600°C 

temperature, 1 atm oxygen partial pressure in the feed side and 100 ml/min sweep gas flow 



xxi 

 

rate. The oxygen permeation flux of 0.180 ± 0.02 ml/cm².min has been obtained using 

these co-optimized experimental conditions. The oxygen permeation parameters have been 

determined from the experimental data by proposing a suitable mathematical model. The 

predicted data have been compared with the experimental data in order to validate the 

proposed model. Good agreement has been achieved between predictions and experimental 

data. The proposed model also indicates that in the 1.10-2.70 mm thickness range used in 

the present study, the oxygen flux is predominatly controlled by bulk diffusion mechanism 

across the membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

Interest in mixed ionic-electronic conducting (MIEC) materials for oxygen 

separation from air arose in the 1980s when a number of new materials such as 

SrCo0.8Fe0.2O3-δ and La(Co,Fe)O3 were developed and studied for their transport 

properties, chemical and thermal stabilities and potential applications. Due to species 

transport in dissociated or ionized form rather than conventional molecular diffusion, 

MIEC membranes offer a unique separation mechanism and extremely high 

selectivity. The most important application of high temperature ceramics in this 

context is high purity oxygen production as a replacement of conventional cryogenic 

air separation units for IGCC and oxyfuel power plant processes (Kneer et al., 2010; 

Miracca et al., 2005; Repasky et al., 2012).  

 

Besides research and development (R&D) on high purity oxygen production, 

considerable attention has been spent on the integration of the permeation process into 

chemical reactors. Membrane reactors; which combine reaction and separation or 

distribution and reaction in one unit, are the result of these efforts. Of all the potential 

applications for MIEC membranes, the partial oxidation of methane (POM) to syngas 

is claimed to be of particular commercial relevance with capital cost saving potentials 

up to 30 % over conventional technologies (Smart et al., 2010). Lower cost oxygen 

would broaden the applicability for oxygen-blown integrated gasification combined 

cycle (IGCC) power plant, oxygen-enhanced coal combustion and coal conversion 

into clean liquid transportation fuels and hydrogen (Smart et al., 2010). 
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1.2 Problem Statement 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is one of the most investigated MIEC membrane 

materials (Cox-Galhotra and McIntosh, 2010; Ge et al., 2009a; Ge et al., 2009c; Tan 

et al., 2008; Wang et al., 2011; Zou et al., 2011). Compared to the alternative 

SrCo0.8Fe0.2O3-δ (SCF) and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskites; LSCF has 

lower oxygen permeability but exhibits excellent stability, and consequently is more 

suitable for long-term oxygen separation in industrial applications (Han et al., 2014; 

Meng et al., 2009; Watanabe et al., 2009; Zhang et al., 2010).  

 

This membrane material is also well-known for its moderate thermal and 

chemically-induced expansion, mechanical and chemical stability under a wide range 

of oxygen chemical potentials, low cost of the raw materials and viable preparation 

methods (Shao et al., 2013; Zou et al., 2011).  Although extensive research has been 

conducted in the past years, there are several issues in LSCF membrane that need to 

be addressed. The issues include: (1) the membranes should be prepared at low 

sintering temperature to reduce preparation cost; (2) the low temperature sintering 

technique should be viable and inexpensive; (3) the low-temperature sintered 

membranes should have sufficient mechanical strength; and (4) the low-temperature 

sintered membranes should possess considerably high oxygen permeation flux.  

 

The preparation of LSCF membrane has been complicated by the high 

temperatures needed to obtain the desired ceramic densification (>1300°C) (Huang et 

al., 2010; Shao et al., 2013; Zeng et al., 2007b; Zou et al., 2011). High sintering 

temperature required for treatment of the densification is challenging because of the 

scope, extent, complexity and incomplete understanding of the topic. The 
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disadvantages of high sintering temperature include high production cost, high 

maintenance fee, difficult quality control and high equipment cost as well as high 

energy consumption.  

 

High sintering temperature also promotes significant grain growth, causing a 

reduction of mechanical strength (Rahaman, 2008). Further challenge in the sintering 

process is to sinter the membranes to very high densities with theoretical limit of zero 

porosity. The presence of isolatedly enclosed pores in ceramic membranes after 

sintering could lead to a decrease in the oxygen permeation flux. This is due to the 

extended oxygen ion diffusion distance or the large resistance induced by many cycles 

of surface reactions (Ran et al., 2011). These pores may also impair the membrane 

integrity and reduce the mechanical strengh.  

 

Decreasing the particle size to increase the surface activity of the starting powder 

with advanced sintering techniques is a strategy that has been employed to reduce the 

sintering temperature of LSCF membranes (Lei et al., 2006; Wu et al., 2007; Zou et 

al., 2011). In addition to large surface area that increases the driving force for 

sintering; nano-powders promote low temperature sintering because smaller particle 

size allows densification to occur primarily via grain boundary diffusion, instead of 

lattice diffusion (Nicholas and De Jonghe, 2007). These advanced techniques 

however, could increase the complexity of membrane preparation; and thus, 

economically unfavourable for industrial application.  

 

Another approach; liquid phase sintering, has also been used to improve the 

sintering of ceramics. This simple and inexpensive method reduces sintering 
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