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PEMBANGUNAN SISTEM PENGKELASAN BERASASKAN JELMAAN
GELOMBANG KECIL DISKRET DAN RANGKAIAN NEURAL BUATAN

UNTUK IMEJ MAMOGRAM

ABSTRAK

Pada masa ini, terdapat pelbagai sistem diagnosis bantuan komputer (CAD)
yang dibangunkan sejak beberapa tahun lalu untuk membantu ahli radiologi dalam
pengecaman lesi mamografi yang boleh menunjukkan kehadiran kanser payudara.
Walau bagaimanapun, prestasi CAD terhad oleh dua isu utama iaitu (i) kawasan yang
tidak diingini (seperti label segi empat tepat berintensiti tinggi, pita, artifak, antara
muka kulit dan air, dan lain-lain) yang boleh mengganggu pengecaman kanser
payudara dan mengurangkan kadar ketepatan CAD, (ii) ketidakteraturan tekstur
mamogram yang meliputi ciri-ciri seperti entropi, tenaga, kepencongan, kurtosis, min
dan sisihan piawai yang berhubung kait dalam domain ruang dan tidak penting untuk
pengelasan. Oleh itu, bagi menangani masalah yang dinyatakan di atas, sistem CAD
yang lebih baik untuk imej mamogram dicadangkan. CAD yang dicadangkan ini terdiri
daripada tiga peringkat utama, iaitu prapemprosesan, pengekstrakan ciri dan
pengelasan imej mamogram. Pada peringkat prapemprosesan, Adaptive Multilevel
Threshold (AMLT), yang berjaya menyingkirkan kawasan yang tidak diingini seperti
yang dinyatakan sebelum ini, dicadangkan. Hal ini memberikan kelebihan kepada
sistem dengan membolehkan pencarian terhadap keabnormalan terkekang pada
lingkungan tisu payudara tanpa menjejaskan kawasan yang tidak diingini dalam latar
belakang imej. Pada peringkat pengekstrakan ciri, dua ciri baharu iaitu median
maksimum dan minimum subjalur berfrekuensi tinggi dicadangkan untuk pengkelasan
imej mamogram kepada kategori normal, benigna dan malignan. Analisis plot kotak

membuktikan bahawa kedua-dua ciri baharu tiada hubung kait dan penting untuk

XXi



pengelasan imej mamogram berbanding dengan ciri-ciri konvensional. Pada peringkat
pengelasan, rangkaian perseptron berbilang lapis (MLP) digunakan untuk
mengelaskan mamogram normal dan tidak normal pada fasa pertama dan mamogram
benigna dan malignan pada fasa kedua. Keputusan purata yang terhasil daripada 322
imej mamogram pada fasa pertama merumuskan bahawa pendekatan yang
dicadangkan berjaya mencapai keputusan yang boleh harap dengan ketepatan
sebanyak 96,27%, kepekaan sebanyak 94,78% dan kekhususan sebanyak 96.60%. Di
samping itu, keputusan purata yang terhasil daripada 115 imej yang tidak normal
mempunyai ketepatan, kepekaan dan kekhususan, masing-masing sebanyak 95.65%,
96.18% dan 95.38%. Keputusan eksperimen akhir menunjukkan bahawa sistem
pengelasan mamogram yang dibangunkan mampu mencapai pengelasan tertinggi
berbanding dengan sistem terkini yang lain. Prestasi pengelasan yang menggalakkan
ini menunjukkan bahawa sistem yang dicadangkan tersebut boleh digunakan untuk

membantu ahli patologi dalam menjalankan proses diagnosis.
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