DEVELOPMENT OF A DISCRETE WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK BASED CLASSIFICATION SYSTEM FOR MAMMOGRAM IMAGES

by

LUQMAN MAHMOOD MINA

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

September 2016

سورة المجادلة (11)

In the Name of Allah, the most Beneficent, the most Merciful {Allah will raise those who have believed among you and those who were given knowledge, by degree. And Allah is acquainted with what you do}

Surah Al-Mujaadila (11)

DEDICATION

To my supervisor Professor Dr. Nor Ashidi Mat Isa

To my parents, who have made me, the man I am today

To my dearest friends Dr. Khamees Khalaf and Ph.D. student Mr. Salam Mohammed To my dear wife Trifa for her unlimited love, support, patience and encouragement;

my three children: Helen, Aren and Asin for their understanding, patience, helping and bearing my absence at home;

my brothers and sisters who embrace me with their love, kindness and unconditional support as their eldest brother.

Luqman

ACKNOWLEDGEMENTS

First and foremost, I would like to thank and praise Allah, the almighty Merciful, who bestowed upon me by facilitating the successful accomplishment of this PhD research work. Respectfully, I acknowledge that my success is not only related to me but its possession to all the people whom guide me, teach me, pray for me and encourage me. From them, I learned the knowledge, patient, wisdom, humility and also how to gain access to my goals.

I would like to seize this opportunity to specially acknowledge to my supervisor, Prof. Dr. Nor Ashidi Mat Isa for his invaluable suggestions, dedication support, constructive effort and beneficial comments that have remarkably influenced to bring this work into light. His advices and words of encouragement helped me to overcome most of the difficulties I have faced. I am proud to conduct this research under his supervision.

The acknowledgement would be incomplete if I do not express my sincere gratitude to my co-supervisors, Prof. Dr. Kamal Zuhairi Zamli, for his support and encouragement to discuss and share his views about any issues related to this research. He always finds the time for listening to the little problems and roadblocks that unavoidably crop up in the course of performing research.

Special thanks to Universiti Sains Malaysia for their cooperation and providing the facilities required for this research. Also, special unreserved appreciation goes to the friendly staff of the school of Electrical and Electronic Engineering, for their cooperation and friendly attitude. My sincere appreciation is extended to Dr. Khamees Kh. Hasan for his invaluable support and encouragement during the study. I would like to extend my deepest appreciation to my best friends, the Phd student Mr. Salam Kareem for their support, prayers and endless friendship and encouragement. I would like to express the deepest appreciation to the Ministry of High Education and Scientific Research in Kurdistan\Iraq for its support. I wish acknowledge to Ministry of Electricity for their cooperation and facilities on approval for giving me the opportunity to seek for this Ph.D. degree.

Last but not the least, I would like to dedicate my gratitude to the dearest and nearest people to my heart, my family for their unremitting support, encouragement and boundless patience with me throughout the years of the research, especially my beloved wife and my wonderful kids, who patiently underwent the alienation and distance from the family without complaints and are supportive of me. This thesis is for you. Finally, to all my family members, I am forever indebted for your understanding, support, endless patience and encouragement when it matters the most. You are all like bright candles in the dark days and difficult times, so thank again.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xxi
ABSTRAK	xxii
ABSTRACT	xxiv

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Diagnosis of Breast Cancer	3
1.3	Current Trends in Computer Aided Classification System for Mammo	gram
	Image	5
1.4	Problems and Motivation	8
1.5	Research Objectives	11
1.6	Research Scope	12
1.7	Thesis Outline	13

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction		15
2.2	Breast	Cancer	16
	2.2.11	Background of Breast Cancer	16
	2.2.2 1	Diagnosis of Breast Cancer	17
	2.2.3	Critical Review	18
2.3	Mamr	nogram Image	20
	2.3.1	Background	20
	2.3.2	Problems of Mammogram Images	27
	2.3.3	Critical Review	29
2.4	Comp	uter Aided Classification System for Mammogram Image	30

	2.4.1	Data Acquisition	33
	2.4.2	Pre-processing	33
	2.4.3	Feature Extraction	44
	2.4.4	Artificial Neural Network Based Classification System	76
2.5	Resea	rch Gap Analysis	85
2.6	Chapter Summery 8		88

CHAPTER THREE: METHODOLOGY

3.1	Introduction 89		
3.2	The Overall Proposed Computer Aided Classification System for		
	mamn	nogram image	90
3.3	Data S	ets	92
3.4	Prepro	cessing Stage	94
	3.4.1	Breast Profile Segmentation	95
	3.4.2	Straight Line Removal	108
	3.4.3	Image Enhancement	109
	3.4.4	Image Cropping	111
3.5	Feature	es Extraction Stage	115
	3.5.1	Apply Wavelet Decomposition	117
	3.5.2	High Frequency Coefficients Extraction	127
	3.5.3	Generation of Scalar Features	129
	3.5.4	Determination of Median Minimum and Median Maximum	
		Features	130
	3.5.5	Normalization of Features	132
	3.5.6	Feature Selection	137
3.6	Classifi	cation of Mammogram Images	140
3.7	Performance Evaluation of CAD System		147
	3.7.1 (Classification Accuracy	147
	3.7.2 \$	Sensitivity	148
	3.7.3 \$	Specificity	148
	3.7.4 I	Receiver Operating Characteristic Curves	148
	3.7.5	The Area Under the Curve	149
	3.7.6	Confusion Matrix	150

	3.7.7 <i>k</i> -fold Cross-Validation	15 <mark>1</mark>
3.8	Chapter Summary	152

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1	Introduction 154		154
4.2	Results of Preprocessing 155		155
	4.2.1	Results of Breast profile Segmentation	156
		4.2.1(a) Observations from Radiologists' and Doctors' Feedbac on the AMLT Algorithm	ks 168
	4.2.2	Results of Straight Line Removal	169
	4.2.3	Results of Image Enhancement	173
	4.2.4	Results of Image Cropping	179
4.3	3 Results of Features Extraction 1		182
4.4	Classification Results 207		
	4.4.1 (Observations from Radiologists' and Doctors' Feedbacks on the	
	I	System	217
4.5	Chapte	r Summary	218
СН	APTER	FIVE: CONCLUSIONS AND FUTURE STUDIES	
5.1	Conclu	sions	220
5.2	Future	work	223
REI	REFERENCES 225		
APP	PENDIC	CES	

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Comparison of thresholding techniques (advantages and their limitation).	42
Table 2.2	Comparison of features selection techniques for mammography images with their advantages and limitations.	71
Table 2.3	Comparison of classification techniques with their advantages and disadvantages for mammogram images.	83
Table 3.1	Mammogram information format available in MIAS mini database.	94
Table 3.2	Equations of mean, standard deviation, skewness, kurtosis, energy and entropy.	130
Table 3.3	Confusion matrix for two class problem	151
Table 4.1	Reduction factor versus segmentation accuracy of AMLT algorithm tested with Mammogram Image Analysis Society (MIAS) databas.	157
Table 4.2	Determination of parameters value of AMLT method for mdb010, mdb042 and mdb051 images.	166
Table 4.3	Results of segmentation performance between the propose AMLT method and with other state-of-the-art methods.	167
Table 4.4	Parameters for Weiner, Gaussian, Mean, and Median filters	169
Table 4.5	Performance evaluation of straight line removal techniques	173
Table 4.6	Results of enhancement performance based on AAMBE analysis.	178

- Table 4.7Summary of the ANOVA tests analysis for the results of
CLAHE technique compared with the results of the other
techniques (i.e. Contrast Stretching, HE, Decorrelation
Stretching, and Intensity Limits Adjustment).
- Table 4.8Resultant cropped images of mdb191, mdb004 and mdb245.181Table 4.9Feature value ranges for level one of horizontal subband.193
- Table 4.10Feature value ranges for level one of vertical subband.194
- Table 4.11Feature value ranges for level one of diagonal subband.194
- Table 4.12Feature value ranges of medians of maximum features for level201one to five of horizontal vertical, and diagonal subbands.
- Table 4.13Feature value ranges of medians of minimum features for level201one to five of horizontal vertical, and diagonal subbands.
- Table 4.14Feature value ranges of medians of the maximum features for206level five to nine of horizontal vertical, and diagonal subbands.
- Table 4.15Feature value ranges of medians of the minimum features for206level five to nine of horizontal vertical, and diagonal subbands.
- Table 4.16Performance of MLP-1 to classify between normal and 208
abnormal cases.
- Table 4.17Confusion matrix of Fold-1 to classify normal and abnormal209cases.
- Table 4.18Confusion matrix of Fold-2 to classify normal and abnormal209cases.
- Table 4.19Confusion matrix of Fold-3 to classify normal and abnormal209cases.
- Table 4.20Confusion matrix of Fold-4 to classify normal and abnormal209cases.
- Table 4.21Confusion matrix of Fold-5 to classify normal and abnormal210cases.

- Table 4.22Performance of MLP-1 to classify between begin and malignant212cases for all folds with different number of neurons for eachfold.
- Table 4.23Confusion matrix of Fold-1 to classify benign and malignant212cases.
- Table 4.24Confusion matrix of Fold-2 to classify benign and malignant213cases.
- Table 4.25Confusion matrix of Fold-3 to classify benign and malignant213cases.
- Table 4.26Confusion matrix of Fold-4 to classify benign and malignant213cases.
- Table 4.27Confusion matrix of Fold-5 to classify benign and malignant213cases.
- Table 4.28Performancecomparisonformammogramimages215classificationbetween the proposed method and state-of-the-artmethods for benign and malignant.

LIST OF FIGURES

Page

Figure 1.1	Estimated number of cancer diagnosed cases in the world based on IARC study (Ferlay et al., 2013).	2
Figure 1.2	Estimated number of cancer deaths in the world based on IARC study (Ferlay et al., 2013).	2
Figure 1.3	Percentage of major cancers affecting Malaysian females (Zainal and Saleha, 2011).	3
Figure 2.1	(a) Mammogram image (b) Mammogram machine (Sakka <i>et al.</i> , 2006).	21
Figure 2.2	(a) Craniocaudal view obtained from DDSM database and (b) mediolateral oblique view acquired from MIAS database.	24
Figure 2.3	Types of tissues (a) Fatty tissue (mdb006) (b) Fatty Glandular tissue (mdb016) (c) Dense glandular tissue (mdb040) obtained from MIAS database.	26
Figure 2.4	Mammograms contain masses (a) benign masse (mdb028) (b) malignant masses (mdb045) obtained from MIAS database.	27
Figure 2.5	Steps entailed in developing the computer-aided medical diagnosis system.	32
Figure 3.1	The proposed approach for classification of mammogram image.	91
Figure 3.2	(a) Right breast (mdb111), (b) Left breast (mdb112) from MIAS database mammogram images showing image background, artifact, label, marker (scratch), skin-air interface, fatty tissue, pectoral muscle, and denser glandular tissue.	93
Figure 3.3	The proposed AMLT segmentation technique to extract the breast profile.	97
Figure 3.4	Second part of the proposed AMLT segmentation technique to extract the breast profile.	98

- Figure 3.5 Breast region segmentation of the LMLO mammogram 104 (mdb004) from MIAS database. (a) Original mammogram image (b) Inner mask of binary mammogram (c) Outer mask for binary mammogram (d) Skin-air interface region (e) Binary mammogram without noises (f) Grayscale breast profile without noises.
- Figure 3.6 Breast region segmentation of the RMLO (mdb013) from 105 MIAS database. (a) Original mammogram image (b) Inner mask of binary mammogram (c) Outer mask for binary mammogram (d) Skin-air interface region (e) Binary mammogram without noises (f) Grayscale breast profile without noises.
- Figure 3.7 The process of identifying the threshold value for breast profile 106 and background separation. (a) Initially $T_n = T_0$ and $d \neq 0$ (b) Iterative process of decreasing value of T_n by one intensity level (c) Final threshold value T_n at d = 0.
- Figure 3.8 Illustration outer threshold (T_{outer}) derived from inner threshold 107 (T_{inner}) , when $T_{outer} = f_r * T_{inner}$.
- Figure 3.9 RMLO (mdb013) mammogram image from MIAS database 108 contains straight line noise inside breast profile.
- Figure 3.10 Crop image tool box to identify rectangular coordination 112 using (mdb004.tif) mammogram image.
- Figure 3.11 Crop rectangular position vector for (mdb004.tif) mammo- 113 gram image at four-element coordination vector [290 208 420 810].
- Figure 3.12 Four examples of mammogram images with labels running 114 near to the breast border and hard to remove by cropping process. (a), (b), (c), and (d) are mdb006, mdb168, mdb247, and mdb274 respectively acquired from MIAS database.
- Figure 3.13 The proposed feature extraction stages flow chart for 116 mammogram images using 2D-DWT.
- Figure 3.14 Block diagram for level 1 decomposition of the DWT process; 118 (a) original mammogram image, (b) 1-D DWT process, (c) 2-D DWT process.

120 Figure 3.15 Wavelet functions (high pass filters) and scaling function (low pass functions) for Haar Wavelet based (Liu et al., 2010). Figure 3.16 Original image (mdb012) from MIAS database 124 Figure 3.17 Level-1 decomposition of mammogram image (mdb012.tif) 124 using two-dimensional Haar Wavelet Transform. Decomposition of mammogram image (mdb012.tif) using 2-D 125 Figure 3.18 HWT for (a) Level-2 (b) Level-3 (c) Level-4 (d) Level-5. Figure 3.19 Five levels high frequency sub bands: (a) illustrate procedure 128 of decomposition, (b) decomposition of mammogram image removal procedures. Steps of extracting the high frequency subbands from original Figure 3.20 135 mammogram image using 2D-HWT for five levels of decomposition. Figure 3.21 Steps of determining maximum and minimum median for high 136 frequency subbands in wavelet decomposition for five levels of decomposition. The illustration shows a generic example of a box plot with the 139 Figure 3.22 maximum, third quartile, median, first quartile, and minimum values labelled for different range of features. Figure 3.23 The illustration shows a generic example of a box plot with the 139 maximum, third quartile, median, first quartile, and minimum values labelled for similar range of features. 140 Figure 3.24 Overall classification stage block diagram for mammogram image including normal, benign, and malignant classes. 146 Figure 3.25 5-fold cross-Validation technique Figure 3.26 Receiver operating characteristic curve 151 Figure 4.1 Breast region segmentation for mdb010 from MIAS database. 160 (a) Original mammogram image (b) Inner mask of the binary mammogram (c) Outer mask for binary mammogram (d) Skinair interface region (e) Binary mammogram without noises (f) Grayscale mammogram without noises (g) Histogram distribution shows the threshold value at the mean and median intersection points.

- Figure 4.2 Breast region segmentation for mdb042 from MIAS database. 162 (a) Original mammogram image (b) Inner mask of the binary mammogram (c) Outer mask for binary mammogram (d) Skinair interface region (e) Binary mammogram without noises (f) Grayscale mammogram without noises (g) Histogram distribution shows the threshold value at the mean and median intersection points.
- Figure 4.3 Breast region segmentation for mdb042 from MIAS database. 164
 (a) Original mammogram image (b) Inner mask of the binary mammogram (c) Outer mask for binary mammogram (d) Skinair interface region (e) Binary mammogram without noises (f) Grayscale mammogram without noises (g) Histogram distribution shows the threshold value at the mean and median intersection points.
- Figure 4.4 A comparison of the straight line removal technique of 171 mammogram image mdb079: (a) Original image, (b) Weiner 2D filter, (c) Gaussian filter, (d) Mean filter, and (e) Median filter.
- Figure 4.5 Comparison of enhancement techniques on mdb005 174 mammogram image using (a) original image, (b) contrast stretching, (c) decorrelation stretching, (d) intensity limits adjustment, (e) histogram equalization (f) CLAHE.
- Figure 4.6 Comparison of enhancement techniques on mdb006 175 mammogram image using (a) original image, (b) contrast stretching, (c) decorrelation stretching, (d) intensity limits adjustment, (e) histogram equalization (f) CLAHE.
- Figure 4.7 Comparison of enhancement techniques on mdb248 176 mammogram image using (a) original image, (b) contrast stretching, (c) decorrelation stretching, (d) intensity limits adjustment, (e) histogram equalization (f) CLAHE.
- Figure 4.8 Box plot distributions for the energy feature measured from 184 level 1 map using Haar Wavelet basis; (a), (b) and (c) distribution of Energy feature samples for normal and abnormal mammogram images at H, V, and D subbands respectively.

- Figure 4.9 Box plot distributions for the entropy feature measured from 186 level 1 map using Haar Wavelet basis; (a), (b) and (c) distribution of Energy feature samples for normal and abnormal mammogram images at H, V, and D subbands respectively.
- Figure 4.10 Box plot distributions for the kurtosis feature measured from 188 level 1 map using Haar Wavelet basis; (a), (b) and (c) distribution of Energy feature samples for normal and abnormal mammogram images at H, V, and D subbands respectively.
- Figure 4.11 Box plot distributions for the skewness feature measured from 189 level 1 map using Haar Wavelet basis; (a), (b) and (c) distribution of Energy feature samples for normal and abnormal mammogram images at H, V, and D subbands respectively.
- Figure 4.12 Box plot distributions for the mean feature measured from 191 level 1 map using Haar Wavelet basis; (a), (b) and (c) distribution of Energy feature samples for normal and abnormal mammogram images at H, V, and D subbands respectively.
- Figure 4.13 Box plot distributions for the standard deviation features 192 measured from level 1 map using Haar wavelet basis; (a), (b) and (c) are standard deviation feature samples of normal and abnormal mammogram images for H, V, and D subbands respectively.
- Figure 4.14 Box plot distributions for the medians of the maximum 197 features measured from level level 1 to level 5 of Haar Wavelet decomposition; (a), (b), (c), (d), and (e) are medians of the maximum features for normal and abnormal mammogram images from level one to level five respectively.
- Figure 4.15 Box plot distributions for the medians of the minimum features 199 measured from level level 1 to level 5 of Haar Wavelet decomposition; (a), (b), (c), (d), and (e) are medians of the maximum features for normal and abnormal mammogram images from level one to level five respectively.

- Figure 4.16 Box plot distributions for the medians of the maximum 203 features measured of high frequency subbands; (a), (b), (c), and (d) are medians of the maximum features for normal and abnormal mammogram images from level six to level nine respectively.
- Figure 4.17 Box plot distributions for the medians of the minimum features 205 measured of high frequency subbands; (a), (b), (c), and (d) are medians of the maximum features for normal and abnormal mammogram images from level six to level nine respectively.
- Figure 4.18ROC curve of performance of classifier MLP-1.211
- Figure 4.19 ROC curve of performance of classifier MLP-2. 214

LIST OF ABBREVIATIONS

Abbreviation	Description
1-D	One Dimension
1D-DWT	One Dimension Discreet Wavelet Transform
2-D	Two Dimensions
2D-DWT	Two Dimension Discreet Wavelet Transform
3-D	Three Dimension
Α	Approximation Subband
AMBE	Absolute Mean Brightness Error
AAMBE	Average Absolute Mean Brightness Error
ABC	Artificial Bee Colony
AMLT	Adaptive Multilevel Threshold
ANN	Artificial Neural Network
ANCE	Adaptive Neighborhood Contrast Enhancement
AMBE	Absolute Mean Brightness Error
AUC	Area Under the Curve
BP	Backpropagation
BPANN	Backpropagation Artificial Neural Network
BPN	Backpropagation Network
CAD	Computer Aided Diagnosis
CBT	Clustering-based Thresholding
CLAHE	Contrast Limited Adaptive Histogram Equalization
СТ	Computed Tomography
D	Diagonal subband

dB	Decibel
DCIS	Ductal Carcinoma In Situ
DDSM	Digital Database for Screening Mammography
DWT	Discreet Wavelet Transform
ECGs	Electrocardiography
EEGs	Electroencephalogram
ELMANN	Extreme Learning Machin Artificial Neural Network
EM	Expectation Maximization
FFDM	Full Field Digital Mammogram
FN	False Negative
FNF	False Negative Fraction
FANC	Fine Needle Aspiration Cytology
FP	False Positive
FROC	Free Response Operating Characteristic
GA	Genetic Algorithm
GLCM	Gray Level Co-occurrence matrix
GLRLM	Gray Level Run-Length Method
GMRF	Gaussian Markov Random Field
GN	Genetic Network
Н	Horizontal subband
HE	Histogram Equalization
нн	High-High
HL	High-Low
HMLP	Hybrid Multilayer Perceptron
НТ	Histogram Shaped-based Thresholding

HWT	Haar Wavelet Transform
IARC	International Agency for Research Center
IT	Information-based Thresholding
KNN	K-Nearest Neighborhood
LDA	Linear Discriminate Analysis
LH	Low-High
LL	Low-Low
LM	Levenberg Marquard
LMLO	Left Medio-Lateral Oblique
LMS	Least Mean Square
LT	Locally Adaptive Thresholding
MC	Microcalcification
MIAS	Mammographic Images Analysis Society
MLP	Multilayer Perceptron
Mod-max	Modules-maximum
MPM	Maximizer of the Posterior
MPV	Mean Pixel Value
MRA	Multi-Resolution Analysis
MRF	Markov Random Field
MRI	Magnetic Resonance Imaging
MSE	Mean Squared Error
MWA	Multiresolution Wavelet Analysis
OAT	Object Attribute Thresholding
PCA	Principal Component Analysis
РЕТ	Positron Emission Tomography

PNN	Probabilistic Neural Network
POSWNN	Particle Swarm Optimization Wavelet Neural Network
PSNR	Peak Signal to Noise Ratio
PSO	Particle Swarm Optimization
RBF	Radial Basis Function
RMLO	Right Medio-Lateral Oblique
ROC	Receiver Operating Curve
ROI	Region of Interest
SFM	Screen Film Mammogram
SGLDM	Spatial Gray Level Dependency Matrix
SONN	Swarm Optimization Neural Network
SVM	Support Vector Machine
TN	True Negative
ТР	True Positive
TPF	True Positive Fraction
TWSVM	Twin Support Vector Machine
UK	United Kingdom
US	Ultrasonography
V	Vertical subband
WHO	World Health Organization

LIST OF SYMBOLS

Symbol Description

Reduction Factor
Inner Binary Mask
Outer Binary Mask
Skin-air Interface Region
Binary Breast Profile LMLO
Binary Breast Profile RMLO
Initial Threshold
Current Threshold
Inner Threshold
Outer Threshold
Mean Value
Median Value
Haar Scaling Function
Haar Wavelet Function
Approximation Subband
Detail Subband

PEMBANGUNAN SISTEM PENGKELASAN BERASASKAN JELMAAN GELOMBANG KECIL DISKRET DAN RANGKAIAN NEURAL BUATAN UNTUK IMEJ MAMOGRAM

ABSTRAK

Pada masa ini, terdapat pelbagai sistem diagnosis bantuan komputer (CAD) yang dibangunkan sejak beberapa tahun lalu untuk membantu ahli radiologi dalam pengecaman lesi mamografi yang boleh menunjukkan kehadiran kanser payudara. Walau bagaimanapun, prestasi CAD terhad oleh dua isu utama iaitu (i) kawasan yang tidak diingini (seperti label segi empat tepat berintensiti tinggi, pita, artifak, antara muka kulit dan air, dan lain-lain) yang boleh mengganggu pengecaman kanser payudara dan mengurangkan kadar ketepatan CAD, (ii) ketidakteraturan tekstur mamogram yang meliputi ciri-ciri seperti entropi, tenaga, kepencongan, kurtosis, min dan sisihan piawai yang berhubung kait dalam domain ruang dan tidak penting untuk pengelasan. Oleh itu, bagi menangani masalah yang dinyatakan di atas, sistem CAD yang lebih baik untuk imej mamogram dicadangkan. CAD yang dicadangkan ini terdiri daripada tiga peringkat utama, iaitu prapemprosesan, pengekstrakan ciri dan pengelasan imej mamogram. Pada peringkat prapemprosesan, Adaptive Multilevel Threshold (AMLT), yang berjaya menyingkirkan kawasan yang tidak diingini seperti yang dinyatakan sebelum ini, dicadangkan. Hal ini memberikan kelebihan kepada sistem dengan membolehkan pencarian terhadap keabnormalan terkekang pada lingkungan tisu payudara tanpa menjejaskan kawasan yang tidak diingini dalam latar belakang imej. Pada peringkat pengekstrakan ciri, dua ciri baharu iaitu median maksimum dan minimum subjalur berfrekuensi tinggi dicadangkan untuk pengkelasan imej mamogram kepada kategori normal, benigna dan malignan. Analisis plot kotak membuktikan bahawa kedua-dua ciri baharu tiada hubung kait dan penting untuk

pengelasan imej mamogram berbanding dengan ciri-ciri konvensional. Pada peringkat pengelasan, rangkaian perseptron berbilang lapis (MLP) digunakan untuk mengelaskan mamogram normal dan tidak normal pada fasa pertama dan mamogram benigna dan malignan pada fasa kedua. Keputusan purata yang terhasil daripada 322 imej mamogram pada fasa pertama merumuskan bahawa pendekatan yang dicadangkan berjaya mencapai keputusan yang boleh harap dengan ketepatan sebanyak 96,27%, kepekaan sebanyak 94,78% dan kekhususan sebanyak 96.60%. Di samping itu, keputusan purata yang terhasil daripada 115 imej yang tidak normal mempunyai ketepatan, kepekaan dan kekhususan, masing-masing sebanyak 95.65%, 96.18% dan 95.38%. Keputusan eksperimen akhir menunjukkan bahawa sistem pengelasan mamogram yang dibangunkan mampu mencapai pengelasan tertinggi berbanding dengan sistem terkini yang lain. Prestasi pengelasan yang menggalakkan ini menunjukkan bahawa sistem yang dicadangkan tersebut boleh digunakan untuk membantu ahli patologi dalam menjalankan proses diagnosis.