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KESAN PENGAMBILAN PRODUK LEBAH TERHADAP PANJANG 

TELOMER DAN PENINGKATAN JANGKA HAYAT PENTERNAK LEBAH 

   

ABSTRAK 

 

Kepercayaan bahawa penternak lebah hidup lebih lama berbanding orang lain telah 

wujud sejak berkurun lamanya. Namun, tiada kajian telah dibuat bagi mendalami isu 

peningkatan jangka hayat penternak lebah. Kajian yang lepas menunjukkan telomer 

berkait dengan peningkatan jangka hayat. Justeru, kajian ini dibuat untuk 

menganalisa telomer 30 orang penternak lebah dan 30 orang bukan penternak lebah 

lelaki dan mengaitkan dengan peningkatan jangka hayat. Analisis Southern Terminal 

Restriction Fragment Length (TRFs) telah dibuat dengan mencernakan DNA dengan 

HinfI/RsaI dengan menggunakan kit TeloTAGGG Telomere Length Assay. 

Menariknya, kajian mendapati panjang telomer penternak lebah lelaki adalah lebih 

panjang berbanding bukan penternak lebah lelaki dengan nilai p kurang daripada 

0.05, mencadangkan bahawa penternak lebah mungkin hidup lebih lama berbanding 

bukan penternak lebah. Kajian ini juga mendapati bahawa pengambilan produk lebah 

dalam jangka masa yang lama dan kekerapan pengambilan produk lebah untuk setiap 

hari berkait dengan panjang telomer. Satu peningkatan tahun dalam pengambilan 

produk lebah berkait dengan peningkatan panjang telomer sebanyak 0.258 kbp. Di 

samping itu, setiap peningkatan  frekuensi dalam pengambilan produk lebah setiap 

hari berkait dengan peningkatan panjang telomer sebanyak 2.66 kbp. Hasil kajian ini 

mencadangkan bahawa produk lebah mungkin memainkan peranan dalam 

mengekalkan panjang telomer. 
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EFFECT OF CONSUMPTION OF BEE PRODUCTS ON TELOMERE 

LENGTH AND LONGEVITY OF LIFE IN BEEKEEPERS 

 

ABSTRACT 

 

The belief that beekeepers live longer than anyone else is present since ages and no 

research has been done to explore their longevity. Research has shown that telomere 

is associated with the longevity of life. Hence, this study aimed to investigate the 

telomere length in 30 male beekeepers and 30 male non-beekeepers and associate 

them with the longevity of life. Southern blot analysis of terminal restriction 

fragments (TRFs) was carried out by HinfI/RsaI digestion of human genomic DNA 

using TeloTAGGG Telomere Length Assay. Interestingly, the present study found 

that the telomere length of male beekeepers was significantly longer than those of 

male non-beekeepers with a p-value of less than 0.05, suggesting that beekeepers 

may have longer life compared to non-beekeepers. It was further found that the 

consumption of bee products for a long period and frequent consumption of bee 

products per day are associated with telomere length. A year increase in consuming 

bee products is associated with a mean increase in telomere length of 0.258 kbp. In 

addition, an increase in frequency of consuming bee products per day was also 

associated with a mean increase of 2.66 kbp in telomere length. These results suggest 

that bee products might play a role in telomere length maintenance. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the study 

 

“There is nothing in the world that could beat honey as an aid to defy old age. Keep 

bees and eat honey if you want to live long. Beekeepers live longer than anybody 

else.”  

                                                                                                         -John Anderson 

There are many examples in history which confirm the belief that beekeepers seem to 

live longer than anyone else. One of the examples was Anacreon, who died at the age 

of 115. He credited his long life to the daily use of honey. Other example includes 

Johann Dzierzon who was the Father of Modern Beekeeping, lived until he was 95 

years old. Lorenzo Lorreine Langstroth, who was described as Father of American 

Beekeeping, died at the age of 85 years (Health, 2014). This observation is thought to 

be contributed by the great consumption and inhalation of honey by beekeepers. 

 

Bees have been of human interest for more than 5000 years ago due to the benefits of 

honey (Association, 2005). Ancient Egypt for example, highly valued the honey and 

bees. The pharaoh had used the title of Bee King and the Gods were also associated 

with bees. In addition, bees were also chosen as a symbol for the country. They kept 

bees and honey in temples and named them as Mansion of Bee (Crane, 1999). These 

events suggest that the beekeeping activity has existed for a very long time. 

Interestingly, honey has been suggested as a significant food item in human 

evolution (Crittenden, 2011; Wrangham, 2011). Recently, it is thought that the ability 
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of human to climb trees mainly stems from the desire to collect honey (Kraft et al., 

2014). Honey is extremely high in energy (~3.0 kcal g-1) and nutritions (Bogdanov 

et al., 2008). Besides that, it has many functional properties preferred by humans 

such as long preservation time (Nagai et al., 2006), anti-microbial, antiviral, anti-

parasitory, antioxidant effects and anti-inflammatory (Bogdanov et al., 2008). 

Propolis and royal jelly, which are the other bee products are also widely known for 

such properties (Viuda‐Martos et al., 2008). Hence, it is unsurprising that bee 

products could play such a vital role in human evolution. 

 

1.2 Problem statement 

 

Although history has proven that beekeepers had lived longer than anyone else, there 

is dearth of research and information in exploring if this belief is only the “old wives 

tales” or vice versa? The quest for the ‘miracle’ to longevity of life has been longing 

by human race since long time ago. The desire for longevity of life can be seen from 

the market growth of anti-ageing products. According to Global Industry Analyst 

report, anti-ageing market is projected to be worth USD 291.5 billion by 2015 

(WorldHealth.Net, 2009). They continued that consumers spending on anti-ageing 

products are also expected to reach $291.9 billion by 2015 (Mitteness, 2013). Thus, 

seeking an answer to this belief might be a good opportunity to probably solve some 

of the puzzles into longevity of life that might benefit human beings rather than 

leaving to be a mere belief.  
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Telomere length has been suggested to be a marker of biological ageing (Mather et 

al., 2011). Telomeres are the tandem repeat sequence of TTAGGG (Blackburn, 

1991; Lu et al., 2013) and associated with telomere-associated proteins called 

shelterin (Lu et al., 2013). Telomeres shorten with every cell division (Harley et al., 

1990). This is because the DNA replication machinery is unable to copy the ends of 

the linear molecules (Olovnikov, 1970). Shorter telomere length has been associated 

with ageing as well as human ageing associated diseases like cancer, cardiovascular 

diseases and obesity (Blackburn, 2010; Codd et al., 2013). In simpler thought, 

shorter telomere length might indicate shorter life. In this connection, telomere 

length can be a good indicator of measuring the longevity of life biologically. 

 

In addition, there is lack of research in exploring the association between bee 

products on telomere length as well. To date, people have studied the antioxidant 

capacity of honey on cells (Beretta et al., 2007). The study demonstrated that honey 

may lower the risks and effects of acute and chronic free radical induced pathologies 

in vivo by reducing and lowering reactive oxygen species (ROS). The association 

between telomere length and other antioxidants such as β-carotene, vitamin C or E 

and omega 3 had been established (Shen et al., 2009; Paul, 2011). However, there is 

lack of study on the association between telomere length and bee products. Thus, the 

focus of this research is to throw light on this problem and to provide the answer to 

this question. 

 

 

 

 



4 

 

1.3 Justification of the study 

 

This research is aims to provide an insight into the longevity of life in beekeepers by 

measuring and comparing the mean terminal restriction fragment length (TRF) of 

telomere between beekeepers and non-beekeepers and associate with longevity of 

life.  Besides that, we hope to shed some light on the factors that may influence the 

longevity of life in beekeepers. It is also hoped that this research would offer a base 

for further studies in identifying independent beekeeping related factors such as bee 

sting or using bee products as food causative agent for longevity of life and finally, 

lead to the utilisation of bee products as agents for longevity of life. 

 

1.4 Objectives of the study 

 

1.4.1 General objective 

To study the association between telomere length and longevity of life in beekeepers. 

 

1.4.2 Specific objectives 

1. To determine the Terminal Restriction Fragment length of telomere among 

beekeepers and non-beekeepers. 

2. To statistically evaluate the Terminal Restriction Fragment length of telomere 

between the above two groups. 

3. To determine the association between consumption of bee products and 

telomere length variations.  

 

1.5 Research hypothesis 

Beekeeping and consumption of bee products influence telomere length variations. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 Beekeeping 

 

Beekeeping or apiculture is the maintenance and study of honey bee colonies, 

commonly in hives, by humans (Crane, 2009; Columbia, 2011). A beekeeper or 

apiarist keeps bees so that they could collect honey and other bee products like 

propolis, pollen, beeswax and royal jelly. Other purposes of beekeeping are 

to pollinate crops and to produce bees for sale to other beekeepers (Crane, 2009). 

Generally, each colony of bees is kept in a hive although some may build their nests 

in the open. Other type of beekeeping involves certain non-social bees that are reared 

to pollinate crops (Crane, 2009). 

 

Nowadays, bees are kept in movable-frame hives. This is because the hives need not 

be destroyed in order to collect the honey. Another reason is because bee products 

are also in their specific level of frames. These reasons make the work of harvesting 

honey or other bee products to become more effective (Crane, 2009). During the 

harvesting of honey or other bee products, the beekeepers smoke the bees (Figure 

2.1) to reduce the electroantennograph response of the guard bees, who otherwise 

would release a volatile alarm odour pheromone (Boch, 1962; Visscher et al., 1995). 

When the smoke enters the hive, the antennae receptors of the guard bees are dulled 

and they fail to sound the alarm. When exposed to smoke, bees are dramatically less 

defensive and aggressive. As a result, the risk for engorgement and the tendency to 

sting is reduced (Visscher et al., 1995). 
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Apis mellifera is a species of bees which has been used in most of the world’s 

beekeeping. Other species include Apis dorsata and Apis cerana. Previously, bees 

were kept mainly to produce honey and beeswax. Nowadays, beekeeping has been 

tailored to different purposes like rearing queens or package bees for other 

beekeepers who produce honey. Some may provide bee colonies for crops 

pollinations and to produce royal jelly, pollen and bee venom since 1950s (Crane, 

2009). 
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Figure 2.1: Smoking the hive to reduce the electroantennograph response of the 

guard bees (Adapted from http://www.sabah.gov.my/kpd/oldoldweb/Projek-

LebahMadu.html). 
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2.2 Telomere and its regulation 

 

2.2.1 Telomere 

 

Telomeres are long repetitive DNA sequences located at the end of the linear 

chromosomes (Blackburn, 1991) and bound by shelterin proteins or telosomes (Palm 

and de Lange, 2008). Telosomes are the proteins which act as protection for the 

telomere loop structure. This protection prevents the chromosome ends uncapped, 

resemble a DNA break and activates DNA repair mechanism (Gomez et al., 2012).  

 

In mammalian cells, telomere comprises double-stranded tandem repeats of 

TTAGGG (Palm and de Lange, 2008).  These repeat sequences do not encode for 

proteins (Hodes, 1999). However, it consists of G-rich hexanucleotide repeats which 

enable the single-stranded telomere G overhangs to form G-quadraplexes (Palm and 

de Lange, 2008; Lipps and Rhodes, 2009), where each G base serves as both donor 

and acceptor for hydrogen bond formation. In humans, telomeric G-quadraplex 

structure is thought to contribute in telomere protection, suppression of 

recombination and inhibition of telomerase-dependant telomere extension (Lipps and 

Rhodes, 2009). 

 

It is thought that telomere adopts the T-loop structure, where the telomere end folds 

back on itself and the 3′ G strand overhang invades into the double-stranded DNA. 

This structure formation is called D-loop (Palm and de Lange, 2008). Besides that, it 

is believed that telomere structure can switch between a closed, protected state and 

an open, extendable state, which allows the DNA terminus to undergo replication. 

The protected state is necessary to safeguard the integrity of genomic material, 
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whereas the extendable state allows telomerase to extend short telomeres (Stewart et 

al., 2012). 

 

Telomeres protect the ends of linear chromosomes from breaking down and 

degradation and in avoiding recognition and processing as double-strand breaks 

(Kobryn and Chaconas, 2001).  Studies carried out in yeast and other single 

organisms have shown that the functions of telomeres include protection from the 

chromosomal recombination, end-to-end fusion and recognition as damaged DNA, 

determination of chromosomal localization within the nucleus and to regulate the cell 

capacity for replication (Hodes, 1999). 

 

Telomere length varies between chromosomes and between species. For instance, 

mice have longer telomere length as compared to human. The shortest telomere 

length is estimated to be 10 kbp. In human chromosomes, the telomere length is 

between 0.5 and 15 kbp. In addition, telomere length is also dependent on the type of 

tissue, age of the donor and the replicative history of the cells. For example, 

chromosome 17p has shorter telomere length as compared to other chromosome 

ends. Besides, it was observed that the average telomere length declines significantly 

with increasing age in human nucleated blood cells (Aubert and Lansdorp, 2008). 

Interestingly, rate of telomere attrition also varies markedly at different ages (Frenck 

et al., 1998). An in vitro analysis of human fibroblast revealed that the telomere loss 

is 50-100 bp per cell division (Allsopp et al., 1992).   
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2.2.2 Telomerase structure 

 

Telomerase is a unique eukaryotic ribonucleoprotein (RNP) complex (Greider and 

Blackburn, 1985; Blackburn, 1992; Bryan and Cech, 1999), which aids in the 

stabilization of telomere length in human stem cells, reproductive cells (Wright et al., 

1996) and cancer cells (Kim et al., 1995; Shay and Bacchetti, 1997) by adding 

TTAGGG repeats onto chromosomes ends.  This addition is achieved using its 

intrinsic RNA as a template for reverse transcription (Feng et al., 1995). There are 

two conserved components of telomerase which are essential in the addition of 

telomere repeat sequences. The first one is the core telomerase protein called 

telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) 

which complexes with TERT and provides the template for telomeric sequence 

synthesis (Greider and Blackburn, 1989; Feng et al., 1995; Lingner et al., 1997). It is 

thought that the human telomerase holoenzyme is assembled in the Cajal body, 

where TERT and TERC form a RNP enzyme complex (Podlevsky and Chen, 2012). 

While TERT and TERC are sufficient for the telomerase activity in vitro, other 

proteins are also required for its assembly, trafficking and regulation (Blackburn and 

Collins, 2011; Podlevsky and Chen, 2012).  

 

Dyskerin is the most characterized mammalian telomerase accessory component 

(Mitchell et al., 1999b).  Dyskerin forms a core complex with three smaller proteins 

NHP2 ribonucleoprotein (NHP2), NOP10 ribonucleoprotein (NOP10) and GAR1 

ribonucleoprotein (GAR1). Dyskerin binds to an H/ACA box RNA structural motif 

within TERC and to small nucleolar RNAs. This binding is essential for TERC 

stability and telomerase function in vivo (Mitchell et al., 1999a; Mitchell et al., 
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1999b; Chen et al., 2000). Another protein called telomerase Cajal body protein 1 

(TCAB1) binds to TERC and regulates its trafficking (Tycowski et al., 2009; 

Venteicher et al., 2009). 

 

2.2.3 Interplay between telosome and telomerase in telomere maintenance  

 

Telomere maintenance involves the interaction between telosome and telomerase. It 

is the interplay between both which helps to maintain and protect the telomeres. Any 

fault in either one would affect both the protection and maintenance of telomeres.   

 

2.2.3.1 Telosome 

 

The maintenance of telomere depends on the massive network of protein complexes 

at the telomere. In this regard, telosome is central to this process. Telosome is 

composed of six protein complexes which include telomeric repeat binding protein 1 

and 2 (TRF 1 and TRF 2), the TRF-1 interacting protein 2 (TIN2), 

Repressor/activator protein 1 homolog (RAP1), protection of telomeres 1 (POT1) 

and telomere protection protein 1 (TPP1) (Liu et al., 2004a; de Lange, 2005). TRF1 

and TRF2 have similar domain structure consisting of a C-terminal SANT/Myb 

domain and an N-terminal TRF homology (TRFH) domain. These domains have 

high binding specificity for the half site 5´-ÝTAGGGTTR-3´ in telomeric double-

stranded DNA (dsDNA) (De Lange, 2005). The two N-terminal 

oligonucleotide/oligosaccharide-binding (OB) folds of POT1 are highly specific for 

the 5´-TAGGGTTAG-3´ sequence of single-stranded G-overhangs (Lei et al., 2004). 

TIN2 functions as a hub by binding to TPP1/POT1 heterodimer, TRF1 and TRF2 
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(Xin et al., 2008).  TPP1 can also act together with POT1, TIN2 and telomerase 

(Wang et al., 2007; Xin et al., 2008). Mammalian RAP1 is targeted to telomeric 

DNA by directly interacting with TRF2. These six core proteins can act together as a 

platform that recruits players from various pathways to the telomeres for 

maintenance and protection (Lee et al., 2011). The details on the functions of each 

telosome protein are described below. 

 

2.2.3.1.1 Telomere repeat binding factor 1  

 

TRF1 is the first double-stranded telomere DNA binding protein identified (Zhong et 

al., 1992). It functions as a negative regulator for telomere length (Van Steensel and 

de Lange, 1997). Study showed that the homozygous deletion of TRF1 in mice was 

lethal to embryo during blastocyst stage with severe growth defects (Karlseder et al., 

2003). Apoptosis process was also accompanied these events suggesting that TRF1 

plays vital roles that may be independent of telomere length regulation (Karlseder et 

al., 2003). TRF1 expression is tightly regulated. As a consequence, it will lead to the 

telomere homeostasis (Zeng et al., 2010). 
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2.2.3.1.2 Telomere repeat binding factor 2 and repressor/activator protein 

1 homolog  

 

TRF2 has appeared as an important player in maintaining the telomere length. It acts 

as negative regulator for telomere length and contributes to telomere protection 

(Smogorzewska et al., 2000).  It acts as a hub by recruiting various factors for 

telomere regulation. One of the ways of which TRF2 regulates telomere length is 

through Ataxia telangiectasia mutated (ATM) mediated non-homologous end joining 

(NHEJ) pathways. Study showed that TRF2-deficient mouse embryonic fibroblasts 

(MEFs) had severe proliferation defects caused by enormous end-to-end fusions 

facilitated by the NHEJ pathway (Celli and de Lange, 2005). Similar to TRF1, 

homozygous inactivation of TRF2 in mice was embryonic lethal and cannot be 

rescued by p53 abrogation. This means that different mechanisms are applied by 

TRF1 and TRF2 to ensure survival during embryonic development (Celli and de 

Lange, 2005). 

  

The structure of RAP1 is highly conserved. It has a C-terminal (RCT) domain, a 

BRCA1 C Terminus (BRCT) domain and Myb domain(s). Since mammalian RAP1 

lacks telomere-binding capacity, it interacts with TRF2 for telomere localization (Li 

et al., 2000; Palm and de Lange, 2008). Studies suggested that RAP1 repressed 

homologous recombination (HR) at telomere. They found that TRF2/RAP1 

complexes with DNA repair factor BTBD12 domain-containing protein 12 

(BTBD12) and facilitates DNA damage response and Holliday junction processing. 

In addition, number of DNA repair proteins has been found in the RAP1/TRF2 

complex such as Rad50, Mre11, Poly [ADP-ribose] polymerase 1 (PARP1), and 
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Ku86/Ku70. In contrast to TRF1 and TRF2, RAP1-deficient mice appeared viable, 

although with increased telomere recombination and fragility (Martinez et al., 2010). 

 

2.2.3.1.3 Protection of telomeres 1  

 

There are three main functions of POT1. The first one is to protect telomere ends 

from ataxia telangiectasia and Rad3-related protein (ATR) dependent DNA damage 

response. Other functions include to regulate telomerase-dependent telomere 

elongation and controlling 5´-end resection at telomere termini (He et al., 2006; 

Hockemeyer et al., 2006; Wu et al., 2006). Recently, Zou and team discovered that 

TERRA (telomeric repeat-containing RNA), heterogeneous nuclear 

ribonucleoprotein A1 (hnRNPA1), and POT1 could act together to remove 

replication protein A (RPA) from telomeric ssDNA after DNA replication. RPA 

exclusion is performed to support telomere end protection by inhibiting ATR-

mediated DNA damage signals (Flynn et al., 2011). Other than that, TPP1 can 

interact directly with POT1 to enhance POT1 affinity for telomeric ssDNA (Wang et 

al., 2007; Xin et al., 2007). Interestingly, TPP1 interacts directly with telomerase for 

its recruitment to telomeres (Wang et al., 2007; Xin et al., 2007). 

 

2.2.3.1.4 Telomere protection protein 1  

 

Human TPP1 interacts with both TIN2 and POT1 (Liu et al., 2004b) by binding to 

the c-terminus of POT1. In addition, TPP1 is required for POT1 to localize telomere 

(Liu et al., 2004b; Kibe et al., 2010; Tejera et al., 2010). TPP1 interacts directly with 

POT1 and enhances POT1 affinity for telomeric ssDNA (Wang et al., 2007; Xin et 
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al., 2007). Besides, TPP1 is recruited to telomere through its interaction with 

telomerase (Wang et al., 2007; Xin et al., 2007). It has been shown that TPP1 null 

MEFs and mice had decreased telomerase binding to telomeres and short telomeres 

(Tejera et al., 2010). It had been suggested that telomere length is regulated through 

the interaction between TPP1 OBFC1/Stn1, an OB-fold protein that directly binds to 

ss-telomeric DNA (Wan et al., 2009). In support of this notion, recent study 

discovered that OBFC1/Stn1-containing CTC1, STN1 and TEN1 (CST) complex is 

involved in 5´-end resection for 3´-overhang generation. It was also found that the 

depletion of OB Fold-containing Protein 1/Stn1 (OBFC1/Stn1) leads to telomere 

elongation (Chen et al., 2012; Wu et al., 2012). Hence, these results showed that 

TPP1 is crucial in both telomere end protection and length regulation. 

 

2.2.3.1.5 TRF1-interacting protein 2  

 

TIN2 interacts directly with TRF1, TRF2, and TPP1 (Xin et al., 2008) and acts as the 

central component in the telosome complex (O'Connor et al., 2006). The disruption 

of TIN2 leads to accumulation of RPA binding to telomere termini, significantly 

decreased telomere localization of all telosome components, and increased ATR-

mediated DNA damage responses, similar with the results in POT1a/1b double 

knockout mice (Takai et al., 2011). Presently, the only identified mutation in 

telosome component in human diseases is TIN2. Patients with dyskeratosis congenita 

(DC) have dysfunction in TIN2-dependent telomere length control. It is also believed 

that TPP1-mediated telomerase recruitment might be interrupted. DC patients had 

been found to express TIN2 with missense mutations which might justify the 
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telomere shortening phenotype observed in patients (Yang et al., 2011). Hence, TIN2 

could be a possible target for therapeutic and diagnostic studies. 

 

2.2.3.2 Telomere replication 

 

Telomere replication involves multi-step processes (Figure 2.2). Firstly, the telomere 

duplex is replicated via the conventional replication form machinery. In lagging 

strand, telomere generated will gain a 3´ overhang automatically because RNA 

primer has been removed on the terminal Okazaki fragment. In contrast to lagging 

strand, overhang is not form on the telomere replicated by leading strand. Therefore, 

telomere is synthesised by a series of DNA processing reactions. In budding yeast, 

the processing steps are similar to those used to resect double-strand breaks during 

DNA repair (Longhese et al., 2010). Initiation of resection requires recognition of the 

DNA terminus by the Mre11-Rad50-Xrs2 (MRX) complex (MRN in humans) and 

subsequent recruitment of the nucleases, exonuclease 1 (EXO1) and/or DNA 

replication helicase/nuclease 2 (DNA2). These act in accordance with the helicase 

Sgs1 to cleave the DNA 5´ strand thus creating the 3´ overhang. Although it is 

unclear whether EXO1 and DNA2 play a similar role in human telomeres, genetic 

analysis in mice has shown that another repair nuclease, Apollo/Snm1b is involved in 

the overhang generation on leading strand telomeres (Chen et al., 2008; Lam et al., 

2010). Apollo can associate specifically with telomeres through an interaction with 

TRF2 (Chen et al., 2008). DNA-processing to generate G-overhangs occurs 

regardless of whether a cell expresses telomerase (Hemann and Greider, 1999). In 

telomerase positive cells, the overhang is elongated by the addition of new repeats on 

to the DNA terminus. Although the recruitment of telomerase to human telomere is 
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not fully understood, it is thought that the recruitment involves the trafficking of 

telomerase to the telomere in association with Cajal bodies and interaction between 

telomerase and TPP1 (Cristofari et al., 2007; Venteicher et al., 2009; Abreu et al., 

2010; Tejera et al., 2010). After this event, the complementary C-strand is filled-in to 

leave an overhang that ranges in length from ∼40 to 400 nt (Huffman et al., 2000; 

Zhao et al., 2009). Finally, the telomeres are rebound by telosome/shelterin and the t-

loop reforms.   
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Figure 2.2: Telomere replication. (i) Telomere duplex is replicated via 

conventional replication form machinery. (ii) Nucleases cleave the C-strand to 

generate G-overhang (iii) Telomerase elongated the G-strand and creating short G-

overhang. (iv) Shelterin rebound to telomeres and t-loop reforms  
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2.2.3.3 Telomere elongation by telomerase is tightly regulated 

 

Telomere elongation by telomerase is tightly regulated. Telomerase elongates 

telomeric DNA during S phase and into M phase. This means that the elongation is 

cell-cycle-regulated (Diede and Gottschling, 1999; Marcand et al., 2000). 

Telomerase favourably elongates the shortest telomeres. This is in accordance to cis-

regulatory mechanisms mediated through the telomere DNA–protein complex. As a 

result, only a subset of telomeres may be elongated in any cell cycle (Teixeira et al., 

2004). Telomere elongation extent is very sensitive to the level of telomerase in cells. 

This event is obvious in the study of the haploinsufficiency for genes encoding 

telomerase components in yeast, mouse and human cells (Vulliamy et al., 2001; 

Erdmann et al., 2004; Armanios et al., 2005; Hao et al., 2005; Yamaguchi et al., 

2005; Mozdy and Cech, 2006; Strong et al., 2011)  

 

The reason behind this is probably due to imbalance stoichiometry between 

telomerase and its substrates, in addition to other telomerase independent processes. 

Although haematopoietic stem cells (HSCs) are naturally enriched with telomerase, 

the effect of multiple cell division and ageing can be seen on their telomere length 

(Vaziri et al., 1994; Chiu et al., 1996). Interestingly, telomere length in human male 

germ cells remains stable or even elongate with age (Allsopp et al., 1992). Even so, 

the mechanisms by which telomeres are maintained in germ cell lineages, which are 

enriched for telomerase (Kim et al., 1994), are not fully understood. 
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Short telomeres have been suggested as having protective role as an innate tumour 

suppressive mechanism in long-lived, multicellular organisms (Greider, 2006). The 

reason behind this is thought to stem from the observation that in most cancer cells, 

telomerase is upregulated to maintain their sustainability (Kim et al., 1994). Besides 

that, limiting telomerase levels may also prevent unwanted telomere addition at DNA 

double-strand-break sites, which could happen if telomerase competes with 

appropriate DNA repair mechanisms (Zhou et al., 2000; Makovets and Blackburn, 

2009).  

 

2.3 Telomeres and ageing 

 

2.3.1 Replicative ageing  

 

While it is true that telomere shortening plays a protective role against cancer cells, it 

appears that this decision has resulted in ageing consequence. Ageing is defined as a 

process associated with the gradual decline in the performance of organ systems. 

This decline has resulted in the loss of reserve capacity which in turn leads to an 

increased chance of death (Gompertz, 1825). In some organ systems, this loss of 

reserve capacity with increasing age can be attributed to the loss of cell function 

(Martin et al., 1970). 

 

The process by which most normal human cells "count" the number of times they 

have divided and eventually undergoing a growth arrest, cellular senescence is 

defined as replicative ageing. This process is dependent on telomere shortening 

(Wright and Shay, 2005). The first observation that suggests the existence of internal 
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counting mechanism within the cell came from Hayflick. Hayflick observed that 

cultured human fibroblasts have limited number of cell divisions (Hayflick and 

Moorhead, 1961). The subsequent study then revealed that the telomeres shorten 

with every cell division, suggesting that telomere loss is the molecular clock that 

drives ageing (Harley et al., 1990; Hastie et al., 1990; Harley, 1991; Allsopp et al., 

1992). 

 

To understand the reason for this limitation, it is best to appreciate the disposable 

soma theory (Kirkwood, 1998). The disposable soma theory proposes that the rate at 

which the species age is the balance between the energy devoted to reproduction 

versus somatic repair. This means that if too much energy is invested in the repair of 

somatic cells, less energy is left for reproduction and vice versa. Species that are 

unable to survive very long due to the high mortality rate must invest most of their 

energy in reproduction rather than cell repair.  

 

For example, a mouse that sufficiently repaired itself for 20 years is making bad 

investment since most mice will be eaten by its predators within 3 months. 

Therefore, it is better for the mice to invest more energy in the early reproduction 

and less in maintenance and repair (Wright and Shay, 2005). As humans have longer 

average survival, we have been evolutionarily selected to invest more energy on 

tissue maintenance and repair as compared to reproduction unlike mice. However, 

the variety of tissue maintenance and repair processes such as the efficiency of DNA 

repair, protection against oxidative damage and others limit the amount of energy 

invested and contribute to ageing (Wright and Shay, 2005). 
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Apoptosis of damaged cells and replacing them with new ones are efficient ways of 

keeping cells healthy.  Besides that, replacing dying cells with new healthy cells can 

dilute the build-up of ‘unrepairable and indigestible’ products that can contribute to 

ageing. Nonetheless, using cell turnover to repair tissues may carry risk since 

mistakes can occur during DNA replication. These mistakes can lead to harmful 

mutations which will then lead to cancer (Vogelstein and Kinzler, 1993).  Therefore, 

by limiting the total number of times a cell could divide provides a powerful barrier 

for the body from cancer formation (Wright and Shay, 1995). 

 

There has been mounting evidences that the progressive loss of telomeric ends of 

chromosomes is an important intrinsic timing mechanism in the ageing process, both 

in cell culture and in vivo (Harley et al., 1990; Hastie et al., 1990). Based on the 

analysis of cultured human fibroblasts and lymphocytes, the rate of loss of telomeres 

is 50-100 bp per cell division (Allsopp et al., 1992). Short telomeres can induce anti-

proliferative signals that result in cellular senescence (Harley, 1991; Shay, 1995; Zou 

et al., 2004).  These events are discussed in detail below. 

 

2.3.2 Replicative senescence  

 

Telomere shortening can induce anti-proliferative signals which result in cellular 

senescence (Harley, 1991; Shay, 1995; Zou et al., 2004). Cellular senescence 

triggered by telomere shortening is termed replicative senescence. Replicative 

senescence is caused by the ‘uncapping’ of critically shortened telomeres. This 

happens when telomere-binding proteins are no longer protecting telomeres, making 

telomeres recognized as single and lead to the breaking of the double-strand DNA. 
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As a result, DNA damage response pathway is activated like p53 pathway (Vaziri 

and Benchimol, 1996; Takai et al., 2003) which will then lead to the growth arrest of 

cells, apoptosis and senescence (Chin et al., 1999; Wong et al., 2003; Ferrón et al., 

2004; Flores and Blasco, 2009). 

  

Interestingly, these senescent cells can remain viable for years (Shay and Wright, 

2007). The accumulation of senescent cells is recognized as one of the two 

mechanisms which probably contribute to ageing. The production of different 

constellation of proteins as compared to those that are non-senescent but quiescent 

adjacent cell during the accumulation of senescent cells is believed to change the 

homeostasis of that tissue and lead to ageing (Shay and Wright, 2007). Studies 

reported abundant senescent cells in telomerase null mice (Satyanarayana et al., 

2003). The senescent cells are usually marked using beta galactosidase staining and 

these cells are always associated with changes in p53, p16 and p21 expression (Dimri 

et al., 1995; Shelton et al., 1999; Oeseburg et al., 2009). The accumulation of 

senescent cells may also lead to another mechanism of ageing which is the loss of 

stem cell function (Collado et al., 2007). Stem cells are important because they 

maintain the homeostasis of tissues by replenishing senescent and apoptotic cells. 

Besides that, they repair damage that occurs throughout life (Rando, 2007). Various 

studies reported the loss of stem cell function through telomere shortening in a 

variety of tissues and experimental systems (Flores et al., 2006). The loss of stem 

cell functions impair tissue repair and hence weaken the tissue functions and lead to 

ageing (Collado et al., 2007). 
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2.4 Telomeres and longevity of life 

 

It has been suggested that long telomeres may provide protection against cellular 

senescence (Herbig et al., 2006). They could also be an indicator for unique genome 

stability and cellular health (Epel et al., 2004). During the last 20 years, there are 

rising evidences suggesting that telomere attrition may function as a key timing 

mechanism during the ageing process in various species (López-Otín et al., 2013). 

Shorter telomere length in humans is associated with many age related diseases such 

as cardiovascular diseases, cancer, cognitive decline, diabetes and overall mortality 

(Armanios, 2013). Interestingly, gender has also played its role in longevity of life 

(Barrett and Richardson, 2011). Women are thought to live longer than men because 

of oestrogen. Oestrogen has been shown to be associated with telomere length (Vina 

et al., 2005).  

 

Telomere attrition is negatively correlated with organismal life span (Haussmann et 

al., 2003). Telomere length appeared to increase across its life span in long-lived 

seabird, Oceanodromo leucorhoa (Haussmann et al., 2007). It has also found that 

this species show little or no accumulation of short telomeres over time (Haussmann 

and Mauck, 2008). Thus, the study on this species might offer the secret to longevity 

and reproductive success.   

 

The link between telomere length and human lifespan has been reported (Gomes et 

al., 2011; Barrett et al., 2013). Study in the elderly aged more than 60 years showed 

that telomere attrition is significantly associated with higher mortality rates, both 

from infectious and cardiovascular diseases (Cawthon et al., 2003). Moreover, 


