DETECTION ON COMMON DELETIONAL ALPHA THALASSAEMIA IN PREGNANT WOMEN BY POLYMERASE CHAIN REACTION TECHNIQUES

by

NURUL AIN FATHMA BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements

for the degree of

Master of Science

ACKNOWLEDGEMENT

First of all, I would like to thank Allah (S.W) for the healthiness and giving me the strength and courage to persevere throughout the duration of this research project and made all of this and everything possible.

I would like to acknowledge Universiti Sains Malaysia (USM) for the project grant (1001/PPSP/812003) and Ministry of Science, Technology and Innovation (MOSTI) for awarding me National Science Fellowship (NSF). It is a pleasure to thanks those who made this thesis possible especially my supervisors, Professor Dr. Rosline Hassan and my co-supervisors PM Dr Rosnah Bahar and Dr Noraliza Abd Ghaffar. I am heartily thankful to them for their encouragement, supervision and support from the beginning to the final of my Master research.

I also want to deliver my appreciation to the entire patient involved in my study, staff nurses at Obstetrics and Gynaecology Clinics, HUSM, Pn. Noor Aini and Pn. Che Saagah who help me in recruiting the blood samples and Cik Selamah for troubleshooting laboratory work problems. I would like to thanks all the staff at Haematology Department, Transfusion Medical Unit and Obstetrics and Gynaecology Clinics for their helps and cooperation.

I also would like to show my gratitude to my friends: Nur Hazyyah Hassan, Nik Mohd Khuzaimi Nik Man, Mohd Annuar Nordin, Mohd Adzha Majid, Imilia Ismail, Siti Asma Mat Jusoh, Diana Alias, Pn Marianor Mahat, Adhia Razak,

Siti Nur 'Asyiqin Sabaruddin, Nur Hasnah Ma'amor, Munira Mohamad, Norazwana Zakaria, Siti Nurul Syuhada, Khaizil Emylia Zazali, Firdaus Mat Isa, Che Wan Salma, Noor Aini Sudin, Nur Liyana and others for being such great supportive friends.

My special thanks to my beloved husband Mohd Fakrulnizam Md Sahak, my father Abdullah Bin Awang and my late mother Mek Zah Nawang. Last but not least, thanks to all who contributed in this study directly or indirectly. May Allah bless all of you.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATE	x
LIST OF ABBREVIATIONS	xi
ABSTRACT	xiv
ABSTRAK	xvi
CHAPTER 1	
INTRODUCTION	
1.1 Statement and Significance of the problem	
1.2 Literature Review	
1.2.1 Haemoglobin Structure and Function	
1.2.2 Haemoglobin Synthesis during Development	
1.2.3 Thalassaemia	
1.2.4 Molecular basis of α-thalassaemia	
1.2.4.1 Alpha Globin Gene Cluster	
1.2.5 α-Thalassaemia	
1.2.5.1 Common α-thalassaemia deletions	
(a) α°-thalassaemia or α-thalassaemia-1	
(b) α ⁺ thalassaemia or α-thalassaemia-2	
1.2.5.2 Clinical Syndromes of α - thalassaemia	
(a) Silent carrier: Loss of a single α-globin gene	
(b) α-thalassaemia trait : Loss of a two α-globin gene	
(c) Hb H disease	
(d) Hb Bart's Hydrop Foetalis	
1.2.6 Carrier screening of α-thalassaemia	
1.2.6.1 Peripheral Blood Film	
1.2.6.2 Hb H inclusion test	22
1.2.6.3 Hb Analysis	
(a) High Performance Liquid Chromatography (HPLC)	
(b) Capillary Electrophoresis	23
(c) Gel Electrophoresis	24

1.2.7	Molecular Approach in Detection of α-Thalassaemia	25
1.2.	7.1 PCR technology	26
1.2.	7.2 General Principle of PCR	26
1.2.	7.3 The standard reaction of PCR	27
1.2.8	Application of PCR in the Diagnosis of α -Thalassaemia	28
1.3 O	bjectives	29
1.3.1	General Objective	29
1.3.2	Specific Objectives	29
CHAPTER	2	30
MATERIAL	LS & METHODS	30
2.1 R	esearch Methodology	30
2.1.1	Study Design	30
2.1.2	Sample Size	31
2.1.3	Selection of Subjects	32
a) In	clusion Criteria	32
b) E	xclusion Criteria	32
2.2 S	ample Collection	33
2.3 P	reparation of Full Blood Count (SYSMEX KX-21)	33
2.3.1	Cell pack PK 30L	34
2.3.2	Stromatolyser WH SWH-200	34
2.3.3	QC Material	35
2.4 P	reparation of a one tube osmotic fragility test (OF)	38
2.5 P	reparation of dichlorophenol indophenol precipitation test	
	reparation of Quantitation of Hb A ₂ and Hb F (HPLC Analys	•
2.6.1	Elution Buffer 1	
2.6.2	Elution buffer 2	
2.6.3	Whole Blood Primer	
2.6.4	Haemolysis Reagent	
2.6.5	Wash Solution	
2.6.6	Hb A ₂ /F Calibrator/ Diluent Set	41
2.7 D	NA Extraction	
2.7.1	GENTRA PUREGENE Blood Kit	
2.7.	,	
2.7.	1.2 Puregene Cell Lysis Solution	42
2.7.	1.3 Protein Precipitation Solution	42

	2.7.1	.4	Isopropanol	43
	2.7.1	.5	Ethanol	43
	2.7.1	.6	DNA Hydration Solution	43
	2.7.2	Pre	paration of DNA Extraction	43
	2.7.2	2.1	Cell lysis	44
	2.7.2	2.2	Protein Precipitation	44
	2.7.2	2.3	DNA Precipitation	45
	2.7.2	2.4	DNA Hydration	45
	2.7.3	Det	termination of DNA Concentration and Purity	48
	2.7.3	3.1	Quantitative Measurement	48
	2.7.3	3.2	Qualitative Measurement	48
2	.8 PC	CR A	mplification by Polymerase Chain Reaction Methods	49
	2.8.1	Pre	paration of PCR Amplification Master Mix	49
	2.8.1	.1	10X PCR Buffer	49
	2.8.1	.2	5X Q-Solution	49
	2.8.1	.3	Magnesium chloride (MgCl2) solution	49
	2.8.1	.4	GeneAmp® 10mM dNTP mix with dTTP	50
	2.8.1	.5	HotStarTaq DNA polymerase	50
	2.8.1	.6	Oligonucleotide Primer	51
	2.8.1	.7	DNA template	51
	2.8.2	Prir	mer Dilution	53
	2.8.3	Det	tection of common deletion of α-thalassemia	53
	2.8.3	3.1	PCR Reaction and condition	54
2	.9 Ele	ectro	phoresis	57
	2.9.1	Pre	paration of 1% Agarose Gel	57
	2.9.2	Pre	paration of 1X TBE Buffer	57
	2.9.3	Det	termination of PCR product by electrophoresis	58
	2.9.4	Sta	ining Material	58
	2.9.5	Pre	paration of 6X Gel Loading Dye	59
	2.9.6	DN	A Marker (0.1-10.0 kb)	59
2	.10 Op	otimi	zation Strategies for the PCR	60
	2.10.1	Р	rimer Selection	60
	2.10.2	В	Suffer & Magnesium Ion	61
	2.10.3	D	Peoxynucleotide triphosphate (dNTPs)	61
	2.10.4	Т	aq DNA polymerase	62
	2.10.5	Т	arget DNA	62
	2.10.6	С	Cycling Parameter	63

2.11	Statistical Analysis	64
2.12	Flowchart of the Study	65
CHAPTI	ER 3	66
RESUL	TS	66
3.1	Demographic Data	66
3.1.	1 Age of subjects	66
3.1.	2 Ethnic of subjects	66
3.2	Thalassaemia Screening	68
3.2.	1 Anaemia in pregnancy	68
3.2.	2 Haemoglobin Analysis	68
3.2.	3 Combination of Osmotic Fragility and DCIP Test	72
3.3	Genomic DNA Preparation	75
3.4	Screening of α-thalassemia using multiplex gap-PCR	76
3.4.	1 The identification of αα/αα genotype by PCR	80
3.4.	2 The identification of - α3.7/αα genotype by PCR	82
3.4.	3 The identification of ^{SEA} /αα genotype by PCR	84
3.5	Association between haematological characteristic in α	
carrie	r	
3.5.	3	
3.5.	· ·	
3.5.	3 Osmotic Fragility Test (OFT)	94
	ER 4	
	SSION	
4.1	Limitation of the study	
4.2	Recommendation for future research	106
CHAPTI	ER 5	107
	USION	
	ENCES	
	DICES	
	PUBLICATIONS AND PRESENTATIONS	

LIST OF TABLES

			Page
Table 1.1	:	Haemoglobin gene expression	8
Table 1.2	:	α-thalassaemia syndromes	21
Table 2.1	:	Normal reference range of full blood count in female	36
		healthy Malaysian population.	
Table 2.2	:	Normal reference range of full blood count in pregnant women	37
Table 2.3	:	Primer sequences for α -thalassaemia multiplex PCR and expected amplicon size	52
Table 2.4	:	Final concentration and volume of reagent used for master mix preparation of α -thalassaemia gene deletion	55
Table 2.5	:	Parameter and cycling condition for PCR amplification	56
Table 3.1	:	The mean values of the haematological parameters in all 184 pregnant women in Malay population	69
Table 3.2	:	The mean values of the haemoglobin analysis in all 184 pregnant women in Malay population	70
Table 3.3	:	Two by two tables showed the distribution of the subjects by combination OF and DCIP test.	73
Table 3.4	:	The expected amplicon sizes for each deletion, control α2 globin gene and LIS1 gene fragment	77
Table 3.5	:	α-thalassaemia genotype identified in 184 pregnant Malay women	79
Table 3.6	:	Association between haematological parameter in normal and α -thalassaemia subjects	87
Table 3.7	:	Association between Hb F and Hb A_2 percentage in normal subjects (167) and α -thalassaemia trait (17)	92
Table 3.8	:	Characteristic features of 17 α-thalassaemia carrier among 184 pregnant women at HUSM	95
Table 3.9	:	Two by two table showing the diagnostic indices of OFT in predicting α -thalassaemia trait among 200 pregnant Malay women	96

LIST OF FIGURES

			Page
Figure 1.1	:	Structure of the haemoglobin molecule with four	6
		globin chain and a haem group within each.	
Figure 1.2	:	The normal pattern of haemoglobin synthesis	9
Figure 2.1	:	Simplified diagram showing the Gentra	46
		Puregene Blood Kit extraction procedure.	
		(Adapted from Gentra Puregene Handbook	
		09/2007)	
Figure 2.2	:	Flowchart of the study design for common α -	65
		thalassaemia gene deletion detection.	
Figure 3.1	:	Histogram chart of age frequency in all subjects	67
Figure 3.2	:	Distribution of anaemia in pregnant women	71
Figure 3.3	:	Distribution of the subjects by combination of	74
		osmotic fragility test and DCIP test	
Figure 3.4	:	Prevalence of α-thalassaemia carrier among	78
		randomly selected 184 pregnant women by PCR	
Figure 3.5	:	ROC curve for MCV predicting the presence of	89
		the α-thalassaemia carrier in pregnant women	
Figure 3.6	:	ROC curve for MCH predicting the presence of	90
		the α-thalassaemia carrier in pregnant women	
Figure 3.7	:	Example of high-performance liquid	93
		chromatography results from subjects with	
		normal haemoglobin (Hb) A ₂ and normal Hb F.	

LIST OF PLATE

		Page			
Plate 1.1	Schematic representation of the α-globin	12			
	gene cluster and β-globin gene cluster				
Plate 2.1	Visible clump of the white thread DNA	47			
Plate 3.1	ldentification of αα/αα genotype in	81			
	genomic DNA samples by PCR				
	techniques				
Plate 3.2	Identification of $-\alpha^{3.7}/\alpha\alpha$ genotype in	83			
	genomic DNA samples by PCR				
	techniques				
Plate 3.3	Identification of SEA deletion in genomic	85			
	DNA samples by PCR techniques				

LIST OF ABBREVIATIONS

ARMS Amplification-refractory mutation system

ASO Allele-specific oligonucleotide

Bam HI Bacillus amyloliquefaciens

Bgl II Bacillus globigii

C Celsius

CE Capillary Electrophoresis

dATP deoxyadenosine triphosphate

DCIP dichlorophenol-indolphenol

dCTP deoxycytosine triphosphate

ddH2O distilled deionized water

dGTP deoxyguanine triphosphate

dH2O distilled water

DNA Deoxyribonucleic acid

dNTPs deoxynucleotide triphosphates

dTTP deoxythymine triphosphate

E.coli Escherichia coli

EDTA Ethylenediaminetetraacetic acid

FBC Full blood count

--FIL Filipino

fL femtoliter

H20 water

Hb Haemoglobin

Hb A2 Haemoglobin A2

Hb E Haemoglobin E

Hb F Haemoglobin F

Hb H Haemoglobin H

Hb E/ß Haemoglobin E β

Hb E/α Haemoglobin $E \alpha$

Hct Haematocrit

HPLC High performance liquid chromatography

HUSM Hospital Universiti Sains Malaysia

kb Kilo base pair

LCD liquid-crystal display

M Marker

MCH Mean corpuscular haemoglobin

MCHC Mean corpuscular haemoglobin concentration

MCV Mean corpuscular volume

--^{MED} Mediterranean

MgCl2 Magnesium chloride

NaOH Sodium hydroxide

NTC No template control

OF Osmotic fragility

PCR Polymerase Chain Reaction

pg Picograms

QC Quality control

RBC Red blood cell

RDW Red blood cell distribution width

ROC Receiver operating characteristic

SD Standard deviation

SDW Sterile distilled water

--^{SEA} Southeast Asian

SPSS Statistical Package for Social Sciences

TBE tris-borate-EDTA

--^{THAI} Thailand

U Unit

UMMC Universiti Malaya Medical Centre

USM Universiti Sains Malaysia

UTR Untranslated region

UV Ultra-violet

α alpha

 α^{Th} non deletional α -thalassaemia mutation

involving either α 2- or α 1-globin gene

PREGNANT WOMEN BY POLYMERASE CHAIN REACTION TECHNIQUES

ABSTRACT

Thalassaemia is the most common inherited disorder worldwide and represent as a major health problem in many areas and approximately 4.5%-6% of Malaysians are carrier of this genetic disorder. There are two type of thalassaemia which α and β thalassemia. α -thalassaemia either the deletion of a single or double α-globin gene deletion that is located at position 16p3.3 is the one of the most common genetic disorder in the world. In Malaysia, the incidence is 4.5%. The aims of this study were to identify and characterised the common deletional type cases of α-thalassaemia in Malay pregnant women at HUSM by molecular method. A total of 200 Malay pregnant women who attended for an antenatal check-up at Hospital Universiti Sains Malaysia were screened for α-thalassaemia. DNA was extracted from 200 pregnant women blood using commercial DNA extraction kit prior to PCR amplification. Of these, 16 were excluded as they were diagnosed as βthalassaemia/Hb E trait. Out of 184 genomic DNA, 17 (9.2%) were possessed α-thalassaemia deletion. The genotype could be identified to - $\alpha^{3.7}/\alpha\alpha$ in 15 (8.1%) and --SEA/ $\alpha\alpha$ in 2(1.1%). While - $\alpha^{4.2}$ kb deletion and --THAI deletion was not detected in our subjects. Thus, the most common deletion in the Malays pregnant women were $-\alpha^{3.7}$ followed by --SEA. The molecular method has been established to detect these carriers. The presence of two

gene deletion evidenced by --SEA. showed the importance to screen α -thalassaemia among Malay pregnant women and subsequent screening patients' spouse to exclude hydrops fetalis. Detection of --SEA α -thalassaemia by PCR techniques is convenient, and suitable to be used as a confirmatory test.

PENGESANAN PEMOTONGAN UMUM TALASEMIA ALFA DALAM WANITA MENGANDUNG YANG DITENTUKAN OLEH TEKNIK TINDAKBALAS BERANTAI POLIMERASE (PCR)

ABSTRAK

Talasemia adalah penyakit warisan yang paling umum di seluruh dunia dan merupakan masalah kesihatan utama dan kira-kira 4.5% -6 % daripada rakyat Malaysia adalah pembawa penyakit genetik ini. Talasemia terbahagi kepada dua jenis iaitu α-talasemia dan β-talasemia. α-talasemia sama ada pemotongan pada gen α-globin tunggal atau berganda yang terletak di kedudukan kromosom 16p3.3 adalah merupakan salah satu penyakit genetik yang paling umum di dunia. Kira-kira 4.5% pengidap penyakit αtalasemia di Malaysia. Tujuan kajian ini adalah untuk mengenal pasti jenis pemotongan α-talasemia yang umum di kalangan wanita hamil Melayu di HUSM menggunakan teknik molekul. Seramai 200 orang wanita Melayu hamil yang hadir untuk pemeriksaan sebelum bersalin di Hospital Universiti Sains Malaysia telah disaring untuk α-talasemia. DNA telah diektrak daripada darah 200 orang wanita Melayu hamil tersebut dengan menggunakan kit ekstrak darah komersial sebelum diamplifikasikan melalui kaedah tindakbalas berantai polimerase (PCR). Daripada jumlah ini, sebanyak 16 orang telah dikecualikan kerana mereka disahkan mengidap βtalasemia atau Hb E. Daripada 184 DNA genomik, 17 (9.2%) telah mempunyai pemotongan α-talasemia. Genotip yang dikenalpasti adalah -

 $\alpha^{3.7}$ /αα seramai 15 orang (8.1 %) dan --^{SEA}/αα seramai 2 orang (1.1%). Walaubagaimanapun, pemotongan jenis - $\alpha^{4.2}$ dan --^{THAI} tidak berjaya dikesan. Oleh itu, jenis pemotongan yang paling umum di kalangan wanita Melayu hamil adalah - $\alpha^{3.7}$ diikuti oleh --^{SEA}. Teknik PCR telah berjaya di tubuhkan. Jenis pemotongan dua gen atau pemotongan berganda di sahkan dengan kehadiran --^{SEA} amat penting dikenalpasti terutama dalam wanita Melayu yang hamil supaya saringan penyakit α-talasemia dapat dijalankan keatas suami pesakit tersebut bagi menghalang kejadian hidrop fetalis. Penemuan --^{SEA} menggunakan teknik PCR merupakan teknik yang sesuai digunakan dalam pengesahan penyakit α-talasemia.

CHAPTER 1

INTRODUCTION

1.1 Statement and Significance of the problem

Thalassaemia is a major health problem worldwide and approximately 1 in 14 is carrier (Xiofeng, G. and Yitao, Z., 2002). It is common in people of Asian descent and has emerged as public health problem in Malaysia. In Kelantan, the Northeast region of Malaysia, which is situated at the border of Thailand, thalassaemia is prevalent. It is expected the disease phenotype and genotype would resemble that of Thailand. In Thailand, with the total of 60 million populations, approximately one percent affected individuals and more than 20 million were thalassaemia carriers (Greenberg *et al.*, 2001).

A preliminary study done among blood donor in USM showed that the prevalence of thalassaemia was 15% with Hb E/ α is the commonest followed by Hb E trait (Rosline, H *et al.*, 2006). In another local data, the commonest thalassaemia among transfusion dependent patients is Hb E/ α . These data shows an extreme diversity in clinical presentation of thalassaemia patients spanning from asymptomatic thalassaemia trait to transfusion dependent (Rozitah, R *et al.*, 2008). Population screening for thalassaemia carrier is first

needed to understand the genotype basis of this complex interaction which gives rise to the major socioeconomic problem to the country.

The α -thalassaemia is mainly caused by a large deletion of the α -globin gene and occurs when one or more of the four alphas (α) chain genes fail to function. α -thalassaemia is the one of the most common inherited disorder of haemoglobin synthesis and commonly found in Southeast Asian, Mediterranean and Middle Eastern population (Guvenc, B *et al*, 2010). Clinical phenotype of the carriers varies according to the number of affected gene.

 α -thalassaemia can be classified into two types which were α -thalassaemia-1 (α^0 -thalassaemia), the deletion of both α 1- and α 2- globin genes and this type have mild microcytic, hypochromic anaemia with normal haemoglobin A_2 levels and α -thalassaemia-2 (α^+ -thalassaemia) where only one α -globin gene deletion has occurred, present with no detectable red blood cell abnormalities or globin chain imbalance (Weatherall, D.J., and Clegg, J.B., 2001).

The prevalence of α -thalassaemia-1 is around 3-4% and for α -thalassaemia-2 is 20-30% (Sanguansermsri, T., *et al*, 1999) and it resulted from deletion and non-deletional mutations. The commonest form is α -gene deletion. The five common type of α -gene deletion in South East Asian region are --^{SEA}, --^{THAI},--^{FIL},- α ^{3.7} and - α ^{4.2} (D.R. Higgs, 2013). The worst outcome of

α-thalassaemia is Hb Bart's hydrops foetalis. However, Hb H disease due to three deletions of genes is associated with increased morbidity.

Since thalassaemia is now a public health problem in Malaysia, there is need to raise public awareness in the community. This study focused on detection of carrier of the commonest α -gene deletion which -- SEA, -- THAI, - α 3.7 and - α 4.2 among pregnant women in this population. -- SEA deletion is severe form of α -thalassaemia determinant in Southeast Asian country including Malaysia.

The control of thalassaemia remains a major challenge. The conventional approach to screen and diagnose haemoglobinopathies requires a combination of test. These methods, including erythrocyte indices and morphology, Hb electrophoresis, quantitation of Hb A₂, Hb E, and Hb F, and detection of erythrocytes containing Hb H inclusion bodies (Sanchasuriya, K *et al.*, 2003). To screen for thalassaemia carriers in the whole population, is costly however it has clinical importance.

Among our population, pregnant women is the group of choice for the screening strategy in order to characterised their carrier state and to provide sufficient information beside to estimate the risk that their children would have severe disease such as α -globin mutation and also β -globin mutation. All the strategies are aiming at reducing the birth of dependent form of thalassaemia that can increase public health problem in Malaysia.

In order to succeed in prevention and control of thalassaemia, we have develop a diagnostic tool that is polymerase chain reaction (PCR) techniques to detect the most common form of α -thalassemia such as --^{SEA} deletion, --^{THAI} deletion, - $\alpha^{3.7}$ rightward deletion and - $\alpha^{4.2}$ leftward deletion in Malay population. This method is simple, reliable and suitable for population screening and routine diagnosis. Based on this information, genetic counselling can be practiced later.

1.2 Literature Review

1.2.1 Haemoglobin Structure and Function

Haemoglobin is an iron-rich protein in red blood cells. Haemoglobin is essential for the existence of human life and also the remarkable protein that enables red blood cells to carry oxygen and carbon dioxide. Haemoglobin tetramers are comprised of the four subunits, two α -globin chains and two β -globin chains and each having one polypeptide chain and one haem group (Alain, J., 2006)(Figure 1.1). All of which take the form of α helices.

In thalassaemia disorders, the haem part of haemoglobin is entirely normal. The defect lies exclusively with the globin part of haemoglobin. This defect results in the underproduction of globin and, hence, the underproduction of haemoglobin.

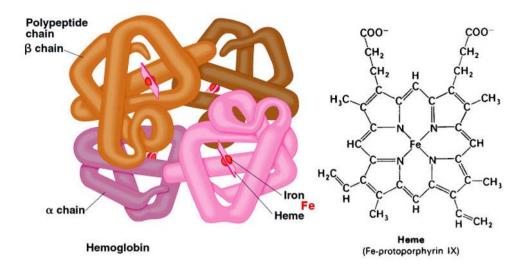


Figure 1.1 Structure of the haemoglobin molecule with four globin chain and a haem group within each. (Adapted from www.themedicalbiochemistrypage.org/protein-structure.php).

1.2.2 Haemoglobin Synthesis during Development

Normal adult have major haemoglobin called Hb A comprising about 97% of the total and a minor component, Hb A_2 that accounts 2-3% of total haemoglobin in foetus. Foetal haemoglobin, Hb F ($\alpha_2\gamma_2$) represents 90-95% of haemoglobin by 34-36 week gestation. After 34 week gestation, Hb A production increase significantly as falls of Hb F productions. Small amount of Hb A_2 is produced from birth and usually reached adult levels by 6 months of age, although it can rise further for the first 1-2 years of life (Ryan K, *et al*, 2010).

During the embryonic stages of foetal development, there are three embryonic haemoglobin, haemoglobins Gower 1, Gower 2 and haemoglobins Portland (Table 1.1). The production of this different haemoglobin is a reflection of a series of physiological adaptations to differing O₂ requirement at various stages of development (Ryan K, *et al*, 2010). The normal pattern of haemoglobin synthesis is summarised in Figure 1.2

Table 1.1: Haemoglobin gene expression

Developmental Period	Haemoglobin Species	Globin Chain
Embryonic	Gower 1	$\zeta_2 \epsilon_2$
	Portland	$\zeta_2 \gamma^G$ or A
	Gower 2	$\alpha_2 \epsilon_2$
Foetal	Haemoglobin F	$lpha_2{\gamma_2}^G$ or A
Adult	Haemoglobin A	$\alpha_2\beta_2$
	Haemoglobin A ₂	$\alpha_2\delta_2$
	Haemoglobin F	$\alpha_2\gamma_2^{G\text{ or A}}$

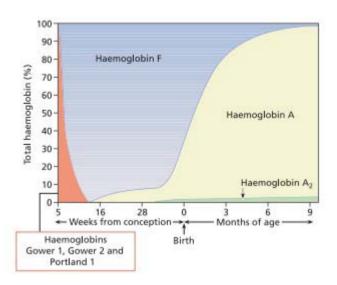


Figure 1.2: The normal pattern of haemoglobin synthesis. (Adapted from Ryan K, et al, 2010).

1.2.3 Thalassaemia

The name of thalassaemia is derived from a combination of two Greek words which are thalassa and anaemia. Thalassa means the Mediterranean Sea and anaemia in Greek means weak (an) and blood (haima). Thalassaemia is a group of genetic, inherited disorders of the blood. More specifically, it is a disorder of the haemoglobin molecule inside the red blood cells. It is an inherited genetic disease where it is passes from parents to children through the genes. It is not infectious and cannot be passed from one individual to the other by personal or any other contact. Thalassaemia occurs widely throughout the Mediterranean region, Africa, Indian, Middle East and Southeast Asia population. The most important disorders are α -thalassaemia and β -thalassaemia (Rachmilewitz, E. A., and Giardina, P.J., 2011).

 α -thalassaemia is caused by the deletion or mutation of α -globin gene and characterised by reduce or absence of the α -globin chain (Rappaport V.J., *et al*, 2004). In contrast, β -thalassaemia is due to a point mutation in one of the β -globin gene and leading to decreased or absence of β -globin chain of the haemoglobin (Mirbehbahani, N.B., *et al*, 2013).

1.2.4 Molecular basis of α-thalassaemia

1.2.4.1 Alpha Globin Gene Cluster

The genes that regulate the synthesis and structures of the different globins are organised in two separate clusters. The α -globin gene cluster is located on chromosome 16 at position 16p13.3 and mutations or deletions affecting either one or more α -globin genes results in α -thalassaemia syndrome. In contrast, the β -globin gene cluster is located on chromosome 11. The α -globin gene cluster contains one embryonic ζ - and two α -globin gene designated α 1 and α 2 arranged in the order of 5'- ζ 2- α 2- α 1-3' on each chromosome 16 (Plate 1.1). There are four pseudogenes: $\psi\zeta$ 1, $\psi\alpha$ 2, $\psi\alpha$ 1 and ψ 1 within the α -globin gene cluster (Forget, B.G., 2001). Since individual has two chromosomes 16, there are usually a total of four functional α -globin genes. But the number can vary from none to as many as eight α -globin genes due to misaligned recombination (David, H.K. Chui, 2005).

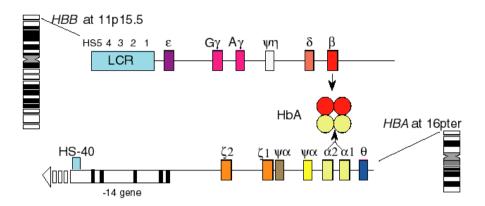


Plate 1.1: Schematic representation of the α -globin gene cluster and β -globin gene cluster. The β -LCR and HS40 is the main regulatory region for these gene clusters. (According to Weatherall & Clegg, 2001)

1.2.5 α-Thalassaemia

 α -thalassaemia is classified into deletional and non-deletional types (Bain BJ, 2006). There are at least 40 different deletions in deletional mutation and the size of the deletion is important and affects the clinical phenotype of hydrops foetalis. In contrast, non-deletional mutations may have a more severe phenotype than most of the deletional mutations. The most common non-deletional α -thalassaemia mutation is Haemoglobin Constant Spring (Vichinsky, E.P., 2009).

α-thalassaemia is mainly caused by a large deletion of the α-globin gene (Choopayak, C *et al.*, 2005). The α-thalassaemia is a haemolytic anaemia resulting from deficient synthesis of α-globin. Normal individuals have four α-globin genes. α-thalassaemia can results from deletion of either one, two, three or four α-globin genes (Wee, Y.C *et al.*, 2005). α-thalassaemia also can cause the progressive decrease in α-globin chain synthesis in carrier of α-thalassaemia, haemoglobin H disease and Haemoglobin Bart's hydrop foetalis syndrome (Winichagoon, P *et al.*, 1984).

There are two major types of α -thalassaemia determinants which α° and α^{+} . α° -thalassaemia or formerly called as α -thalassaemia-1 represent a condition in which both α -globin genes on chromosome are inactivated. In contrast, α^{+} -thalassaemia also called as α -thalassaemia-2 represent a condition in which one of the two linked α -globin genes on a chromosome is inactivate

and can be caused either by deletion or mutation (Neishabury, M et al, 2001).

1.2.5.1 Common α-thalassaemia deletions

(a) α° -thalassaemia or α -thalassaemia-1

 α° -thalassaemia deletion determinant caused by complete or partial deletion of both genes in cis. Generally there are about 20 α° -thalassaemia deletions that tend to be recurrent in various populations. The prevalence of α° -thalassaemia in Columbia is 3-6% with --^{SEA}/ α genotype (Bergstrome Jones, A.K., and Poon, A., 2002). In pregnant Lao women, 8.7% of SEA deletion were detected (Savongsi, O., 2008). In Malaysia itself from the data by Institute for Medical Research showed 17.6% of having --^{SEA} deletion. (Rahimah, A *et al*, 2013)

In South East Asia population, the most common α° -thalassaemia is the Southeast Asian (--^{SEA}) deletion, Filipino (--^{FIL}) and the Thai (--^{THAI}) deletion, respectively (Wee, Y.C *et al* 2005; Nattaya, Sae-Ung, 2007; Chiara, D.B *et al*, 2006). While, the Mediterranean (--^{MED}) and 20.5 kb deletion (--^{20.5}) was commonly found in Mediterranean populations. These deletions remove both functional α -globin genes but spare the ζ 2-globin gene intact (Nicholls, R.D *et al*, 1987). The α° -thalassaemia is the complete loss of both functional α -globin genes in tandem on the same chromosome mainly caused by deletion

and the deletions presented with mild hypochromic microcytic anaemia (Rahimah, A et al, 2012).

In α° -thalassaemia, there is a deletion that removes about 17.5kb of DNA. This includes the $\alpha 1$ and $\alpha 2$ genes from the α -globin gene cluster. The 5' breakpoint may start within the third exon of the ¥£ gene and the 3' end may terminate within the hypervariable region which was located at the 3' end of the α -globin gene complex (Fuchareon, S., & Winichagoon. P., 2002).

(b) α^{+} -thalassaemia or α -thalassaemia-2

Deletion of either one of the linked pairs of α -globin gene is classified as α^+ -thalassaemia. α^+ -thalassaemia is the most common α -thalassaemia mutation. There are two common deletion forms of α^+ -thalassaemia that are designated by the size of the deletion as $-\alpha^{3.7}$ and $-\alpha^{4.2}$. The most common form is the rightward $-\alpha^{3.7}$ deletion which involving a deletion of 3.7kb of DNA between the duplicate α -gene, while the less common deletion involving a deletion of 4.2kb of DNA including the α^2 gene deletion are the leftward $-\alpha^{4.2}$ deletion. Both of these deletions result from unequal homologous recombination within the α -globin cluster (Fuchareon, S., & Winichagoon, P., 2002).

Each α -globin gene is located within a homologous area of 4 kb length including two non-homologous sections. These two globin genes are imbedded in a large region of homology which is dividing by subsequent

insertions and deletions to give three homology sub segments on each α -globin gene. These homology sub segments are called X, Y and Z boxes. Duplicated or the crossover can occur between the two X regions separated by 4.2kb or the two Z regions which separated by 3.7kb apart (Neishabury, M et al, 2001).

There are over 20 million carrier of α^+ -thalassaemia in the world, with the highest incidence found in the population of India, Southeast Asian and Africa and less commonly in the Mediterranean and Middle East. The $-\alpha^{3.7}$ deletion is the extremely wide spread. The frequency of the $-\alpha^{3.7}$ mutation can reach very high level. In Malaysia, the prevalence of the heterozygous state of $-\alpha^{3.7}$ is approximately 5-10% and $-\alpha^{4.2}$ were 0.06% (Wee, Y.C *et al*, 2005), in the Mediterranean region, 43% of Jordanian thalassemic represents the $-\alpha^{3.7}$ deletion (Abu Ghoush, 2008). While the $-\alpha^{4.2}$ is frequently found in Asia as in Malaysia, in the previous study done by Wee, Y.C, 0.06% of $-\alpha^{4.2}$ deletion was detected among randomly selected 650 pregnant women in University Malaya Medical Centre (UMMC).

1.2.5.2 Clinical Syndromes of α - thalassaemia

The clinical syndromes of α -thalassaemia can be subdivided into four categories which are α -thalassaemia trait, silent carrier, Hb H disease, and Haemoglobin Bart's hydrops foetalis syndrome.

- Silent Carrier (loss of one α globin gene). The haematological parameters are within normal limit.
- α-thalassaemia trait (loss of two α globin gene). There a mild haematological changes with normal or borderline low Hb level, low MCV but no major clinical abnormality.
- Hb H disease (loss of three α globin gene). The clinical severity is considerable variability.
- Haemoglobin Bart's hydrops foetalis syndrome (no functional α-gene).
 Loss of all four α globin gene showed severe anaemia and hypoxia in utero, incompatible with life, resulting in mid- to late-gestational stillbirth of hydropic foetus.

(a) Silent carrier: Loss of a single α -globin gene

Retention of the three normal α -globin gene results in a silent carrier state and the $-\alpha^{3.7}$ deletion is the most common single gene disorder worldwide. The hematologic parameters of the individuals who have a single α -globin gene almost always normal and they are clinically well with no RBC alterations (Rappaport, V.J., 2004) (Table 1.2).

(b) α -thalassaemia trait : Loss of a two α -globin gene

The α -thalassaemia trait can be caused by heterozygous α -thalassaemia-1 (-/ $\alpha\alpha$) or homozygous α -thalassaemia-2 (- α /- α). The most frequent cause of α -thalassaemia trait is homozygosity for the - $\alpha^{3.7}$ deletion (- $\alpha^{3.7}$ /- $\alpha^{3.7}$). While the less frequent --/ $\alpha\alpha$ genotype can also underlie this phenotype, most commonly in Southeast Asian populations. This genotype is usually associated with a significant microcytosis and hypochromia, an elevated red cell count but normal or borderline low haemoglobin level. The haemoglobin electrophoresis is normal however MCV is decreased. (John, S.W., & David, H.K.C, 2001) (Table 1.2).

(c) Hb H disease

Haemoglobin H disease is an inherited haemoglobin disorder in which three of the four α *globin* gene are deleted or have mutation. There is a marked excess of β -globin chains, which are unstable, precipitate within the cell and lead to destruction of the red blood cells. Hb H disease is the most severe of the α -thalassaemia phenotypes compatible with life. It most frequently results from the interaction of α -thalassaemia-1 and α -thalassaemia-2 and it is commonly found in Southeast Asia and Mediterranean. Beside that Hb H disease may also result from the interaction of nondeletion mutations (Vefik, A., & Secil, G.A, 2012).

The clinical picture of Hb H disease is that of a chronic haemolytic anaemia of variable severity. Individuals with Hb H disease have moderate to severe anaemia but seldom requires transfusions except possibly during infection and during pregnancy. The degree of anaemia in Hb H patients with deletion of two α globin gene plus nondeletional α 2 globin gene mutation is more severe than those with deletion of three α globin gene and in some rare cases Hb H disease can lead to hydrops foetalis with intrauterine demise. (John, S.W., & David, H.K.C, 2001).

(d) Hb Bart's Hydrop Foetalis

Hb Bart's hydrop foetalis or homozygous α⁰-thalassaemia is the most severe form of α -thalassaemia, resulting from a complex lack of α -chain production, which always deletional in origin. If both parents are carrier of $\alpha^0\text{-thalassaemia}$ with deletion of both $\alpha\text{-globin}$ genes in cis, there is a 25% risk in each pregnancy that the foetus might have inherited both parental mutations. The affected foetus have inherited deletion completely remove the entire four α-globin gene. Many of these foetuses survive to the second or even third trimester of gestation or death within hours after death. These embryos also suffer from severe anaemia and hypoxia in utero. Apart from foetal death, Hb Bart's hydrop foetalis is also have risk of severe maternal complications include pre-eclampsia, hypertension, that toxaemia, antepartum haemorrhage, premature onset of labour and postpartum haemorrhage (Wee, Y.C et al, 2005).

Table 1.2: α-thalassaemia syndromes (Adapted from Waye and Chui, 2001)

Clinical Syndrome	α-globin genotype	Clinical and laboratory findings	Reproductive significance*
Normal	αα/αα	Clinically Well	None
α- thalassaemia- silent carrier	-α/αα α Th α/αα or αα Th /αα	Normal Hb level. Normal or borderline low MCV. Clinically well.	Hb H disease
α- thalassemia trait	$-\alpha/-\alpha$ $\alpha^{Th}\alpha/-\alpha$ or $\alpha\alpha^{Th}/-\alpha$	Normal or borderline low Hb level. Low MCV.Clinically well	Hb H disease Hb H disease.
	/αα	Normal or borderline low Hb level. Low MCV.Clinically well	Hb Bart's hydrops foetalis
Hb H disease	$\alpha^{-\alpha/-}$ $\alpha^{-\alpha}$ or $\alpha \alpha^{-\alpha}$	Moderate anaemia. Low MCV. Usually not transfusion dependent.	Hb H disease. Hb Bart's hydrops foetalis
Hb Bart's hydrops foetalis	/	Severe anaemia and hypoxia in utero. Foetal death in 2 nd and 3 rd trimester or death within hours after death. Risk of severe maternal complications.	Not applicable.

^{*}Potential risk of foetus inherited with these α -thalassaemia syndromes, depending on partner's α -globin genotype. Hb=haemoglobin, α^{Th} =non deletional α -thalassaemia mutation involving either α 2-

Hb=haemoglobin, α ''=non deletional α -thalassaemia mutation involving either α 2 or α 1-globin gene, MCV=mean corpuscular volume.

1.2.6 Carrier screening of α-thalassaemia

1.2.6.1 Peripheral Blood Film

The first essential test that need to be performed was full blood cell count (FBC) looking for anaemia, microcytosis and hypochromia. The most important diagnostic criteria to detect thalassaemia carrier are microcytosis or hypochromia. Microcytosis refer to mean corpuscular volume (MCV) <80fl while hypochromia are mean corpuscular haemoglobin (MCH) <27pg (Leung, W.C *et al*, 2008). It is well known that the patients with α^0 -thalassaemia are not anaemic but do have microcytosis. Therefore it is important physician pay attention not only to the Hb levels, but also the MCV and MCH levels (Chui, D.H., & Waye, J.S., 1998).

1.2.6.2 Hb H inclusion test

The Hb H inclusion test is used extensively in screening for subject with α -thalassaemia. The test based on incubation of erythrocyte with brilliant cresyl blue. It is quite laborious to scan for Hb H granules and faulty incubation of erythrocyte may give rise to false-positive results. The Hb H inclusion body test does not detect α^+ -thalassaemia but is moderately sensitive and highly specific for α^0 -thalassaemia trait due to the SEA, FIL, and MED deletions (Fucharoen, G., 2014).

1.2.6.3 Hb Analysis

(a) High Performance Liquid Chromatography (HPLC)

Haemoglobin (Hb) analysis and quantification of Hb A_2 should be performed as part of screening methods to diagnose thalassaemia carriers. Carriers of α-thalassaemia trait have Hb A_2 level <3.5% and for the elevated Hb A_2 level (>3.5%) the person maybe a carrier of β-thalassaemia (John, S.W., & David, H.K.C, 2001). DNA analysis for α-thalassaemia is necessary for diagnosis.

(b) Capillary Electrophoresis

Capillarys Electrophoresis (CE) is the recent most advanced technology which provides walkway convenience for electrophoresis. This CE approved method offers quantitation and detection of normal and abnormal haemoglobins, as an aid in the diagnosis of haemoglobinopathies and thalassaemias. With this technique, charged Hb molecules are separated by their electrophoretic mobilities in alkaline buffer with a fisperial.

Separation also occurs according to the electrolyte pH and electro osmotic flow created from negative charges on the capillary wall that shorten the analysis duration haemoglobinopathy and thalassaemia detection (Srivorakun, H., 2011).

(c) Gel Electrophoresis

Electrophoresis of haemoglobin on agar at acidic pH has been introduces some forty years ago.