OPTIMAL SAND REMOVAL CAPACITY FOR IN-STREAM MINING

SYAMSUL AZLAN BIN SALEH

UNIVERSITI SAINS MALAYSIA

SEPTEMBER 2016

OPTIMAL SAND REMOVAL CAPACITY FOR IN-STREAM

MINING

by

SYAMSUL AZLAN BIN SALEH

Thesis submitted in fulfillment of requirements

for the degree of

Master of Science

SEPTEMBER 2016

ACKNOWLEDGEMENTS

"In the name of Allah, the Most Gracious, the Most Compassionate"

Alhamdulillah, first of all I would to thank Allah S.W.T for giving me the strength and idea to complete this thesis. I would also like to extend sincere appreciation to my supervisor, Professor Dr. Ismail bin Abustan for his guidance, concern, encouragement, advice, effort and also criticism to me for being able to complete this thesis as required.

I also like to thank my co-supervisor, Dr. Mohd Remy Rozainy bin Mohd Arif Zainol who always give an opinion and criticism during doing this research. Many thanks to Mr. Halmi, Mr. Nizam, Mr. Zabidi, Mr. Nabil, Mr. Dziauddin and Mr. Zaini for their assistance in data collection and laboratory. I also grateful to Universiti Sains Malaysia for providing a research grant for this study.

I would express a deep sense of gratitude to my parents for all the sacrifices, family members and friends for being very understand and supportive in a way or another all the while. Lastly, special acknowledgements to my wife, Misa, for her understanding and patience throughout the duration of the study period.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xvi
ABSTRAK	xvii
ABSTRACT	xix

CHAPTER ONE: INTRODUCTION

1.1	Overview	1
1.2	Problem statement	2
1.3	Objectives	4
1.4	Scope of Works	4
1.5	Study Expectaction and Benefits	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction		7
2.2	Negati	ve Impacts of Sand Mining	8
	2.2.1	River Morphology	9
	2.2.2	Physical Parameter of River Water	12
	2.2.3	Ecological and Biological	13
	2.2.4	Stability of Hydraulic Structures	14
2.3	Sedime	ent Transport	15
	2.3.1	Mode of Sediment Transport	16
	2.3.2	Sediment Sources	18
2.4	Sedime	ent Transport Equations	20
	2.4.1	Total Sediment Load Equations	23
2.5	Rate of	f Replenishment Estimate	34
	2.5.1	Acoustic Doppler Current Profiler (ADCP)	35
	2.5.2	Electrical Resistivity Tomography (ERT)	38

	2.5.3	ERT Array	41
2.6	Types of	of Alluvial Sand Extraction	45
	2.6.1	Floodplain Mining and Terraces	45
	2.6.2	In-stream Mining	48
	2.6.3	Resource Estimation of Sand	52
2.7	Case St	udy of Sediment Transport in Malaysia	53

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Introduction		56
3.2	Site Se	lection	57
3.3	Measur	rement Technique of River Cross Section	60
	3.3.1	River Surveyor S5 ADCP by Sontek (2014)	60
	3.3.2	Water Flow Probe	63
3.4	Electric	cal Resistivity Survey (ERT)	65
	3.4.1	Interpretation Technique using RES2DINV	69
	3.4.2	RES2Dinv Processing Data	70
3.5 Sediment Sampling		73	
	3.5.1	Bed load Sampler	74
	3.5.2	Suspended Load Sampler	77
	3.5.3	Bed Material Sampler	79
3.6	Sedime	ent Analysis	81
	3.6.1	Sieve Analysis	81
	3.6.2	Filtration Method	83
	3.6.3	Specific Gravity	84

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Introduction		87
4.2	River P	rofile	87
	4.2.1	Sungai Perak Profile	87
	4.2.2	Sungai Kemaman Profile	90
	4.2.3	Sungai Pergau Profile	93
	4.2.4	Sungai Kurau Profile	95
	4.2.5	Summary f River Profile	97

4.3	Sedime	ent Size Distributions	97
	4.3.1	Sungai Perak Sediment Size Distributions	99
	4.3.2	Sungai Kemaman Sediment Size Distributions	102
	4.3.3	Sungai Pergau Sediment Size Distributions	105
	4.3.4	Sungai Kurau Sediment Size Distributions	107
	4.3.5	Summary of Sediment Size Distributions	110
4.4	Assesn	nent of Total Bed Material Equations	110
	4.4.1	Sungai Perak	110
	4.4.2	Sungai Kemaman	112
	4.4.3	Sungai Pergau	113
	4.4.4	Sungai Kurau	114
	4.4.5	Summary of Total Bed Material Equations	116
4.5	Sedime	ent Rating Curve	118
4.6	Sub-su	rface Profile	121
	4.6.1	Sungai Perak	121
	4.6.2	Sungai Kemaman	128
	4.6.3	Sungai Kurau	136
	4.6.4	Summary of Resistivity Survey	140
4.7	Estima	tion Sand Source at River Bar	140

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	144
5.2	Conclusions of Study	145
5.3	Recommendations for Future Work	146

REFERENCES

147

APPENDICES

LIST OF PUBLICATION

LIST OF TABLES

Table 2.1	Sediment size classification	18
Table 2.2	The equations that have been used for local studies	22
Table 2.3	Total bed material load and data range for d_{50}	22
Table 2.4	The equation and suitability uses	23
Table 2.5	The advantages and disadvantages of type of ERT array.	43
Table 3.1	Capabilities of RiverSurveyor S5 by Sontek.	62
Table 3.2	The capabilities of Water Flow Probe by Global Water	64
Table 3.3	Electrical resistivity of some types of waters	66
Table 3.4	Typical resistivity values of geologic materials	67
Table 3.5	Example of calculation for bed load.	76
Table 3.6	Sample calculation of suspended solid.	78
Table 3.7	Example calculation of specific gravity.	86
Table 4.1	Sungai Perak profile and sediment load.	90
Table 4.2	Sungai Kemaman profile and sediment load.	91
Table 4.3	Sungai Pergau profile and sediment load.	93
Table 4.4	Sungai Kurau profile and sediment load.	95
Table 4.5	Summary of river profile and sediment load for four rivers.	97
Table 4.6	Bed load size distributions of Sungai Perak.	100
Table 4.7	Bed material size distributions of Sungai Perak.	101
Table 4.8	Bed load size distributions of Sungai Kemaman.	103
Table 4.9	Bed material size distributions of Sungai Kemaman.	104
Table 4.10	Bed load size distributions of Sungai Pergau.	106
Table 4.11	Bed material size distributions of Sungai Pergau.	107

Table 4.12	Bed load size distributions of Sungai Kurau.	108
Table 4.13	Bed material size distributions of Sungai Kurau.	109
Table 4.14	Analysis of sediment transport equations (Sungai Perak).	111
Table 4.15	Analysis of sediment transport equations (Sungai Kemaman).	112
Table 4.16	Analysis of sediment transport equations (Sungai Pergau).	113
Table 4.17	Analysis of sediment transport equations (Sungai Kurau).	115
Table 4.18	The percentages of total bed material load equation of four rivers.	116
Table 4.19	Sediment load of four rivers.	118
Table 4.20	Estimation of sand extraction from river island.	142

LIST OF FIGURES

		Page
Figure 1.1	The predicted global demand of production of natural resources	3
Figure 2.1	This illustration of the Lane balance	8
Figure 2.2	Schematic processes of headcutting by instream gravel mining	11
Figure 2.3	The turbidity and brownish colour of the Kelantan River	12
Figure 2.4	Bridge scour at Ladang Victoria, Sungai Muda	15
Figure 2.5	Mode of Sediment Transport	17
Figure 2.6	The fluvial system with three destruct zones	19
Figure 2.7	Adoption of different techniques to estimate rate of replenishment	34
Figure 2.8	Stream flow measurement using an ADCP using a boat	36
Figure 2.9	The ADCP velocity regimes of the upper Yangtze reaches	37
Figure 2.10	The arrangement of electrodes for a electrical survey	39
Figure 2.11	The different electrode arrays and their geometric factors	42
Figure 2.12	In-stream and floodplain sand mining	45
Figure 2.13	Floodplain Excavation Pit Geometry	47
Figure 2.14	Diagram of typical sand gravel bar	49
Figure 2.15	Sand being "skimmed" off the surface of a bar	49
Figure 2.16	Wet-pit mining at Sungai Kulim	50
Figure 2.17	Different methods of sand mining	51
Figure 2.18	Changes in river cross-section due to 2003 flood event	53
Figure 2.19	Comparison of Replenishment Rate for three rivers	55
Figure 3.1	The flow chart for methodology.	56

Figure 3.2	The location of study area in Sungai Perak at Pendiat, Perak.	57
Figure 3.3	The location of study area in Sungai Kemaman at Kemaman, Terengganu.	58
Figure 3.4	The location of study area in Sungai Pergau at Jeli, Kelantan.	59
Figure 3.5	The location of study area in Sungai Kurau at Batu Kurau, Perak.	60
Figure 3.6	Transducer and features of RiverSurveyor S5.	61
Figure 3.7	The data from ADCP was processed by RiverSurveyor LIVE.	62
Figure 3.8	Water Flow Probe by Global Water (2015).	64
Figure 3.9	The arrangement of electrodes for electrical survey	66
Figure 3.10	Typical ranges of earth material resistivities for various materials	66
Figure 3.11	Cables and electrodes arrangement.	68
Figure 3.12	Electrode, Jumper and Cable.	68
Figure 3.13	The inversion process of obtaining resistivity section.	69
Figure 3.14	Reading the raw data.	70
Figure 3.15	Bad data points have been selected to reduce the errors.	71
Figure 3.16	The RMS error is reduce to 2.7% after exterminate bad data points.	71
Figure 3.17	The error of reading can consider as high for the study.	72
Figure 3.18	RMS errors statistic.	72
Figure 3.19	RMS error is reduced to 5.1%.	73
Figure 3.20	The Helley-Smith bed load sampler.	74
Figure 3.21	Eight bed load samples at Sungai Perak.	75
Figure 3.22	Helley-Smith Sediment Sampler.	77
Figure 3.23	Three samples for suspended load sample at Sungai Perak.	78

Figure 3.24	Van-Veen grab sample.	79
Figure 3.25	Eight bed material samples at Sungai Perak.	79
Figure 3.26	Deployment and recovery of the Van veen grab	80
Figure 3.27	Van-Veen Grab Sampler lowered from the boat.	81
Figure 3.28	Sieve Analysis Shaker Machine.	82
Figure 3.29	Example Sieve Analysis Result.	83
Figure 3.30	The filter paper traces suspended sediments.	83
Figure 3.31	Pycnometer need to place inside vacuum desicator to remove air.	85
Figure 4.1	Five cross sections of Sungai Perak.	88
Figure 4.2	Typical cross section of Sungai Perak projected by ADCP.	89
Figure 4.3	Line 1 cross section measured on 15 June 2015.	89
Figure 4.4	The location of river profile and sediment sampling for A1, A2 and A3 at Sungai Kemaman, Terengganu.	91
Figure 4.5	The location of river profile and sediment sampling for C1, C2, B1 and B2 at Sungai Kemaman, Terengganu.	92
Figure 4.6	Typical cross section of Sungai Kemaman projected by ADCP.	92
Figure 4.7	Line A2 cross section measured on 9 Januari 2014.	93
Figure 4.8	Typical cross section of Sungai Pergau, Kelantan.	94
Figure 4.9	The location of river profile and sediment sampling for Sungai Pergau, Kelantan.	94
Figure 4.10	The location of river profile and sediment sampling for Sungai Kurau, Perak.	96
Figure 4.11	Typical cross section of Sungai Kurau, Perak.	96
Figure 4.12	S-curve of bed load obtained from Sungai Perak.	100
Figure 4.13	S-curve of bed material obtained from Sungai Perak.	102

Figure 4.14	S-curve of bed load obtained from Sungai Kemaman.	103
Figure 4.15	S-curve of bed material obtained from Sungai Kemaman.	105
Figure 4.16	S-curve of bed load obtained from Sungai Pergau.	106
Figure 4.17	S-curve of bed material obtained from Sungai Pergau.	107
Figure 4.18	S-curve of bed load obtained from Sungai Kurau.	108
Figure 4.19	S-curve of bed material obtained from Sungai Kurau.	109
Figure 4.20	Sediment load (computed) against sediment load (measured) (Sungai Perak).	111
Figure 4.21	Sediment load (computed) against sediment load (measured) (Sungai Kemaman).	113
Figure 4.22	Sediment load (computed) against sediment load (measured) (Sungai Pergau).	114
Figure 4.23	Sediment load (computed) against sediment load (measured) (Sungai Kurau).	115
Figure 4.24	Sediment rating curve for Sungai Perak at Pendiat, Perak.	119
Figure 4.25	Sediment rating curve for Sungai Kemaman at Kg. Gong Kapur and Kg. Pasir Semut, Terengganu.	119
Figure 4.26	Sediment rating curve for Sungai Pergau at Kg. Jeli, Jeli, Kelantan.	120
Figure 4.27	Sediment rating curve of Sungai Kurau at Kg. Batu 20, Batu Kurau, Perak.	120
Figure 4.28	The location of the electrical resistivity survey lines at Sungai Perak (Line 1, Line 2, Line 3 and Line 4).	122
Figure 4.29	The electrical Resistivity Profile for Line 1 of Sungai Perak.	124
Figure 4.30	The electrical Resistivity Profile for Line 2 of Sungai Perak.	125
Figure 4.31	The electrical Resistivity Profile for Line 3 of Sungai Perak.	126
Figure 4.32	The electrical Resistivity Profile for Line 4 of Sungai Perak.	127
Figure 4.33	The location of the electrical resistivity survey lines at Sungai Kemaman (Line 1, Line 2, Line 3 and Line 4).	128

Figure 4.34	The location of the electrical resistivity survey lines at Sungai Kemaman (Line 5).	128
Figure 4.35	The electrical Resistivity Profile for Line 1 of Sungai Kemaman.	131
Figure 4.36	The electrical Resistivity Profile for Line 2 of Sungai Kemaman.	132
Figure 4.37	The electrical Resistivity Profile for Line 3 of Sungai Kemaman.	133
Figure 4.38	The electrical Resistivity Profile for Line 4 of Sungai Kemaman.	134
Figure 4.39	The electrical Resistivity Profile for Line 5 of Sungai Kemaman.	135
Figure 4.40	The location of the electrical resistivity survey lines at Sungai Kurau (Line 1 and Line 2).	136
Figure 4.41	The electrical Resistivity Profile for Line 1 of Sungai Kurau.	138
Figure 4.42	The electrical Resistivity Profile for Line 2 of Sungai Kurau.	139
Figure 4.43	The size of river island A.	141
Figure 4.44	The size of river island B.	141
Figure 4.45	Erosion due to deflected flow by river island	143

LIST OF SYMBOLS

Δ	Relative density of sediment in the fluid
А	Coefficients of Acker-White
b	B/n
C _f	1 for laboratory flumes and 1.268 for field channels
cm/s	Centimeter per second
Ct	Sediment concentration (by weight)
C _{pt}	Sediment concentration (in ppm by weight)
C _u	Uniformity Coefficient
C _v	Sediment concentration (by volume)
d ₅₀	Mean sediment size (m)
d ₃₅	Sediment particle size (m)
ds	Diameter of sediment
F _d	Densimetric Froude number
F _{dc}	Densimetric Froude number corresponding to sediment threshold
F _{gr}	Mobility number
g	Acceleration due to gravity (m/s^2)
Κ	Coefficients of Acker-White
Kg/s	Kilogram per second
km ²	Kilometre square
М	Exponents of Acker-White Equation
m	Meter
m/s	Meter per second
m ³ /s	Meter cubic per second

m ³ /year	Meter cubic per year
mg/l	Miligram per mililiter
mg/ml	Milligram/milliliter
MHz	Megahertz
mm	Milimeter
Ν	Exponents of Acker-White Equation
n	Manning number
N/m ²	Newton per meter square
Ohm-m	Ohm-Meter
ppm	Part per million
Q, Q _w	Water Discharge
q _s	Sediment transport rate by weight per unit width (m^2/s)
q _t	Sediment transport rate by weight per unit width (m^2/s)
R, R _b	Hydraulic radius (m)
Re*	Shear Reynolds number = $w_s d_{50}/v$
S, S ₀	Slope of river profile
Т	Time of measurement
T_t	Suspended Sediment load of cross section in kg/s
u*	Shear velocity ($\sqrt{\text{grs}}$) (m/s)
V	Average velocity of river profile (m/s)
υ	Kinematic viscocity (m ² /s)
V _c	Unit stream power ((m-kg/kg)/s)
V _c S	critical unit stream power required at incipient motion ((m-kg/kg)/s)
у	Depth of river profile (m)

γ	Specific weights of water (kN/m ³)
γ_s	Specific weights of sediment (kN/m ³)
ρ,ρ _s	Density of sediment (kg/m ³)
σg	Gradation coefficients
τ	Bed shear stress (kg/m ²)
$ au_0$	Shear stress (kg/m ²)
Φ	Transport parameter
$\Phi_{\rm t}$	Total-load transport intensity

LIST OF ABBREVIATIONS

1D	One dimensional
2D	Two dimensional
ADCP	Acoustic Doppler Current Profiler
ASCE	American Society of Civil Engineers
BS	British Standard
DID	Department of Drainage and Irrigation Malaysia
ERT	Electrical Resistivity Tomography
GDP	Gross Domestic Product
JICA	Japan International Cooperation Agency
LCD	Liquid Crystal Display
LiDAR	Light Detection and Ranging
MPCA	Minnesota Pollution Control Agency
RMS	Root Mean Square
UNESCO	United Nations Educational, Scientific and Cultural
	Organization
USGS	United States Geological Survey

PENGELUARAN KAPASITI PASIR SUNGAI SECARA OPTIMUM DALAM ALIRAN PERLOMBONGAN

ABSTRAK

Hakisan sungai disebabkan perlombongan pasir dan kelikir secara berlebihan berpunca daripada kurangnya pengurusan perlombongan pasir secara lestari. Biasanya, pasir dikorek keluar secara terus dari sungai tanpa panduan yang betul daripada pihak pemegang konsesi yang menyebabkan saluran sungai tidak stabil dan hakisan yang teruk di tebing-tebing sungai disebabkan perlombongan pasir tidak terkawal. Dalam kajian ini, Acoustic Doppler Current Profil (ADCP) digunakan untuk mengunjurkan profail sungai. Dengan menggunakan ADCP, keratan rentas sungai yang lebar boleh diunjurkan dengan mudah dan juga mampu menambahbaik ketepatan data dalam kajian pengangkutan endapan. Berdasarkan analisis makmal, jenis endapan yang di bawa empat sungai kajian kebanyakannya merupakan pasir dan batu kerikil halus ($d_{50} = 0.8$ hingga 2.0 mm). Beberapa persamaan telah digunakan untuk menentukan kesesuaian persamaan jumlah beban bahan dasar. Keputusan menunjukkan bahawa persamaan terbaik untuk empat sungai ialah persamaan Ariffin, Sinnakaudan et al. dan Molinas-Wu. Persamaan Ariffin mampu meramalkan pengangkutan endapan keempat-empat sungai dengan begitu baik sehingga 94.12% tepat untuk Sungai Perak, 71.43% untuk Sungai Kemaman, 66.67% untuk Pergau Sungai dan 75% untuk Sungai Kurau. Penentuan persamaan yang bersesuaian sangat berguna untuk rekabentuk saluran yang stabil, pembangunan lengkung kadaran endapan dan penentuan kapasiti pengorekkan pasir daripada sungai. Berdasarkan analisis beban endapan, Sungai Perak menunjukkan

xvii

beban endapan tertinggi dan ini menunjukkan Sungai Perak sesuai untuk aktiviti perlombongan pasir. Pengukuran Rintangan Elektrik (ERT) menunjukkan subpermukaan tebing sungai mengandungi lapisan pasir lebih kurang 5 hingga 15 meter kedalaman berdasarkan profail diunjurkan. Hasil daripada profail ERT, kajian mendapati dataran banjir dan pulau sungai mampu menjadi sumber alternatif untuk pasir sungai. Lengkung kadaran endapan digunakan untuk menentukan masa yang diambil untuk endapan pulih dan kapasiti pengesktrakan pasir daripada sungai. Kajian juga mendapati tempoh pengisian semula endapan untuk 2 meter pengorekan pasir ialah lebih kurang enam hari untuk pulau sungai yang kecil dan 98 hari untuk pulau sungai yang besar.

OPTIMAL SAND REMOVAL CAPACITY FOR IN-STREAM MINING

ABSTRACT

River degradation due to excessive in-stream sand and gravel mining can be attributed to lack of sustainable management. Sand is usually extracted directly from river without proper guidance from concessioners which can lead unstable river channel and excessive erosion in rivers as well as river banks due to uncontrolled extraction of sand. In this study, the Acoustic Doppler Current Profile (ADCP) was used to project river profile. By deploying the ADCP, the profiling of large river cross section could be done easily and would improve the data accuracy in sediment transport study. The characteristic in four rivers from soil laboratory analysis are mostly sand and fine gravel ($d_{50} = 0.8$ to 2.0 mm). Three equations namely Ariffin, Sinnakaudan et al. and Molinas-Wu were used to estimate total bed material load. Ariffin equation has given the best prediction for four rivers with to 94.12% accuracy for Sungai Perak, 71.43% for Sungai Kemaman, 66.67% for Sungai Pergau and 75% for Sungai Kurau. The determination of suitable equations would be useful for design stable channel, develop rating curve and determine sediment discharge in river. From analysis, Sungai Perak was found to yield the highest sediment load indicating its suitability for sand mining activities. Electrical Resistivity Survey (ERT) shows that riverbank subsurface consist of sand between 5 to 15 meter depth based on projected profile. This implies that both floodplain and river islands can be alternative sand mining sources. The sediment rating curve is used to estimate the sediment recovery period and capacity of sand extraction from river. This study

infers that the sediment recovery period for two (2) meters extraction is about six (6) days for a small river island and 98 days for a large river island.

CHAPTER ONE

INTRODUCTION

1.1 Overview

The extensive use of sand in construction and the huge demand of sand in the construction industries have resulted in the river environmental degradation. Sand is widely used as aggregate in concrete and road construction (Kondolf, 1997). According to Sreebha (2008), sand are sedimentary materials, finer than a granule and coarser than silt, with grains between 0.06 and 2.0 millimetre (mm) in diameter in geology term. They are loose and non-cohesive granular material with minor impurities of feldspar, mica and iron oxides.

Demand for sand is huge, especially in urban areas and new townships undergoing rapid development. This is in response to Gross Domestic Product (GDP) from the construction industries in Malaysia averaged RM 9349.48 million from 2010 until 2016 (Trading Economics, 2016). The increases in sand demand have caused serious implications such as illegal and improper sand mining operation. The unregulated mining activities have resulted in massive damages to the river bed and banks.

The Final Report of Comprehensive Management Plan for Sungai Muda Basin by Japan International Cooperation Agency (1995) reported huge sand mining operation activities along Sungai Muda. There activities have led to serious erosion and sedimentation along the river which is the main cause of flooding in that area (Ab. Ghani et al., 2010).

This study seeks to establish the sustainable sand removal capacity to reduce river bed degradation and channel instability. This requires the estimation of sediment transport along the selected rivers and cross-section profiling to estimate safe volume of sand that could be removed with minimal impacts (Ponce, 2014).

1.2 Problem Statement

Sand mining can be defined as the temporary or permanent lowering of the productive capacity of land (Saviour and Stalin, 2010). In-stream sand mining can cause many negative impacts toward the river system. The sand mining can cause river bank erosion, high turbidity, lowered the water level, and instability of river structures. However, in-stream sand mining also gives positive impacts such as maintaining river roughness and improves the hydraulic performance of river by deepening the river.

In developing country, the in-stream sand mining usually is done by small scale companies. The small scale company commonly lacks of technologies and effective management, which subsequently leads to inability to control the sand extraction activities. Additionally, the permission of grant or permit to extract instream sand mining in developing country is less formal or even non-existent which can cause problem to control sand mining operation (Scott and Harrison, 2008).

Sometimes, the licensed company also is not following the right practices such as exceeding the legal mining limits and resort to illegal practices to the point of threatening river (Bravard and Goichot, 2013; Nguyen, 2011) plus the involvement of local criminal gangs, official corruption and lack of enforcement were the main difficulties for the ban on illegal sand mining (Bravard and Goichot, 2013). Due to these reasons, sand mining cannot be managed properly by government even after implementing the procedure or guideline.

Figure 1.1: The predicted global demand of production of natural resources on 2020 (United Nation, 2010).

The other reason why sand mining cannot be managed properly is because the demand of sand is become higher from year to year. Figure 1.1 shows the predicted global demand of production of natural resources on 2020. Industry or construction materials which are included sand usage is categorised as non-metallic minerals. Based on Figure 1.1, the demand of non-metallic minerals are increasing