Y₂O₃ AND CaO ZIRCONIA AS REINFORCEMENT FOR HYDROXYAPATITE BIOCOMPOSITE

ZAW LINN HTUN

UNIVERSITI SAINS MALAYSIA

2016

Y₂O₃ AND CaO ZIRCONIA AS REINFORCEMENT FOR HYDROXYAPATITE BIOCOMPOSITE

by

ZAW LINN HTUN

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

September 2016

DECLARATION

I hereby declare that I have conducted, completed the research work and written the dissertation entitles " Y_2O_3 and CaO Zirconia as Reinforcement for Hydroxyapatite Biocomposite". I also declare that it has not been previously submitted for the award of any degree or diploma or other similar title of this for any other examining body or University.

Name of Student: Zaw Linn Htun Date: 29th, August, 2016 Signature:

Witness by

 Supervisor:
 Prof. Dr. Ahmad Fauzi Mohd Noor
 Signature:

Date: 29th, August, 2016

ACKNOWLEDGEMENTS

Firstly, I gratefully acknowledge financial support from Japan International Cooperation Agency (JICA), ASEAN University Network/ Southeast Asia Engineering Education Development Network (AUN/SEED-Net) for giving me the opportunity to undertake this research work.

I cherish this chance to express my deepest thankfulness to my supervisor Prof. Dr. Ahmad Fauzi Mohd Noor and co-supervisor, Dr. Nurazreena Ahmad for their support, patient, motivation, guidance and inspiration to accomplish this research project. I also would like to thank my advisor, Prof. Dr. Mitsugu TODO at Division of Renewable Energy Dynamics, Research Institute for Applied Mechanics, Kyushu University, for his valuable comment and suggestions.

I would like to convey my appreciation to Prof. Dr. Zuhailawati Bt. Hussain, Dean of SMMRE (School of Materials and Mineral Resources Engineering), for her concern and valuable helps during my study. I am also grateful to University Sains Malaysia (USM) for offering an opportunity for me to study MSc in bioceramics with adequate research facilities, great supports from administrative, academic and technical staffs. I would like to express my special thanks to all lecturers for their innovative teaching.

I like to express my gratitude to all of my friends, local students as well as international ones, studying in School of Materials and Mineral Resources Engineering, USM. I really appreciated in knowledge sharing, taking care each other and making activities together during my study, and it will make me unforgettable in my life.

I would like to take this opportunity to convey my gratitude to all of my teachers starting from Primary School until now, especially Daw Aye Aye Myint, Assoc. Prof. Dr. Lwin Lwin Than, Assoc. Prof. Daw Lian Tial and Prof. Dr. Aye Aye Thant. Their enthusiasm and words of encouragement facilitated me to reach this height. This thesis is dedicated to them.

Finally, it is the time to describe my endless thanks to my beloved parents; U Maung Maung and Daw Aye Myint for supporting and encouraging me to try my best. Thanks for always being there for me during the good and the bad. Most of all, thanks a million for always believing in me, even when I fail to believe in myself. I am being one of the happiest people and so lucky to have you.

Thank you indeed.

Zaw Linn Htun

August 2016

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	XV
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE : INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Research Objectives	6
1.4	Research Overview	6

CHAPTER TWO : LITERATURE REVIEW

2.1	Introd	Introduction	
2.2	Bone Tissue		9
	2.2.1	Mechanical Characteristic of Bone	9
	2.2.2	Biology of Natural Human Bone	11
	2.2.3	Destructive Testing of Bone	14
2.3	Bioco	mposites for Medical Applications	17
	2.3.1	Types of Biocomposite Materials	18

2.4	Ceramics and Bioceramics Implants	19
	2.4.1 Three Generations of Bioceramics	21
	2.4.1.1 Bioinert Ceramics	22
	2.4.1.2 Bioresorbable Ceramics	22
	2.4.1.3 Bioactive Ceramics	23
2.5	Calcium Phosphate-based Ceramics	24
	2.5.1 Hydroxyapatite	26
	2.5.1.1 Hydroxyapatite for Implantation	27
	2.5.1.2 Manufacturing of HAp Biocomposite and Mechanical	
	Properties	28
	2.5.1.3 Mechanisms of Apatite Formation on Hydroxyapatite	32
	2.5.2 β -Tricalcium Phosphate (β -TCP)	33
	2.5.3 Biphasic Calcium Phosphate (BCP)	34
2.6	Ceramic Biocomposites	37
2.7	Zirconia	38
	2.7.1 Stabilization of Zirconia	41
	2.7.2 Yttria Stabilized Zirconia (Y ₂ O ₃ -ZrO ₂)	43
	2.7.3 Transformation Toughening	44
	2.7.4 Mechanical Properties of Zirconia	45
2.8	CaF ₂ Addition on ZrO ₂ /HAp Biocomposites	46
2.9	Biological Performance Evaluation	47

CHAPTER THREE : MATERIALS AND METHODOLOGY

3.1	Introduction	51
3.2	Raw Materials	51

3.3	Y ₂ O ₃ -	Y ₂ O ₃ -ZrO ₂ /HAp Biocomposite		
	3.3.1	Effect of Y ₂ O ₃ -ZrO ₂ and CaF ₂ Addition to HAp Matrix	52	
		3.3.1.1 Batching and Powders Mixing	55	
		3.3.1.2 Drying and Sieving	55	
		3.3.1.3 Dry Pressing	55	
		3.3.1.4 Sintering	56	
3.4	CaO-2	ZrO ₂ /HAp Biocomposite	57	
3.5	Evalu	ation of Bioactivity In Vitro	59	
	3.5.1	Preparation of Simulated Body Fluid	59	
	3.5.2	Samples Immersion in SBF Solution	60	
3.6	Chara	cterization	62	
	3.6.1	X-ray Diffraction (XRD)	62	
	3.6.2	Field Emission Scanning Electron Microscope (FESEM)	64	
	3.6.3	Particle Size Analysis	65	
	3.6.4	Density and Porosity Measurement	66	
	3.6.5	Linear Shrinkage Measurement	68	
	3.6.6	Hardness Test	69	
	3.6.7	Fracture Toughness Measurement	70	
	3.6.8	Flexural Strength Test	71	
СНАРТ	'ER FO	UR: RESULTS AND DISCUSSION		

4.1	Introduction	73
4.2	Raw Materials Characterization	73
	4.2.1 Particle Size Distribution	74
	4.2.2 Morphological Analysis	75

	4.2.3	Element	tal Analysis	77
4.3	Y ₂ O ₃ -	ZrO ₂ /HA	p Biocomposite	78
	4.3.1	Compar	ison for Pure Mixing and Milling-mixing Biocomposites	s 78
		4.3.1.1	XRD Analysis and Particle Size Distribution	79
		4.3.1.2	Physical Properties of Pure Mixing and Milling-mixing	5
			Composites	82
	4.3.2	Effect o	f Y ₂ O ₃ -ZrO ₂ Addition and Sintering Temperature	86
		4.3.2.1	XRD Analysis	86
		4.3.2.2	Physical Properties of Y ₂ O ₃ -ZrO ₂ /HAp Biocomposites	92
		4.3.2.3	Microstructural Observation	97
		4.3.2.4	Mechanical Properties of Y2O3-ZrO2/HAp	
			Biocomposites	100
		4.3.2.5	Evaluation of Bioactivity in SBF	103
4.4	CaO-Z	ZrO ₂ /HA _l	Biocomposite	105
	4.4.1	Charact	erization of Commercial CaO-ZrO ₂ Powder	105
	4.4.2	Effect o	f CaO-ZrO ₂ Addition and CaF ₂ on HAp	107
		4.4.2.1	XRD Analysis	108
		4.4.2.2	Physical Properties of CaO-ZrO ₂ /HAp Biocomposites	112
		4.4.2.3	Microstructural Examination	117
		4.4.2.4	Evaluation of Mechanical Properties	121
	4.4.3	Evaluat	ion of Bioactivity in SBF	124

CHAPTER FIVE : CONCLUSION AND FURTHER WORK

5.1	Conclusion	127
5.2	Recommendation for Future Research	129

REFERENCES

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 3.3

	Page
Hard tissue components of the human adult. Weight % except for Ca/P molar ratio	14
Important calcium phosphate compounds with their Ca/P ratios and PK_s^a values	26
Appropriated grain size of β -TCP bone grafts for different clinical scenarios	34
Characteristic of ZrO ₂ based ceramics	46
Summary of raw materials used for ZrO ₂ /HAp biocomposite	52
Summary of composition for Y_2O_3 -Zr O_2 /HAp with various CaF ₂ content. (wt% HAp = 95%, wt% Y_2O_3 -Zr O_2 = 5%)	53
Summary of variable parameters in Y ₂ O ₃ -ZrO ₂ /HAp biocomposite	54

- Table 3.4 Summary of composition for CaO-ZrO₂/HAp with different 57 amount of CaO-ZrO₂ and CaF₂ content
- Table 3.5 Summary of variable parameters in CaO-ZrO₂/HAp 58 biocomposite
- Table 3.6 Ion concentration of simulated body fluid and human blood 59 plasma
- Table 3.7 Reagents for preparation of SBF (pH 7.25) 60
- Table 4.1 Relative percentage of HAp and β -TCP phases present in the 91 Y_2O_3 -ZrO₂/HAp samples calculated from Equation (4.5)
- Table 4.2 Relative percentage of HAp and β -TCP phases present in the 112 CaO-ZrO₂/HAp samples

LIST OF FIGURES

		Page
Figure 2.1	Multi-scale and multi-material characteristics of bone	10
Figure 2.2	(a) Mechanical behaviour of a structure (b) Micro-scale (c) Whole bone	11
Figure 2.3	Typical load-displacement curve of a structure	15
Figure 2.4	Whole bone tested in three-point loading configuration. Force is applied through the upper plate. The span is the distance between the lower supports	17
Figure 2.5	Classification of biocomposites based on their reinforcement form	18
Figure 2.6	Schematic representation of mechanism of apatite formation on the sintered hydroxyapatite in SBF	32
Figure 2.7	Variation of zeta potential and Ca/P ratio on the surface of sintered hydroxyapatite as a function of soaking time in SBF	33
Figure 2.8	Three crystallographic phases of zirconia	40
Figure 2.9	Phase diagram of Y ₂ O ₃ -ZrO ₂	42
Figure 2.10	Partial phase diagram of CaO-ZrO ₂	42
Figure 2.11	Transformation toughening of partially stabilized tetragonal zirconia	44
Figure 2.12	SEM micrographs of the surfaces of the natural HA/zircon coatings soaked in SBF for 7 days	49
Figure 2.13	SEM micrographs of the glass-ceramic surfaces after immersion in SBF for 14 days	49
Figure 3.1	Flow chart of Y ₂ O ₃ -ZrO ₂ /HAp biocomposite sample preparation	54

Figure 3.2	Green bodies of ZrO ₂ /HAp biocomposite	56
Figure 3.3	Flow chart of CaO-ZrO ₂ /HAp biocomposite sample preparation	58
Figure 3.4	Arrangement of sample being soaked in SBF	62
Figure 3.5	Schematic illustration of density measurement by Archimedes method	67
Figure 3.6	Schematic illustration of ZrO ₂ /HAp biocomposite sample	68
Figure 3.7	Schematic diagram of indentation mark in Vickers microhardness measurement	69
Figure 3.8	Schematic diagram of radial crack by indentation	70
Figure 3.9	Illustration of a three-point bending test	72
Figure 4.1	Particle size distribution curve for HAp powder	74
Figure 4.2	Particle size distribution curve for Y2O3-ZrO2 powder	75
Figure 4.3	SEM images of HAp powder at (a) 1000X and (b) 3000X magnifications	76
Figure 4.4	SEM images of Y_2O_3 -Zr O_2 powder at (a) 10,000X and (b) 20,000X magnifications	77
Figure 4.5	SEM image and EDX spectrum of HAp powder	77
Figure 4.6	XRD patterns of pure mixing and milling-mixing Y_2O_3 -ZrO ₂ /HAp composites with 1 wt% of CaF ₂ addition sintered at (a) 1050°C and (b) 1250°C	81
Figure 4.7	Particle size distribution curves for (a) pure mixing sample and (b) milling-mixing sample	82
Figure 4.8	Bulk densities of pure mixing and milling-mixing Y_2O_3 - ZrO ₂ /HAp composites with 1 wt% of CaF ₂ addition as a function of sintering temperature	83

Figure 4.9 84 Apparent porosities of pure mixing and milling-mixing Y₂O₃-ZrO₂/HAp composites with 1 wt% of CaF₂ addition as a function of sintering temperature Figure 4.10 SEM images of pure mixing samples at (a) 1200°C and (b) 85 1250°C 85 Figure 4.11 SEM images of milling-mixing samples sintered at (a) 1200°C and (b) 1250°C Figure 4.12 XRD patterns of Y₂O₃-ZrO₂/HAp biocomposites with various 88 CaF₂ amount sintered at (a) 1050° C (b) 1150° C and (c) 1250°C Figure 4.13 Firing shrinkages of Y₂O₃-ZrO₂/HAp biocomposites with 93 various CaF₂ addition as a function of sintering temperature at (a) length (b) width and (c) thickness direction 94 Figure 4.14 Picture of fully densify 5YZH-9CF sample compared with 5YZH-5CF and 5YZH-7CF samples sintered at 1150 °C Figure 4.15 Bulk densities of Y₂O₃-ZrO₂/HAp biocomposites with various 95 CaF₂ addition as a function of sintering temperature Figure 4.16 Apparent porosities of Y₂O₃-ZrO₂/HAp biocomposites with 97 various CaF₂ addition as a function of sintering temperature Figure 4.17 SEM images of (a) 5YZH-1CF, (b) 5YZH-3CF, (c) 5YZH-98 5CF and (d) 5YZH-7CF composites sintered at 1250°C for 5 hours Figure 4.18 99 SEM image of 5YZH-9CF composite sintered at 1150°C for 5 hours 99 Figure 4.19 SEM images for fracture surfaces of 5YZH-3CF composite sintered at (a) 1100°C (b) 1150°C, (c) 1200°C and (d) 1250°C for 5 hours 100 Figure 4.20 SEM images for fracture surfaces of 5YZH-5CF composite sintered at (a) 1100°C (b) 1150°C, (c) 1200°C and (d) 1250°C for 5 hours

- Figure 4.21 Flexural strength (MOR) of Y_2O_3 -ZrO₂/HAp biocomposites 101 with various CaF₂ addition as a function of sintering temperature
- Figure 4.22 Microhardness of Y_2O_3 -ZrO₂/HAp biocomposites with 102 various CaF₂ addition as a function of sintering temperature
- Figure 4.23 Fracture toughness of Y_2O_3 -ZrO₂/HAp biocomposites with 103 various CaF₂ addition as a function of sintering temperature
- Figure 4.24 SEM images of the surfaces of 5YZH-3CF sample sintered at 104 1250 °C at (a) 5000X and (b) 20,000X magnification after soaking in SBF for 7 days
- Figure 4.25 SEM images of the surfaces of 5YZH-5CF sample sintered at 105 1250 °C at (a) 5000X and (b) 20,000X magnification after soaking in SBF for 7 days
- Figure 4.26XRD pattern for CaO-ZrO2 raw powder106
- Figure 4.27 Particle size distribution curve of CaO-ZrO₂ raw powder 107
- Figure 4.28 SEM images for CaO-ZrO₂ raw powder 107
- Figure 4.29 XRD patterns of (a) 5CZH-3CF, (b) 5CZH-5CF, (c) 10CZH-3CF and (d) 10CZH-5CF composites sintered at temperatures between 1150 °C to 1350 °C
- Figure 4.30 XRD patterns of various CaO-ZrO₂/HAp composites sintered 111 at 1350°C
- Figure 4.31 Firing shrinkages of CaO-ZrO₂/HAp biocomposites with 3 114 and 5 wt% CaF₂ addition as a function of sintering temperature at (a) length (b) width and (c) thickness direction
- Figure 4.32 (a) Bulk densities and (b) apparent porosities of CaO- 116 ZrO₂/HAp biocomposites with 3 and 5 wt% CaF₂ addition as a function of sintering temperature
- Figure 4.33 (a) SEM images of 5CZH-5CF composite after sintering at (i) 119 1250°C, (ii) 1300°C and (iii) 1350°C, and (b) 10CZH-5CF composite after sintering at (iv) 1250°C, (v) 1300°C and (vi) 1350°C for 5 hours

- Figure 4.34 (a) SEM images for cross-section of 5CZH-5CF composite 120 after sintering at (i) 1250°C, (ii) 1300°C and (iii) 1350°C, and (b) cross-section of 10CZH-5CF composite after sintering at (iv) 1250°C, (v) 1300°C and (vi) 1350°C for 5 hours
- Figure 4.35 Flexural strength (MOR) of CaO-ZrO₂/HAp biocomposites 122 with 3 and 5 wt% CaF₂ addition as a function of sintering temperature
- Figure 4.36 Microhardness of CaO-ZrO₂/HAp biocomposites with 3 and 5 123 wt% CaF₂ addition as a function of sintering temperature
- Figure 4.37 Fracture toughness of CaO-ZrO₂/HAp biocomposites with 3 124 and 5 wt% CaF₂ addition as a function of sintering temperature
- Figure 4.38 SEM images of the surfaces of 5CZH-5CF sample at (a) 125 5000X and (b) 20,000X magnification after soaking in SBF for 7 days
- Figure 4.39 SEM images of the surfaces of 10CZH-5CF sample at (a) 126 5000X and (b) 20,000X magnification after soaking in SBF for 7 days

LIST OF SYMBOLS

%	Percentage
<	Less than
>	Greater than
~	Approximately
0	Degree
°C	Degree Celsius
°C/min	Degree Celsius per minute
cm	Centimetre
h	Hour
L	Litre
m	Metre
min	Minute
mL	Millilitre
mm	Millimetre
rpm	Revolution per minute
wt %	Weight percent
nm	Nanometre
g	Gram
λ	Wavelength
θ	Theta (Angle)

LIST OF ABBREVIATIONS

Al_2O_3	Alumina
BCP	Biphasic Calcium Phosphate
c-ZrO ₂	Cubic Zirconia
Ca	Calcium
CaF ₂	Calcium Fluoride
CaO	Calcia
CaO-ZrO ₂	Calcia Stabilized Zirconia
CaP	Calcium Phosphate
CDA	Calcium Deficient Apatite
CeO ₂	Ceria
EDX	Energy Dispersive X-ray
FAp	Fluorapatite
FESEM	Field Emission Scanning Electron Microscope
FSZ	Fully Stabilized Zirconia
НАр	Hydroxyapatite
ICDD	International Centre for Diffraction Data
JCPDS	Joint Committee on Powder Diffraction Standards
MgO	Magnesia
MOR	Modulus of Rupture
MPa	Megapascal
m-ZrO ₂	Monoclinic Zirconia
PSZ	Partially Stabilized Zirconia
SBF	Simulated Body Fluid

SEM	Scanning Electron Microscope
SiC	Silicon Carbide
TEM	Transmission Electron Microscopy
ТТСР	Tetra Calcium Phosphate
t-ZrO ₂	Tetragonal Zirconia
XRD	X-ray Diffraction
XRF	X-ray Fluorescence
Y ₂ O ₃	Yttria
Y ₂ O ₃ -ZrO ₂	Yttria Stabilized Zirconia
ZrO ₂	Zirconia
ZrO ₂ /HAp	Zirconia Reinforced Hydroxyapatite Biocomposite
α-TCP	Alpha Tricalcium Phosphate
β-TCP	Beta Tricalcium Phosphate

ZIRKONIA Y₂O₃ DAN CaO SEBAGAI PENGUAT DALAM BIOKOMPOSIT HIDROKSIAPATIT

ABSTRAK

Biokomposit hidroksiapatit diperkuat zirkonia (ZrO₂/HAp) telah difabrik untuk menambahbaik kekuatan dan keliatan patah bioseramik HAp tunggal. Y2O3-ZrO₂ dan CaO-ZrO₂ komersial dipilih sebagai bahan penguat untuk matrik HAp. Sampel ZrO₂/HAp telah dihasilkan dengan cara konvensional pemprosesan seramik, iaitu melibatkan pencampuran serbuk, pemadatar dan persinteran. Pemprosesan sampel dimulakan dengan pencampuran atau pengisaran-pencampuran untuk membandingkan kehasilan kedua-dua sistem ini. Hasil sifat fizikal dan mekanikal adalah lebih baik dengan penggunaan cara pengisaran-pencampuran. HAp yang diperkuatkan sebanyak 5 bt% Y₂O₃-ZrO₂ komersial yang seterusnya ditambah dengan berlainan amaun CaF₂ amaun (1, 3, 5, 7 and 9 bt%) sebagai pembantu sinter dalam biokomposit ZrO₂/HAp. Sampel dipadat dengan mampatan ekapaksi sebanyak 90 MPa. Sampel kemudian disinter pade suhu 1050°C sehingga 1250°C dalam udara selama 5 jam. Semakin tinggi amaun CaF₂ digunakan, semakin besar kemungkinan fasa HAp dikekalkan. Kekuatan lentur dan keliatan patah optima dicapai ialah 61.10 MPa dan 1.15 MPa.m^{1/2} selepas penambahan 3 bt% CaF₂ (komposit 5YZH-3CF). Dengan ini, 3 dan 5 bt% CaF₂ dipilih sebagai amaun optima. Dalam bahagian kedua, penambahan 5 dan 10 bt% CaO-ZrO₂ dalam HAp dibanding dengan Y₂O₃-ZrO₂ dari segi kesan kekuatan dan keliatan. Amaun CaF₂ yang terpilih sebelum ini juga ditambah ke biokomposit CaO-ZrO₂/HAp. Sifat mekanikal biokomposit CaO-ZrO₂/HAp adalah lebih baik daripada optima HAp tunggal, iaitu kekuatan lentur dan ketahanan lentur ialah 54.77 MPa dan 1.33 MPa.m^{1/2} dengan ketumpatan 3.14 gcm⁻³. Bahagian terakhir

adalah pengujian bioaktiviti biokomposit HAp diperkuat Y_2O_3 dan CaO-ZrO₂. Pembentukan lapisan apatit dijumpai di atas permukaan sampel terpilih menandakan bioserasi dan potensi keupayaan pembentukan tulang.

Y₂O₃ AND CaO ZIRCONIA AS REINFORCEMENT FOR HYDROXYAPATITE BIOCOMPOSITE

ABSTRACT

Zirconia reinforced hydroxyapatite (ZrO₂/HAp) biocomposites were fabricated to improve the strength and fracture toughness of monolithic HAp. Commercial Y₂O₃-ZrO₂ and CaO-ZrO₂ were selected as the reinforcement for the HAp matrix. The ZrO₂/HAp samples were produced by conventional ceramic processing route. The samples were initially produced by pure mixing as well as milling-mixing system. Better physical and mechanical properties were observed from milling-mixing. 5 wt% of commercial Y_2O_3 -ZrO₂ was used to reinforce HAp and various amount of CaF₂ (1, 3, 5, 7 and 9 wt%) were added to the ZrO₂/HAp biocomposite as sintering aid. Samples were compacted with a uniaxial pressure of 90 MPa. The samples were then sintered from 1050°C to 1250°C for 5 hours. The optimum flexural strength of 61.10 MPa and fracture toughness of 1.15 MPa.m^{1/2} was achieved by 3 wt% of CaF₂ addition. From this study, 3 and 5 wt% of CaF_2 were selected as optimum addition. Subsequently, 5 and 10 wt% of CaO-ZrO₂ were incorporated to HAp to improve the strength and toughness of the HAp as compared with Y₂O₃-ZrO₂ addition. The selected amounts of CaF₂ were also added to CaO-ZrO₂/HAp biocomposites. The mechanical properties of CaO-ZrO₂/HAp biocomposite were found to be better than the optimum properties of monolithic HAp. The biocomposite achieved better flexural strength of 54.77 MPa with higher density 3.14 gcm⁻³ and fracture toughness of 1.33 MPa.m^{1/2}. The bioactivity test on both Y₂O₃ and CaO-ZrO₂ reinforced HAp biocomposites revealed the formation of apatite layer on the surfaces, indicating the biocompatibility and potential bone forming ability.

CHAPTER ONE

INTRODUCTION

1.1 Background

Biomaterials are generally based on the groups of materials such as metals, polymers, and ceramics (Park & Lakes 2007; Hermansson 2014). Biomaterials based ceramics, also known as bioceramics, are found within all the classical ceramic families such as traditional ceramics, special ceramics, glasses, glass-ceramics, coatings, and chemically bonded ceramics (Hermansson 2014). Bioceramics can be classified into bioinert, bioactive and resorbable bioceramics (Hench 1991). Depending on the applications, type of bioceramics can be selected. For instance, hard tissue and bone replacements are synthesized mainly from bioactive ceramics such as dense non-porous bioglass, ceravital and hydroxyapatite (HAp) (Best et al. 2008).

HAp, however, is the most largely used material than the others primarily because of its compositional and biological similarity to human bone, biocompatibility, bioactivity and osteoconduction characteristic (Jun et al. 2003; Sadjadi et al. 2010). It possesses exceptional biocompatibility and unique bioactivity, and it will form an artificial bone-like structure with the surrounding bone tissue when implanted (Hench & Wilson 1993). The reason for using hydroxyapatite as a bone substitute material is because the major constituent of bone is HAp and natural bone is approximately 70% hydroxyapatite by weight and 50% hydroxyapatite by volume (Shors & Holmes 1993; Vasconcelos 2012). HAp is frequently used for reconstruction and replacement of damaged bone or tooth zones in plastic and dental surgeries as well as in coatings on dental and orthopaedic implants (Muster 1992; An et al. 2012; Oyefusi et al. 2014). Metals coated with hydroxyapatite have also been introduced as artificial bones. The hydroxyapatite coating will assist the surrounding tissue to bond firmly with the implant while the metal provides the strength for the artificial bone (Oonishi 1991; Mohseni et al. 2014; Pylypchuk et al. 2015).

Hydroxyapatite is reported as a low soluble basic calcium phosphate with Ca/P ratio of 1.67 (Daniel Arcos 2014). It has consistent bioactive properties and therefore is well suited as a calcium phosphate coating for total joint arthoplasty and total knee arthoplasty. As a result of its biocompatible, nontoxic, and capable of bonding directly to bone, HAp possesses true osteointegration (Epinette 1999). However, although HAp offers high biocompatibility, relatively low density, high compressive strength and high hardness, application of HAp as a load bearing implant is limited because of its brittleness, relatively low mechanical properties and a high dissolution rate in body fluid. Hence, the necessity of reinforcement to HAp without hampering its biocompatibility plays a crucial role (Balani et al. 2009).

Based on this understanding, the development of biocomposite materials is attractive as the advantage properties of two or more types of materials can be combined to suit better physical and mechanical properties of the matrix (Raucci et al. 2016). The introduction of bioinert ceramics with better properties as reinforcement into HAp ceramic is one effective way in producing a biocomposite with acceptable strength in order to sustain the cyclic loading. Bioinert ceramics are chosen to enhance the properties of bioactive HAp because it can maintain their physical and mechanical properties while being implant in human body. Alumina (Al₂O₃), zirconia (ZrO₂) and