PVDF-TIO₂ NANOCOMPOSITE MEMBRANE WITH ANTI-FOULING PROPERTIES FOR OIL EMULSION REMOVAL

SUSAN LING YING

UNIVERSITI SAINS MALAYSIA 2016

PVDF-TIO2 NANOCOMPOSITE MEMBRANE WITH ANTI-FOULING PROPERTIES FOR OIL EMULSION REMOVAL

by

SUSAN LING YING

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

ACKNOWLEDGEMENT

First and foremost, I would like to express a great thankful to my beloved supervisors, Associate Professor Dr. Ooi Boon Seng and Dr. Suzylawati binti Ismail for patience, never-ending encouragement, and guidance, advice and faithful discussions throughout my entire master degree program. They always gave advises and comments which would help in my study. Without their continued support, this thesis would not have been completed.

I would like to express my sincerest appreciation to all technicians, staffs and colleagues who have provided assistance at various occasions. Their views and teaches are very useful indeed. The experiences and knowledge that I gained throughout the process of completing this project would prove invaluable to better equip me for the challenges in the future.

Besides, I would like to sincere thanks to my friends, namely Huey Ping, Jing Yao, Swee Pin, Qi Hwa and Sim Siong, for lending a helping hand whenever I faced problems. Ideas and suggestions were generated for solving the difficulties through fruitful discussion. Without their assistances, I would not able to accomplish this research smoothly.

Next, a special gratitude to my beloved parents for their endless love, support and prays. My family deserves my love and thanks for their understanding and support throughout the years while at the same time making my life full of sense and joy. Last but not least, the financial supports from USM fellowship, USM Research University Grant (RUI) (1001/PJKIMIA/814210), USM Membrane Cluster and Ministry of Higher Education (MyMaster) are gratefully acknowledged.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv
ABSTRAK	XV
ABSTRACT	xvii

CHAPTER ONE: INTRODUCTION

1.1	Oil-in-water Emulsion and Produced Water Treatment	1
1.2	Limitations of Conventional Separation Method	2
1.3	Membrane Fouling	4
1.4	Problem Statement	6
1.5	Research Objectives	7
1.6	Scope of Study	7
1.7	Organization of the Thesis	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Memb Treatn	rane Fouling and Membrane Potential in Oily Wastewater nent.	11
2.2	Ultrafi	ltration for Separation of Oil-in-Water Emulsions	13
	2.2.1	Membrane Material Selection	13
	2.2.2	Membrane Preparation Parameters	14
		2.2.2(a) Polymer Concentrations	15

		2.2.2(b)	Solvent Selection	15
		2.2.2(c)	Additives	17
2.3	Metho	ds for the Pr	revention of Membrane Fouling	19
	2.3.1	Membrane	e Cleaning	19
		2.3.1(a)	Physical Cleaning	20
		2.3.1(b)	Chemical Cleaning	21
	2.3.2	Hydrody Membran	namic and Operational Conditions on the e Fouling Phenomena	23
		2.3.2(a)	Transmembrane Pressure (TMP)	23
		2.3.2(b)	Feed flowrate	25
		2.3.2(c)	Feed concentration	26
	2.3.3	Fouling M	lechanism Analysis	28
	2.3.4	Surface m	odification of Membrane	31
		2.3.4(a)	Blending Modification	32
		2.3.4(b)	Surface Modification	33
2.4	Nanoc	omposite M	embranes and its Antifouling Properties	34
2.5	UV-Re	esponsive M	lembrane with Self-cleaning Properties	40
2.6	Import	ance of the	Research	43
СНА	PTER	THREE: M	IATERIALS AND METHODS	
3.1	Materi	als and Che	micals	49
3.1.1	Mate	erials		49
3.1.2	Cher	nicals		49
3.2	Overal	l Experime	nt Flowchart	50
3.3	Prepar	ation and C	haracterization of Synthetic Produced Water	51
3.3.1	Prep	aration of S	ynthetic Produced Water	51

3.3.2	2 Characterization	of Synthetic Produced Water	52
3.3.2	(a) Concentration	n Calibration Curve	52
3.3.2	(b) Particle Size	Distribution of Oil Emulsion	53
3.4	Synthesis and Cha	aracterization of Membrane	53
3.4.1	Synthesis of Me	mbrane	53
3.4.2	Characterization	of Membrane	55
	3.4.2(a)	Membrane Surface and Cross-sectional Morphology	55
	3.4.2(b)	Pore Size Distribution	56
	3.4.2(c)	Porosity	56
	3.4.2(d)	Contact Angle/ Hydrophilicity	57
	3.4.2(e)	Surface Morphology Analysis	57
3.5	Membrane Perform	mance Study	58
	3.5.1 Experimen	nt Rig Set Up	58
	3.5.2 Membrane	e Permeation Test	59
3.6	Process Study of N Conditions	Mixed-matrix Membrane at Different Operating	61
3.7	Fouling Mechanis	m Study	61
3.8	Testing on UV-cle membrane	eaning Properties of the Mixed-matrix	62
CHA	APTER FOUR: RE	SULTS AND DISCUSSION	
4.1	Characterization of	of Synthetic Produced Water	63
4.2	Effect of Polymer Membrane Morph	Concentrations and Solvent Type on ology and Performance	64
4.3	Effect of TiO2 Tyj Morphology and H	pe and Concentration on Membrane Performance	73
4.4	Effect of PEG Con Performance	ncentration on Membrane Morphology and	84

4.5	Effect	of Operating Condition on Membrane Flux and Rejection	90
	4.5.1	Effect of Operating Pressure	90
	4.5.2	Effect of Feed Flowrate	92
	4.5.3	Effect of Feed Concentration	95
4.6	Foulir	ng Mechanism Study	98
4.7	7 Antifouling and UV-cleaning Properties of Mixed-matrix 10 Membranes		
4.8	Performance Stability of TiO ₂ nanoparticles in the Mixed-matrix 10 Membranes for Produced Water Separation		105
СНА	PTER	FIVE: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Conclu	usions	108
5.2	Recon	nmendations	109
REF	EREN	CES	110
APP	ENDIC	ES	

Appendix A	Calibration Curve
Appendix B	Analysis on Whole Crude
Appendix C	Solubility Parameter Difference
Appendix D	Sample Calculation for UF Membrane Performance
Appendix E	Reynolds Number Calculation

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Common cleaning agents and possible interactions between cleaning agents and foulants (Shi <i>et al.</i> , 2014)	22
Table 2.2	Chronological development of TiO ₂ mixed-matrix membrane	45
Table 3.1	List of chemicals used	50
Table 3.2	Composition of synthetic produced water	55
Table 3.3	Characteristics of the TiO ₂ nanopowder (Teow <i>et al.</i> , 2012)	68
Table 4.1	The effect of polymer concentrations and solvent on the membrane characteristics	71
Table 4.2	The effect of polymer concentrations and solvent on membrane performance	77
Table 4.3	The effect of TiO_2 type and concentration on the membrane characteristics	81
Table 4.4	The effect of TiO_2 type and concentration on membrane roughness	82
Table 4.5	The effect of TiO ₂ concentration and type on membrane performance	86
Table 4.6	The effect of PEG concentration on membrane performance	88
Table 4.7	The effect of PEG concentration on membrane roughness	86
Table 4.8	The effect of TiO ₂ concentration and type on membrane performance	89
Table 4.9	Variance of models for prediction of permeation flux	99
Table 4.10	Physical properties of mixed-matrix membrane at different UV irradiation duration	103
Table 4.11	Physical properties of mixed-matrix membrane at different UV irradiation intensity	104

Table 4.12Rejection efficiency of mixed-matrix membrane for
each cycle of synthetic produced water filtration at
different UV irradiation duration107

LIST OF FIGURES

Page

Figure 1.1	Oil discharge limit for different countries (Veil, 2006)	2
Figure 2.1	Different fouling mechanisms (a) complete blocking; (b) standard blocking; (c) intermediate blocking and (d) cake formation	31
Figure 2.2	(a) Photocatalysis mechanism and process; (b) Self-cleaning/antifouling mechanism and process of PVDF/TiO ₂ membrane (Damodar <i>et al.</i> , 2009)	43
Figure 3.1	Overall experiment flowchart	51
Figure 3.2	Schematic diagram of crossflow filtration rig	58
Figure 4.1	Size distribution of emulsions with oil concentrations of 50 ppm, 200 ppm, 500 ppm and 1000 ppm	63
Figure 4.2	FESEM images of the surface morphology of membranes fabricated with different PVDF concentrations and solvent at 30 k \times	65
Figure 4.3	FESEM images of the cross sectional structure of membranes fabricated with different PVDF concentrations and solvent at $2 \text{ k} \times$	66
Figure 4.4	Effect of PVDF concentrations on pore size distribution for different solvent (a) DMF, (b) DMAc and (c) NMP	69
Figure 4.5	FESEM images of the cross sectional structure of membranes fabricated with different TiO ₂ type and concentration at 2 $k\times$	75
Figure 4.6	FESEM images of the surface morphology of membranes fabricated with different TiO_2 type and concentration at 30 k×	76
Figure 4.7	Effect of TiO_2 concentration on pore size distribution for different TiO_2 (a) P25 and (b) X500	78
Figure 4.8	AFM images of membranes prepared from different TiO ₂ type and concentration	81
Figure 4.9	FESEM images of the surface and cross sectional structure of membranes fabricated with different PEG concentration	85

Figure 4.10	Effect of PEG concentration on pore size distribution	87
Figure 4.11	AFM images of membranes prepared from different PEG concentration (a) 0 wt. %, (b) 0.5 wt. %, (c) 2 wt. %, (d) 4 wt. %, (e) 6 wt. % and (f) 8 wt. %	88
Figure 4.12	Effect of operating pressure on membrane permeation flux for synthetic produced water filtration	91
Figure 4.13	Effect of operating pressure on oil emulsions rejection and FRR for mixed-matrix membrane	91
Figure 4.14	Effect of feed flowrate on membrane permeation flux for synthetic produced water filtration	94
Figure 4.15	Effect of feed flowrate on oil emulsions rejection and FRR for mixed-matrix membrane	95
Figure 4.16	Effect of feed concentration on membrane permeation flux for synthetic produced water filtration	96
Figure 4.17	Effect of feed concentration on oil emulsions rejection and FRR for mixed-matrix membrane	98
Figure 4.18	Actual and predicted permeation flux during oil emulsions filtration	99
Figure 4.19	Flux behavior for mixed-matrix membrane with different UV irradiation duration	101
Figure 4.20	Flux recovery ratio of mixed-matrix membrane with different UV irradiation duration	101
Figure 4.21	Flux behavior for mixed-matrix membrane with different UV irradiation intensity	104
Figure 4.22	The time-dependent permeation flux of the mixed- matrix membrane during three cycles of 200 ppm synthetic produced water UF process	106

LIST OF ABBREVIATIONS

AFM	Atomic force microscope
Al ₂ O ₃	Alumina
APTES	3-aminoopropyltriethoxysilane
BSA	Bovine Serum Albumin
CA	Cellulose acetate
CNTs	Carbon nanotubes
COD	Chemical oxygen demand
DMAc	N-N-dimethylacetamide
DMF	N,N-dimethylformamide
DMSO	Dimethylsulfocide
EPS	Extracellular polymeric substances
EQA	Environmental Quality Act
Fe ₃ O ₄	Ferroxane
FESEM	Field emission scanning electron microscope
FRR	Flux recovery ratio
FTIR	Fourier transform infrared spectroscopy
HDTMS	Hexadecryltrimethoxysilane
HMPA	Hexamethylphosphoramide
HNTs	Halloysite nanotubes
MD	Membrane distillation
MF	Microfiltration
MWCNTs	Multi-walled carbon nanotubes
N2	Nitrogen
NF	Nanofiltration
NMP	N-methyl-2-pyrrolydone
PAN	Polyacrylonitrile
PEG	Polyethylene glycol
PEGMA	polyethylene glycol methyl ether methacrylate
PEO	Polyethylene oxide
PES	Polyethersulfone
PSF	Polysulfone
PI	Polyimide

PVDF	Polyvinylidene fluoride
PVP	Polyvinylpyrrolidone
RFR	Relative flux reduction
RO	Reverse osmosis
SiO ₂	Silica
SPES	Sulfonated-polyethersulfone
TEP	Triethylphosphate
TFOA	3,3,4,4,5,5,6,6,7,7,8,8-tridecafluorooctyl acrylate
TiO ₂	Titanium dioxide
TMP	Transmembrane pressure
TMU	Tetramethylurea
TOC	Total organic content
UF	Ultrafiltration
UV	Ultraviolet
XPS	X-ray photoelectron spectroscopy
ZnO	Zinc oxide
ZrO ₂	Zirconia

LIST OF SYMBOLS

		Unit
3	Membrane Porosity	%
<i>w</i> ₁	Weight of the wet membrane	g
<i>W</i> ₂	Weight of the dry membrane	g
$ ho_p$	Specific gravity of the PVDF polymer	g/cm ³
$ ho_b$	Specific gravity of 2-butanol	g/cm ³
J	Membrane permeation flux	L/m ² .hr
V	Volume of the permeate	L
А	Membrane effective area	m^2
Δt	Time taken to collect 2 mL of the permeate	hr
	sample	
R	Rejection of the solute	%
C_P	Permeate concentration	ppm
C_f	Feed concentration	ppm
J_{w1}	Initial pure water flux	L/m ² .hr
J_{w2}	Pure water flux after the hydraulic cleaning	L/m ² .hr
J_P	Final permeate flux	L/m ² .hr
$\gamma_{SL}, \gamma_{LV}, \gamma_{SV}$	Surface tensions of solid-liquid, liquid-vapor	-
	and solid-vapor	

MEMBRAN KOMPOSIT PVDF-TIO2 BERSIFAT NGAH-KOTORAN UNTUK PENYINGKIRAN EMULSI MINYAK

ABSTRAK

Polivinilidena fluorida (PVDF) membran yang terdedah kepada kotoran emulsi minyak sukar deibersihkan melalui saluran air pada permukaan membran. Sifat hydrophilic titanium dioksida (TiO₂) akan mengubah kestabilan larutan polimer semasa fasa penyongsangan dan mengubah morfologi membran. Dalam kajian ini, PVDF-TiO₂ membran matriks bercampur yang bersifat pembersihan sinar ultraungu (UV) telah disintesiskan untuk penyingkiran emulsi minyak mentah dalam keadaan kemasinan yang tinggi. Kesan parameter sintesis membran, iaitu kepekatan polimer, jenis pelarut, jenis dan kepekatan TiO₂, dan kepekatan polietilena glikol (PEG) telah dikaji. Sifat-sifat fizikokimia membran dinilai dan dikaitkan dengan prestasi dan sifat anti-kotoron membran. Saiz liang dan keporosan membran merupakan kesan mendominasi pengotoran oleh emulsi minyak. Dari segi anti-kotoran, parameter sintesis membran optima diperolehi dengan menggunakan 18 % berat kepekatan polimer dengan menggunakan N,N-dimetilasetamid (DMAc) diguna sebagai pelarut dan ditambah dengan 3 % berat P25 TiO₂. Fluks penelapan air yang diperolehi adalah $160.19 \pm 11.54 \text{ L/m}^2$.hr, penolakan emulsi minyak sebanyak 96.27 ± 0.28 % dengan 23.40 ± 1.10 % nisbah pemulihan fluks (FRR). Ia didapati bahawa tekanan kritikal harus rendah daripada 1.5 bar untuk mengelakkan kotoran di mana rintangan lapisan kek adalah mekanisma utama pengotoran. Selepas 30 min sinaran UV, membran matriks bercampur menunjukkan peningkatan yang drastik dalam nisbah pemulihan fluks, iaitu sebanyak 90.42 ± 4.90 % di mana ia mengesahkan sifat pembersihan sendiri

zarah nano TiO₂ dalam mendegredasikan emulsi minyak yang terjerap pada permukaan membran. Namun begitu, penyinaran UV dalam jangka masa yang lebih panjang dan intensiti yang lebih tinggi boleh mengurangkan prestasi membran kerana liang tersumbat disebabkan oleh pemecahan minyak dan pembesaran liang.

PVDF-TIO₂ NANOCOMPOSITE MEMBRANE WITH ANTI-FOULING PROPERTIES FOR OIL EMULSION REMOVAL

ABSTRACT

Polyvinylidene fluoride (PVDF) membrane is prone to be fouled by oil emulsions which could not be easily cleaned via surface washing. Besides, hydrophilic nature of titanium dioxide (TiO₂) changes the thermodynamic stability of the polymer solution during phase inversion and caused membrane with altered morphology. In this study, PVDF–TiO₂ mixed-matrix membranes with UV-cleaning properties were synthesized for crude oil emulsion removal at high salinity condition. The effect of parameter, namely polymer concentrations, membrane synthesis type of solvents, TiO₂ concentrations, and polyethylene type and glycol (PEG) concentrations were investigated. The physicochemical properties of the membrane characterized and performance related to its and antifouling were properties. Membrane pore size and porosity were the dominating effects of membrane fouling by oil emulsions. In term of antifouling, the optimum membrane by 18 synthesis parameter was obtained wt.% PVDF with N, Ndimethylacetamide (DMAc) as solvent added with 3 wt.% of P25 TiO₂. The obtained pure water permeation flux was 160.19 ± 11.54 L/m².hr, rejection of $96.27 \pm$ 0.28 % with flux recovery ratio (FRR) of 23.40 ± 1.10 %. It was found that the critical pressure to avoid irreversible fouling should be lower than 1.5 bar whereby cake layer resistance is the main fouling mechanism. Upon 30 min of UV irradiation, the mixedmatrix membrane exhibited drastic FRR improvement of 90.42 ± 4.90 %, which confirms the photocatalytic property of TiO₂ nanoparticles in degrading the adsorbed oil emulsions on the membrane surface. Nonetheless, further increased of UV irradiation duration and intensity could deteriorate the membrane performance due to pore blockage caused by the oil fragmentation and pore enlargement.

CHAPTER ONE

INTRODUCTION

1.1 Oil-in-water Emulsion and Produced Water Treatment

The rapid growth in metallurgical, transportation, food processing, pharmaceutical, petrochemical industries as well as oil and gas refineries has generated a large volume of wastewater in the form of either oil-in-water or water-in-oil emulsions. Produced water is any fossil water that being injected into the reservoir and brought to the surface along with crude oil and natural gas. It contains various organic and inorganic compounds such as dissolved formation minerals, dissolved and dispersed oil compounds, production chemical compounds, production solids and dissolved gases (Hansen and Davies, 1994). Produced water serves as the largest byproduct or waste stream by volume associated with oil and gas production. Daily global production of produced water is around 250 million barrels which are three times than that of the produced oil (80 million) and this factor goes up with the maturity of the oil fields (Dal Ferro and Smith, 2007, Khatib and Verbeek, 2003). Oil which acts as the major pollutant in the produced water generated from oil field is in the range between 100 and 1000 mg/L or higher depending on the efficiency of demulsification and nature of the crude oil (Chakrabarty et al., 2008b). Produced water can pollute surface and underground water and soil which poses serious environment threats.

Different countries established different oil discharge limit to prevent the severe pollution in water environment as shown in Figure 1.1. The different oil discharge standard for each country is depends on the geographical condition and the characteristics of the original wastewater. In Malaysia, the effluent discharge should comply with the national primary regulatory of discharge standard as stipulated in the Environmental Quality Act (EQA), 1974. Malaysia only allowed the maximum of 10 ppm oil and grease discharged concentration which is much lower as compared to other countries. Thus, more exploration in produced water treatment is required to meet this stringent discharge standard and to deal with increasing global oil demand.

Figure 1.1: Oil discharge limit for different countries (Veil, 2006)

1.2 Limitations of Conventional Separation Method

Industrial oily wastewater is existed in three broad categories: free-floating oil, unstable oil/water emulsion and stable oil/water emulsion (Um *et al.*, 2001). Conventional separation technologies can readily separate the free-floating oil and unstable oil/water emulsions (El-Kayar *et al.*, 1993, Hosny, 1996). Conventional methods available for oily wastewater treatment including physical, chemical, and biological methods. Physical treatment includes adsorption (activated carbon, organoclay, copolymers, zeolites and resins) (Carvalho *et al.*, 2002, Janks and Cadena, 1992), sand filters (Adewumi *et al.*, 1992), cyclones (van den Broek *et al.*, 1998), evaporation (Becker, 2000) and dissolved air precipitation (Thoma *et al.*, 1999); chemical treatment includes chemical precipitation (Zhou *et al.*, 2000), chemical oxidation (Oller *et al.*, 2011), electrochemical process (Ma and Wang, 2006), photocatalytic treatment (Li *et al.*, 2007), Fenton process (Yang and Zhang, 2005), room temperature ionic liquids (McFarlane *et al.*, 2005) and demulsifiers (Deng *et al.*, 2005); biological treatment (Li *et al.*, 2005, Wang *et al.*, 2012). However, these conventional methods have some drawbacks such as high operating cost, large space for installation and pollute the environment due to usage of toxic compounds and the production of secondary pollutants. In view of these drawbacks, membrane technology has been considered as an efficient method for the oily wastewater treatment. Besides, membrane technology able to separate much smaller oil droplets from stable oil emulsions. Membrane technology works without chemical addition, lower energy consumption and moderate operating cost, easy to operate and able to produce high permeate quality (Shams Ashaghi *et al.*, 2007, Arthur *et al.*, 2005, Mondal and Wickramasinghe, 2008).

The pressure-driven membrane process consists of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). They are conceptually similar processes but the key difference is the surface pore size of the membrane. Among the membrane processes, UF is known as one of the most effective treatments for oily wastewater. In comparison with the traditional separation methods, UF has higher oil removal efficiency without the use of chemical additives and low energy cost (He and Jiang, 2008). MF membranes have been utilized for surfactant recovery in permeate. MF offers higher flux but possesses the risk of oil breakthrough. While RO and NF normally used to treat oily wastewater which composed of higher salt content (Cheryan and Rajagopalan, 1998). However, membrane comes with some drawbacks including membrane fouling or concentration polarization due to its low surface energy that causes the decline in permeation flux and shorten the membrane lifetime.

1.3 Membrane Fouling

In the treatment of produced water using membranes, the permeate flux may decrease due to concentration polarization or fouling (Field, 2010). Concentration polarization is a natural phenomenon of semi-permeable membrane, at which rejected particles or solutes will accumulate in the mass transfer boundary layer adjacent to the membrane surface (Tashvigh et al., 2015). In UF, concentration polarization is a common issue during filtration of low molecular weight macromolecules (Hughes et al., 2006). During filtration, solvent passes through the membrane pores while the larger solutes are rejected on the membrane surface (Hu and Scott, 2008, Corbatón-Báguena et al., 2015, Mueller et al., 1997). The rejected solutes accumulate on the membrane surface cause a concentration gradient on the membrane surface. According to Baker (2000), the concentration of solutes accumulated on the membrane surface could reach 20 to 50 times than that in the bulk solution. Such a high amount of solutes accumulated on the membrane blocked the solvent to pass through the membrane, at the same time created an osmotic back pressure that reduced the effective transmembrane pressure (TMP) of the system (Field, 2010). Concentration polarization is considered to be a hydrodynamic phenomenon which could be alleviated by physical cleaning operating at higher velocity (Merin and Cheryan, 1980). In general, concentration polarization is a reversible phenomenon that will not affect the membrane intrinsic properties.

Membrane fouling is a second phenomenon leads to flux reduction, which the solutes from the feed solution either adsorb on the membrane surface (external fouling) or inside membrane porous structure (internal fouling) (Abbasi and Taheri, 2014). Internal or external fouling is based on the ratio of solute size to membrane pore size. In contrast to the reversible nature of concentration polarization, irreversible membrane fouling may cause loss of the membrane permeability.

A clear distinction must be made between concentration polarization and membrane fouling. The main difference between concentration polarization and membrane fouling is that concentration polarization is formed on the membrane surface, whereas membrane fouling is formed by solute-membrane interactions which are more closely bounded to the membrane surface. In fact, fouling characteristic can be defined based on its fouling reversibility.

There are two general types of membrane fouling exist for oily wastewater treatment known as reversible and irreversible fouling. Reversible fouling is a result of deposited colloid particles or solutes on the membrane surface and in the membrane pores. Pure water cross-flushing or backwashing may be utilized to reverse the flux declination in reversible fouling. On the other hands, irreversible fouling is a result of strong chemical or physical sorption of particles and solutes on the membrane surface and in the porous structure to form the gel layer. The only method to recover the flux caused by irreversible fouling is via chemical washing. However, aggressive cleaning methods may not be able to recover to its initial permeability due to the chemical instability of the membrane as well as pore blocking (Salahi *et al.*, 2010).