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MEMBRAN KOMPOSIT PVDF-TIO2 BERSIFAT NGAH-KOTORAN 

UNTUK PENYINGKIRAN EMULSI MINYAK 

 

ABSTRAK 

 

Polivinilidena fluorida (PVDF) membran yang terdedah kepada kotoran 

emulsi minyak sukar deibersihkan melalui saluran air pada permukaan membran. Sifat 

hydrophilic titanium dioksida (TiO2) akan mengubah kestabilan larutan polimer 

semasa fasa penyongsangan dan mengubah morfologi membran. Dalam kajian ini, 

PVDF-TiO2 membran matriks bercampur yang bersifat pembersihan sinar ultraungu 

(UV) telah disintesiskan untuk penyingkiran emulsi minyak mentah dalam keadaan 

kemasinan yang tinggi. Kesan parameter sintesis membran, iaitu kepekatan polimer, 

jenis pelarut, jenis dan kepekatan TiO2, dan kepekatan polietilena glikol (PEG) telah 

dikaji. Sifat-sifat fizikokimia membran dinilai dan dikaitkan dengan prestasi dan sifat 

anti-kotoron membran. Saiz liang dan keporosan membran merupakan kesan 

mendominasi pengotoran oleh emulsi minyak. Dari segi anti-kotoran, parameter 

sintesis membran optima diperolehi dengan menggunakan 18 % berat kepekatan 

polimer dengan menggunakan N,N-dimetilasetamid (DMAc)  diguna sebagai pelarut 

dan ditambah dengan 3 % berat P25 TiO2. Fluks penelapan air yang diperolehi adalah 

160.19 ± 11.54 L/m2.hr, penolakan emulsi minyak sebanyak 96.27 ± 0.28 % dengan 

23.40 ± 1.10 % nisbah pemulihan fluks (FRR). Ia didapati bahawa tekanan kritikal 

harus rendah daripada 1.5 bar untuk mengelakkan kotoran di mana rintangan lapisan 

kek adalah mekanisma utama pengotoran. Selepas 30 min sinaran UV, membran 

matriks bercampur menunjukkan peningkatan yang drastik dalam nisbah pemulihan 

fluks, iaitu sebanyak 90.42 ± 4.90 % di mana ia mengesahkan sifat pembersihan sendiri 
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zarah nano TiO2 dalam mendegredasikan emulsi minyak yang terjerap pada 

permukaan membran. Namun begitu, penyinaran UV dalam jangka masa yang lebih 

panjang dan intensiti yang lebih tinggi boleh mengurangkan prestasi membran kerana 

liang tersumbat disebabkan oleh pemecahan minyak dan pembesaran liang. 
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PVDF-TIO2 NANOCOMPOSITE MEMBRANE WITH ANTI-

FOULING PROPERTIES FOR OIL EMULSION REMOVAL  

  

ABSTRACT  

  

Polyvinylidene fluoride (PVDF) membrane is prone to be fouled by oil 

emulsions which could not be easily cleaned via surface washing. Besides, hydrophilic 

nature of titanium dioxide (TiO2) changes the thermodynamic stability of the polymer 

solution during phase inversion and caused membrane with altered morphology. In 

this study, PVDF–TiO2 mixed-matrix membranes with UV-cleaning properties were 

synthesized for crude oil emulsion removal at high salinity condition. The effect of 

membrane synthesis parameter, namely polymer concentrations, type of 

solvents, TiO2 type and concentrations, and polyethylene glycol (PEG) 

concentrations were investigated. The physicochemical properties of the membrane 

were characterized and related to its performance and antifouling 

properties. Membrane pore size and porosity were the dominating effects of 

membrane fouling by oil emulsions.  In term of antifouling, the optimum membrane 

synthesis parameter was obtained by 18 wt.% PVDF with N, N-

dimethylacetamide (DMAc) as solvent added with 3 wt.% of P25 TiO2. The 

obtained pure water permeation flux was 160.19 ± 11.54 L/m2.hr, rejection of 96.27 ± 

0.28 % with flux recovery ratio (FRR) of 23.40 ± 1.10 %. It was found that the critical 

pressure to avoid irreversible fouling should be lower than 1.5 bar whereby cake layer 

resistance is the main fouling mechanism. Upon 30 min of UV irradiation, the mixed-

matrix membrane exhibited drastic FRR improvement of 90.42 ± 4.90 %, which 

confirms the photocatalytic property of TiO2 nanoparticles in degrading the adsorbed 
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oil emulsions on the membrane surface. Nonetheless, further increased of UV 

irradiation duration and intensity could deteriorate the membrane performance due to 

pore blockage caused by the oil fragmentation and pore enlargement.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Oil-in-water Emulsion and Produced Water Treatment 

The rapid growth in metallurgical, transportation, food processing, 

pharmaceutical, petrochemical industries as well as oil and gas refineries has generated 

a large volume of wastewater in the form of either oil-in-water or water-in-oil 

emulsions. Produced water is any fossil water that being injected into the reservoir and 

brought to the surface along with crude oil and natural gas. It contains various organic 

and inorganic compounds such as dissolved formation minerals, dissolved and 

dispersed oil compounds, production chemical compounds, production solids and 

dissolved gases (Hansen and Davies, 1994). Produced water serves as the largest 

byproduct or waste stream by volume associated with oil and gas production. Daily 

global production of produced water is around 250 million barrels which are three 

times than that of the produced oil (80 million) and this factor goes up with the maturity 

of the oil fields (Dal Ferro and Smith, 2007, Khatib and Verbeek, 2003). Oil which 

acts as the major pollutant in the produced water generated from oil field is in the range 

between 100 and 1000 mg/L or higher depending on the efficiency of demulsification 

and nature of the crude oil (Chakrabarty et al., 2008b). Produced water can pollute 

surface and underground water and soil which poses serious environment threats.  

 

Different countries established different oil discharge limit to prevent the 

severe pollution in water environment as shown in Figure 1.1. The different oil 

discharge standard for each country is depends on the geographical condition and the 

characteristics of the original wastewater. In Malaysia, the effluent discharge should 
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comply with the national primary regulatory of discharge standard as stipulated in the 

Environmental Quality Act (EQA), 1974. Malaysia only allowed the maximum of 10 

ppm oil and grease discharged concentration which is much lower as compared to 

other countries. Thus, more exploration in produced water treatment is required to 

meet this stringent discharge standard and to deal with increasing global oil demand.  

 

 

Figure 1.1: Oil discharge limit for different countries (Veil, 2006)   

 

1.2 Limitations of Conventional Separation Method 

Industrial oily wastewater is existed in three broad categories: free-floating 

oil, unstable oil/water emulsion and stable oil/water emulsion (Um et al., 2001). 

Conventional separation technologies can readily separate the free-floating oil and 

unstable oil/water emulsions (El-Kayar et al., 1993, Hosny, 1996). Conventional 

methods available for oily wastewater treatment including physical, chemical, and 

biological methods. Physical treatment includes adsorption (activated carbon, 

organoclay, copolymers, zeolites and resins) (Carvalho et al., 2002, Janks and Cadena, 

1992), sand filters (Adewumi et al., 1992), cyclones (van den Broek et al., 1998), 
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evaporation (Becker, 2000) and dissolved air precipitation (Thoma et al., 1999); 

chemical treatment includes chemical precipitation (Zhou et al., 2000), chemical 

oxidation (Oller et al., 2011), electrochemical process (Ma and Wang, 2006), 

photocatalytic treatment (Li et al., 2007), Fenton process (Yang and Zhang, 2005), 

room temperature ionic liquids (McFarlane et al., 2005) and demulsifiers (Deng et al., 

2005); biological treatment (Li et al., 2005, Wang et al., 2012). However, these 

conventional methods have some drawbacks such as high operating cost, large space 

for installation and pollute the environment due to usage of toxic compounds and the 

production of secondary pollutants. In view of these drawbacks, membrane technology 

has been considered as an efficient method for the oily wastewater treatment. Besides, 

membrane technology able to separate much smaller oil droplets from stable oil 

emulsions. Membrane technology works without chemical addition, lower energy 

consumption and moderate operating cost, easy to operate and able to produce high 

permeate quality (Shams Ashaghi et al., 2007, Arthur et al., 2005, Mondal and 

Wickramasinghe, 2008).  

 

The pressure-driven membrane process consists of microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). They are 

conceptually similar processes but the key difference is the surface pore size of the 

membrane. Among the membrane processes, UF is known as one of the most effective 

treatments for oily wastewater. In comparison with the traditional separation methods, 

UF has higher oil removal efficiency without the use of chemical additives and low 

energy cost (He and Jiang, 2008). MF membranes have been utilized for surfactant 

recovery in permeate. MF offers higher flux but possesses the risk of oil breakthrough. 

While RO and NF normally used to treat oily wastewater which composed of higher 
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salt content (Cheryan and Rajagopalan, 1998). However, membrane comes with some 

drawbacks including membrane fouling or concentration polarization due to its low 

surface energy that causes the decline in permeation flux and shorten the membrane 

lifetime.  

 

1.3 Membrane Fouling 

In the treatment of produced water using membranes, the permeate flux may 

decrease due to concentration polarization or fouling (Field, 2010). Concentration 

polarization is a natural phenomenon of semi-permeable membrane, at which rejected 

particles or solutes will accumulate in the mass transfer boundary layer adjacent to the 

membrane surface (Tashvigh et al., 2015). In UF, concentration polarization is a 

common issue during filtration of low molecular weight macromolecules (Hughes et 

al., 2006). During filtration, solvent passes through the membrane pores while the 

larger solutes are rejected on the membrane surface (Hu and Scott, 2008, Corbatón-

Báguena et al., 2015, Mueller et al., 1997). The rejected solutes accumulate on the 

membrane surface cause a concentration gradient on the membrane surface. According 

to Baker (2000), the concentration of solutes accumulated on the membrane surface 

could reach 20 to 50 times than that in the bulk solution. Such a high amount of solutes 

accumulated on the membrane blocked the solvent to pass through the membrane, at 

the same time created an osmotic back pressure that reduced the effective 

transmembrane pressure (TMP) of the system (Field, 2010). Concentration 

polarization is considered to be a hydrodynamic phenomenon which could be 

alleviated by physical cleaning operating at higher velocity (Merin and Cheryan, 1980). 

In general, concentration polarization is a reversible phenomenon that will not affect 

the membrane intrinsic properties.  
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Membrane fouling is a second phenomenon leads to flux reduction, which the 

solutes from the feed solution either adsorb on the membrane surface (external fouling) 

or inside membrane porous structure (internal fouling) (Abbasi and Taheri, 2014). 

Internal or external fouling is based on the ratio of solute size to membrane pore size. 

In contrast to the reversible nature of concentration polarization, irreversible 

membrane fouling may cause loss of the membrane permeability.  

 

A clear distinction must be made between concentration polarization and 

membrane fouling. The main difference between concentration polarization and 

membrane fouling is that concentration polarization is formed on the membrane 

surface, whereas membrane fouling is formed by solute-membrane interactions which 

are more closely bounded to the membrane surface.  In fact, fouling characteristic can 

be defined based on its fouling reversibility.  

 

There are two general types of membrane fouling exist for oily wastewater 

treatment known as reversible and irreversible fouling. Reversible fouling is a result 

of deposited colloid particles or solutes on the membrane surface and in the membrane 

pores. Pure water cross-flushing or backwashing may be utilized to reverse the flux 

declination in reversible fouling. On the other hands, irreversible fouling is a result of 

strong chemical or physical sorption of particles and solutes on the membrane surface 

and in the porous structure to form the gel layer. The only method to recover the flux 

caused by irreversible fouling is via chemical washing. However,  aggressive cleaning 

methods may not be able to recover to its initial permeability due to the chemical 

instability of the membrane as well as pore blocking (Salahi et al., 2010). 
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