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PENYINGKIRAN FENOL MELALUI PEMFOTOMANGKINAN

MENGGUNAKAN NANO-TiO2 YANG DISOKONG DIDOP DENGAN

LANTANUM

ABSTRAK

Titanium dioksida (TiO2), memainkan peranan utama dalam jenis rawatan ini

kerana ciri-ciri yang istimewa yang dipunyainya seperti kos yang rendah, lengai, tidak

bertoksik dan juga sangat stabil. Walaubagaimanapun, beberapa pengubahsuaian perlu

dilakukan untuk menambah baik kekurangannya. TiO2 komersial, Degussa P25

fotopemangkin telah diubahsuai dengan mendopkan bersama lantanum menggunakan

kaedah impregnasi basah dan sekatgeraknya ke atas gel silika. Fotopemangkin ini telah

berjaya disintesis untuk mendegradasi bahan organic tercemar yang terpilih, iaitu

fenol, secara berkesan di bawah cahaya UV menggunakan sistem reaktor

berkelompok. Fotopemangkin ini telah dicirikan menggunakan Mikroskop Imbasan

Elektron (SEM), Spektroskopi serakan tenaga X-ray (EDX), Pembelauan sinar-X

(XRD), Brunauer-Emmett-Teller (BET), Spektroskopi UV-Vis dan Spektroskopi

Fourier Transform Infrared (FTIR). Pengubahsuaian pada TiO2 telah meningkatkan

fotoaktivitinya disebabkan oleh perubahan dalam jurang jalur tenaga, penggabungan

semula electron – lubang positif, saiz kristal, luas permukaan serta kitar semula

fotopemangkin. Amaun pendop lanthanum untuk fotopemangkin yang terbaik ialah

2.0 mol% (La:Ti) manakala bagi gel silika sebagai sokongan pula iaitu dalam nisbah

berat ialah sebanyak 3:1 (Ti:Si). Fotopemangkin ini dikenali sebagai 2.0 La-TiO2/ gel

silika. Keputusan dalam degradasi pemfotopemangkinan fenol adalah sehingga 98%

berbanding dengan TiO2 P25 komersial 57.9% sahaja dalam masa 4 jam dengan

menggunakan cahaya UV A. 2.0 La-TiO2/ gel silika juga terbukti mempunyai
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kebolehgunaan yang sangat baik selepas tiga kali penggunaan dan juga keupayaan

mendapan yang efisien. Pelbagai parameter operasi seperti kepekatan awal fenol, pH

awal fenol dan juga dos fotopemangkin dikaji. Hasil kajian menunjukkan bahawa

keadaan yang terbaik adalah seperti berikut: kepekatan awal fenal 10 ppm, dos

fotopemangkin sebanyak 1.0 g / L niai pH awal fenol sebanyal 5.3. Kinetik untuk

degradasi pemfotopemangkinan fenol juga telah dikaji dengan menggunakan model

Langmuir-Hinshelwood. Keputusan menunjukkan bahawa kinetik tindak balas untuk

kajian ini mematuhi kinetik pseudo-pertama dengan nilai k (pemalar kadar

tindakbalas) dan K (pemalar keseimbangan penjerapan) sebanyak 1.149 mg / L.min

dan 0.0106 L / mg masing-masing.
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PHOTOCATALYTIC REMOVAL OF PHENOL USING SUPPORTED

NANO-TiO2 DOPED WITH LANTHANUM

ABSTRACT

Titanium dioxide (TiO2), plays a main role in this treatment due its special

characteristics such as inert, non- toxic and also very stable. However, some

modifications have to be done to improve its limitation. Commercial TiO2, Degussa

P25 photocatalyst was modified by doping with lanthanum using wet impregnation

method and immobilized onto silica gel. It has been successfully synthesized in order

to degrade chosen organic pollutant, phenol, effectively under UV light using a batch

reactor system. The photocatalyst has been characterized using Scanning Electron

Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction

(XRD), Brunauer-Emmett-Teller (BET), UV-Vis spectroscopy and Fourier Transform

Infrared Spectroscopy (FTIR). The modification on TiO2 has enhanced its

photoactivity due to change in the energy band gap, electron-hole recombination,

crystalline size, surface area and also reusability of the photocatalyst. The best dopant

loading of lanthanum is 2.0 mol % (La:Ti) while for silica gel as a support is 3:1 (Ti/Si)

weight ratio for the photocatalyst. The photocatalyst is known as 2.0 La-TiO2/ silica

gel. The result in phenol photocatalytic degradation was up to 98% compare to

commercial TiO2 P25 alone 57.9% within 4 hours using UV A light. The 2.0 La-TiO2/

silica gel also proven to have an excellent reusability after the three time of usage and

sedimentation ability. Various operating parameters such as initial phenol

concentration, initial phenol pH and also photocatalyst loading dosage were examined.

The results showed that the best conditions are as follows: initial concentration of 10

ppm, photocatalyst loading 1.0 g/L, and initial phenol pH 5.3. Kinetic for
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photocatalytic degradation of phenol also has been studied using Langmuir-

Hinshelwood model. Result showed that the reaction kinetic for this study followed

pseudo-first order kinetic with k (reaction rate constant) and K (equilibrium adsorption

constant) value of 1.149 mg/ L.min and 0.0106 L/ mg respectively.
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CHAPTER 1

INTRODUCTION

1.1 Water and human

The birthplace of human, Earth, consists of 70% water and 30% land. Water

covers more than land on our Earth crust and shows that how much it is important to

living things. Without water, one of the main source in order for living things keep on

surviving and live, many consequences will be faced. Dehydration, main worries that

pops out in our mind if we are lack of water resources. Day by day, our water supply

is shortening, mainly by water pollution besides population growing and also climate

change. Due to water contamination, human health is affected and in danger. It is not

a surprise when there is a shortage of freshwater supply for us and also to the

ecosystems. Yet, this phenomenon already occurred in some of the developing

countries. A research survey from United Nation, reported that two out three from

Earth population will be facing water-scarce regions by 2025 (Ganoulis, 2009).

There are many types of pollutant which is destroying the natural

environmental water. Most of them were wastes released from industries, and some

from urban areas. Hydrocarbon compounds, herbicides, textile dyes, alcohols,

detergents, surfactants and more being released and disrupting our natural waterways

such as rivers, lakes and oceans (Bahnemann, 2004). Even worse is the release of

inorganic compounds such as mercury, nickel, cadmium, lead and also biological

contaminations which are bacteria’s and viruses (Bhattacharyya and Gupta, 2008, Zan

et al., 2007, Pigeot-Rémy et al., 2012). According to a statistic, about 70% wastewater

were being released into existing water supplies and untreated from industries in

developing countries (UN-WWAP, 2009).(Un-Wwap, 2009).
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Among all pollutants, phenol is one of the main contributor in harming our

nature water, which discharged from various industries such as petrochemical, oil

refining, paper mills, pharmaceuticals and herbicides (Chiou and Juang, 2007). In

2009, the demand in petrochemical industries has expanded and so the worldwide

production of phenol has risen up to 8 million tonnes per year (Mcmanamon et al.,

2011). Phenol extremely toxic organic compound and soluble in water easily

(Kujawski et al., 2004). Due to its toxicity, human and aquatic life is a major concern.

This part will be discussed later in Chapter 2 in a very detail.

Therefore, it has become main priority to treat waste like phenol to accomplish

environmental law in order to save the ecosystems and also for the human betterment.

Up to now, there are several ways of treating wastewater which has been developed.

There are physical, biological and chemical which have been applied. All these method

have their advantages and disadvantages in treating wastewaters.

1.2 Wastewater treatment methods

Previously, conventional wastewater treatment such as filtration, sedimentation

were applied to treat wastewater (Padmanabhan et al., 2006). Next, various

technologies have developed such as adsorption, coagulation, membrane filtration,

electrolysis and biological processes (Gogate and Pandit, 2004). However, these

treatments consume higher energy and operating cost, chemicals and even worst is that

the waste is concentrated into solid and sludge where it is producing a secondary waste

which has to be considered again (Gaya and Abdullah, 2008). Another method which

has been used is chlorination where it kills bacteria’s and viruses, or disinfect them.

Unfortunately, there were undesired byproduct such as chloroform or trihalomethanes

being produced too which are carcinogenic to human health (Yang and Cheng, 2007).
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