CHARACTERIZATION AND PROPERTIES OF POLYPROPYLENE/ RECYCLED ACRYLONITRILE BUTADIENE RUBBER/ RICE HUSK POWDER COMPOSITES

by

RAGUNATHAN A/L SANTIAGOO

Thesis submitted in fulfillment of the requirement

for the degree of

Doctor of Philosophy

April 2013

DECLARATION

I hereby declare that I have conducted, completed the research work and written the dissertation entitled "Characterization and Properties of Polypropylene/ Recycled Acrylonitrile Butadiene Rubber/ Rice Husk Powder Composites". I also declare that it has not been previously submitted for the degree or other similar title of this for any other examining body of University.

Name of student : RAGUNA	THAN A/L SANTIAGOO
--------------------------	--------------------

Signature :

Date : 5th April 2013

Witnessed by:

Supervisor : PROF. DR. HANAFI B. ISMAIL

Signature

Date : 5th April 2013

:

DEDICATION

This work is special dedicated to my beloved wife and children for their endless love,

patience, support and encouragement.

My Family

SUMATHY, DANIEL, JESLINE, MELVIN

ACKNOWLEDGEMENT

I would not have able to successfully complete my research if not due to the help and guidance given to me by various people in USM and also outside USM.

Firstly, I would like to say my deepest thank you to God who gave me strength and knowledge to perform the project well.

Gratitude to my loving wife and children, who are always right by my side. Without their love, this definitely would have been a lot harder to achieve.

Special thanks to my main-supervisor, Professor Dr. Hanafi Ismail for his leadership and guidance throughout my graduate experience. In addition, thanks to the Vice Chancellor of Universiti Malaysia Perlis, Yg. Bhg. Brigedier Jeneral Dato' Prof. Dr. Kamarudin bin Hussin, my co-supervisor for being willing to share his expertise.

This work would also have not been possible without assistance and cooperation from the Dean, Prof. Dr. Ahmad Fauzi Mohd Noor and all staff in School of Materials and Mineral Resources Engineering. In particular, Prof. Dr. Azlan Ariffin, Mr. Segaran, Mr. Mohd Hassan, Mr. Faizal, Mr. Fitri, Mr. Rashid, Mr. Azam, Mdm. Fong Lee Lee and Dr. Chantara Thevy Ratnam at NM, who were all very helpful in providing information or materials needed to make this research a successful endeavour.

My special appreciation goes to my colleagues, Mr. Indrajit, Mr. Kahar, Mr. Viet, Dr. Nik Noriman, Dr. Razif, Dr. Sam Sung Ting, Mdm. Zunaidah, Mr. Derrick Tan, Ms. Annie, Ms. Charis, Ms. Esther, Mr. Ericson, Mr. Kevin and other

postgraduate students who are not named here, for being my friends and give support for through this research work. Best of luck to you all!

Not forget, my special thanks to Universiti Malaysia Perlis for giving me an opportunity and scholarship to continue my doctorate study.

Thank you!

TABLE OF CONTENTS

DECI	LARATION	ii
DEDI	CATION	iii
ACKN	NOWLEDGMENT	iv
TABL	LE OF CONTENTS	vi
LIST	OF TABLES	xiii
LIST	OF FIGURES	xvii
LIST	OF ABBREVIATION	xxvi
LIST	OF SYMBOLS	xxix
LIST	OF PUBLICATIONS AND SEMINARS	XXX
ABST	'RAK	XXXV
ABST	TRACT	xxxvii
CHAI	PTER 1 – INTRODUCTION	
1.1	Overview	1
1.2	Applications	5
1.3	Problem Statements	6
1.4	Objectives of Study	7
1.5	Outline of Thesis Structure	8

CHAPTER 2 - LITERATURE REVIEW

2.1	Comp	osite Materials	10
2.2	Polym	er Matrix Materials Composites	15
2.3	Classi	fication of Polymer Composites	15
	2.3.1	Thermoplastic Elastomers (TPEs)	16
	2.3.2	Thermoplastic Elastomer Olefin	17
	2.3.3	Polypropylene	18
	2.3.4	Acrylonitrile Butadiene Rubber (NBR)	22
2.4	Natura	al Fiber as Filler	26
	2.4.1	Classification of Natural Fiber	26
	2.4.2	Structure and Properties of Natural Fibre	30
	2.4.3	Rice Husk	32
	2.4.4	Advantages of Natural Fibre	33
	2.4.5	Disadvantages of Natural Fibre	35
2.5	Interfa	aces in Natural Fibre Reinforced Composites	35
	2.5.1	Coupling Agent	37
	2.5.2	Treatment Agent	42
	2.5.3	Compatibilizer	42

CHAPTER 3 - MATERIALS AND EXPERIMENTAL PROCEDURES

48

3.1	Raw N	Iaterials	55
	3.1.1	Polypropylene (PP)	56
	3.1.2	Recycled Acrylonitrile Butadiene Rubber (NBRr)	56
	3.1.3	Fillers	58
	3.1.4	Compatibilizer and Coupling Agent	58
	3.1.5	Crosslink Promoters	61
3.2	Experi	mental Procedures	62
	3.2.1	Filler characterization	65
	3.2.2	Mixing Process	66
	3.2.3	Sample Preparation	73
	3.2.4	Irradiation	74
3.3	Testing	g and Characterization of Composites	74
	3.3.1	Processing Torque	74
	3.3.2	Mechanical Test	75
	3.3.3	Morphological Study	75
	3.3.4	Thermogravimetry Analysis	76

	3.3.5	Differenti	al Scanning	Calorimetry			76
	3.3.6	Fourier	Transform	Infra-Red	Analysis	(FTIR)	77
		Analysis					
	3.3.7	Water Ab	sorption Tes	st			78
	3.3.8	Gel Conte	ent Measure	ment			79
СНАРТИ	E R 4 - P	RELIMIN	ARY STUI	DIES: FILLE	CR		
	C	HARACT	ERIZATIO	N			
4.1	Introdu	ction					80
4.2	Physica	al Propertie	8				80
	4.2.1	Particle Si	ze Analysis				80
	4.2.2	Morpholog	gical Study				82
	4.2.3	Chemical	Properties/ (Composition			83
	4.2.4	Fourier Tr	ansform Inf	ra-Red (FTIR) Analysis		85
	4.2.5	Thermal A	nalysis				87
CHAPTI	E R 5-	EFFECT	OF RH	P FILLER	CONTE	NT ON	THE
	Р	ROPERTI	ES OF PP/	NBRr/RHP (COMPOSI	TES	
5.1	Introdu	ction					91
5.2	Torque	Developm	ent				92
5.3	Tensile	Properties					94

5.4	Morphological Properties	97
5.5	Water Absorption Properties	99
5.6	Thermogravimetric Analysis (TGA)	103
5.7	Differential Scanning Analysis	106

CHAPTER 6- EFFECT OF NBRr CONTENT ON THE PROPERTIES OF PP/NBRr/RHP COMPOSITES

6.1	Introduction	109
6.2	Torque Development	110
6.3	Tensile Properties	112
6.4	Morphological Properties	115
6.5	Swelling Properties	116
6.6	Thermogravimetric Analysis (TGA)	117
6.7	Differential Scanning Analysis	120
СНАРТЕ	ER 7- EFFECT OF RHP TREATMENT USING	ACETIC
	ANHYDRIDE (Ac) AND SILANE (8-APS)	ON THE
	PROPERTIES OF PP/NBRr/RHP COMPOSITE	8
7.1	Introduction	123
7.2	Torque Development	125
7.3	Tensile Properties	127

7.4	FTIR Analysis	133
7.5	Morphological Properties	135
7.6	Water Absorption Properties	137
7.7	Thermal Properties	139
7.8	Differential Scanning Calorimetry	143
CHAPT	ER 8- EFFECT OF POLYPROPYLENE GRAFTED MALEIC	
	ANHYDRIDE (PPMAH) AND EPOXY RESIN (DGEBA)	ON
	THE PROPERTIES OF PP/NBRr/RHP COMPOSITES	
8.1	Introduction	146
8.2	Mixing and Stabilization Torque	148
8.3	Tensile Properties	152
8.4	Swellings and Gel Content	155
8.5	Fourier Transform Infrared (FTIR) Spectroscopy Analysis	156
8.6	Morphological Properties	161
8.7	Water Absorption Properties	164
8.8	Thermogravimetric Analysis	165
8.9	Differential Scanning Calorimetry	167

CHAPTER 9- EFFECT OF ELECTRON-BEAM IRRADIATION AND TMPTA CO-AGENT ON THE PROPERTIES OF PP/NBRr/RHP COMPOSITES

9.1	Introduction	170
9.2	Irradiation Mechanics	171
9.3	Stabilization Torque	175
9.4	Tensile Properties	176
9.5	FTIR Spectroscopy Analysis	179
9.6	Morphological Properties	180
9.7	Water Absorption Properties	181
9.8	Thermogravimetric Analysis	183
9.9	Differential Scanning Calorimetry	185

CHAPTER 10 - CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORKS

ADENID	ICES (DUDI ICATIONS)	203
REFERENCES		191
10.2	Recommendations for Future Works	190
10.1	Conclusions	188

LIST OF TABLES

Table 2.1	Some advantages and disadvantages of polypropylene (Leong, 2003)	20
Table 2.2	Advantages and disadvantages of acrylonitrile content increases in NBR rubber (Blow, 1998)	23
Table 2.3	Typical mechanical properties of natural fibres and common reinforcing fibres (Bledzki & Gassan, 1999)	28
Table 2.4	World important source of natural plant fibres (Rowell, 1997)	29
Table 2.5	Chemical compositions and structural parameters of some natural fibres (Mohanty et al., 2000)	31
Table 2.6	Typical mechanism of coupling agents and its common process (Hakimah, 2010)	38
Table 2.7	Types of common coupling agent available commercially and their target matrices	40
Table 2.8	Table 2.8 Classification of radiation crosslink promoters	54
	(http://www.rubberworld.com/DE/MAY_09/Feb06.pdf)	
Table 3.1	List of raw materials	55
Table 3.2	Technical specifications of PP homopolymer (Titan, 1999)	56
Table 3.3	Manufacturer technical constituents and composition of the NBR gloves	57
Table 3.4	Specifications of NBRr used in this research	57
Table 3.5	Specifications of PPMAH used in this research (Sigma Aldrich Chemical 2009a)	59

Table 3.6	Chemical specifications of x -APS used in this research (Sigma Aldrich Chemical, 2009b)	60
Table 3.7	Chemical specifications of acetic anhydride used in this research (Sigma Aldrich Chemical 2009c)	61
Table 3.8	Chemical specifications of TMPTA (ANM, 2006)	62
Table 3.9	The mixing sequence and the formulation used to investigate the effect of the RHP content on the properties of PP/NBRr/RHP composites	67
Table 3.10	The mixing sequence used to investigate the effect of the NBRr content on the properties of PP/NBRr/RHP composites	68
Table 3.11	Formulation used to investigate the effect of the NBRr content on the properties of PP/NBRr/RHP composites	68
Table 3.12	The formulation of the PPMAH and DGEBA compatibillizers on PP/NBRr/RHP composites	69
Table 3.13	Mixing sequence used to investigate the effect of the PPMAH and DGEBA compatibillizers on the properties of PP/NBRr /RHP composites	69
Table 3.14	Mixing sequence used to investigate the effect of the TMPTA on the properties of PP/NBRr/RHP composites	70
Table 3.15	Mixing sequence used to investigate the effect of RHP treatment using x-APS on the properties of PP/NBRr/RHP composites	72
Table 3.16	Mixing sequence used to investigate the effect of RHP treatment using x-APS on the properties of PP/NBRr/RHP composites	73
Table 4.1	Characterization results of fillers	81

Table 4.2	Elements of the RHP	83
Table 4.3	Chemical constituent of RHP	84
Table 4.4	Elements of NBRr	84
Table 4.5	Absorption bands for FTIR Analysis	86
Table 5.1	Absorption Equilibrium of PP/NBRr/RHP Composites	102
Table 5.2	Thermogravimetric analysis parameter PP/NBRr/RHP composites at different filler content	105
Table 5.3	Thermal degradation rate (weight loss (%)/min) of PP/NBRr/RHP composites at different filler content and range of temperature	105
Table 5.4	Thermal parameter of DSC of PP/NBRr/RHP composites at differentfiller content (second heating)	108
Table 5.5	Thermal parameter of DSC of PP/NBRr/ RHP composites at different filler content(cooling)	108
Table 6.1	Thermogravimetric analysis parameter of PP/NBRr/RHP composites at different NBRr content	119
Table 6.2	Thermal degradation rate (weight loss (%)/min) of PP/NBRr/RHP composites at different NBRr content and range of temperature	119
Table 6.3	Thermal parameter of DSC of PP/NBRr/RHP composites at differentNBRr content(Second Heating)	122
Table 6.4	Thermal parameter of DSC of PP/NBRr/RHP composites at differentNBRr content (Cooling)	122
Table 7.1	Thermogravimetric analysis parameter of Ac and x-APS treatedPP/NBRr/RHP composites at different filler content	142

Table 7.2	Thermal degradation rate (weight loss (%)/ min) of Ac and	143
	x-APS treated PP/NBRr/RHP composites at different filler	
	content	
Table 7.3	Thermal parameters of Ac and x-APS treated	145
	PP/NBRr/RHP composites at different filler content	
Table 8.1	Thermogravimetric analysis parameter PPMAH and	167
	DGEBA compatibilized PP/NBRr/RHP composites at	
	different NBRr content	
Table 8.2	DSC parameters for PPMAH and DGEBA compatibilized	169
	PP/NBRr/RHP composites at different NBRr content	
Table 9.1	Thermogravimetric analysis parameter of TMPTA	185
	irradiation-induced crosslink of PP/NBRr/RHP composites	
	at different NBRr filler content	
Table 9.2	DSC parameters for TMPTA irradiation-induced crosslink	187
	of the PP/NBRr/RHP composites at different NBRr content	

LIST OF FIGURES

		Page
Figure 2.1	Schematic diagrams of composite material with interface and inter-phase (Sharma, 2000)	12
Figure 2.2	Types of reinforcements in composite (Gupta, 2005)	13
Figure 2.3	Types of possible forms of reinforcements in a composite (Gupta, 2005)	14
Figure 2.4	Classifications of composite materials base on MMC (Sharma, 2000)	15
Figure 2.5	Classification of polymer composites (Ismail & Suryadiansyah, 2002a)	16
Figure 2.6	Common olefin used to fabricate TPO (Gupta, 2005)	18
Figure 2.7	Repeating unit of polypropylene (Pasquini, 2005)	19
Figure 2.8	Tacticity of polypropylene structure (Pasquini, 2005)	19
Figure 2.9	Repeating unit of acrylonitrile butadiene rubber (Blow, 1998)	22
Figure 2.10	Diagrammatic representation of a natural fibre cell (Bledzki & Gassan, 1999)	27
Figure 2.11	The geometry of the elementary cell of cellulose (Bledzki & Gassan, 1999)	27
Figure 2.12	A typical structure of cellulose (Fabiyi, 2007)	31
Figure 2.13	Typical diagram of paddy and rice husk (<u>http://agriwork.blogspot.com</u>)	32
Figure 2.14	Common structures of organosilanes coupling agents (Madsen, 1999)	39

Figure 2.15	Surface reactions with silane (Espert, 2003)	39
Figure 2.16	Mechanism of Graft Copolymerization Process (Espert, 2003)	44
Figure 2.17	2,2 – bis [4-(2',3'-epoxypropoxy) phenyl] propane/ Diglycidyl Ether of Bisphenol A (DGEBA) (Varma & Gupta, 2000)	46
Figure 3.1	Chemical structure of Diglycidyl Ether of Bisphenol-A (DGEBA)	60
Figure 3.2	Material preparations and characterization of process flow "A"	63
Figure 3.3	Flow chart of sample processing, testing and characterization	64
Figure 3.4	Dumbbell shape of sample	75
Figure 4.1	Particle size distributions for RHP and NBRr	81
Figure 4.2	Micrograph of RHP at different magnification	82
Figure 4.3	Micrograph of NBRr at different magnification	82
Figure 4.4	Result of FTIR Analysis of RHP	85
Figure 4.5	FTIR Spectrum of NBRr gloves	87
Figure 4.6	TGA curve of the RHP	88
Figure 4.7	DTG curve of the RHP	88
Figure 4.8	TGA curve of the NBRr	89
Figure 4.9	DTG curve of the NBRr	90
Figure 5.1	Torque-time curves development of PP/NBRr/RHP composites at different RHP composition	93

Figure 5.2	Effect of RHP filler content on stabilization torque of the PP/NBRr/RHP composites	94
Figure 5.3	Effect of RHP filler content on tensile strength of PP/NBRr/RHP composites	95
Figure 5.4	Effect of filler content of RHP on E_b of PP/NBRr/RHP composites	96
Figure 5.5	Effect of filler content of RHP on Young's modulus of PP/NBRr/RHP composites	97
Figure 5.6	SEM of tensile fracture surfaces of PP/NBRr/RHP composites at different RHP Filler content	98
Figure 5.7	Water absorption curves of PP/NBRr/RHP composites at different RHP filler content	100
Figure 5.8	SEM of tensile fracture surfaces of PP/NBRr/RHP composites after water absorption at different RHP Filler content	102
Figure 5.9	Proposed schematic diagram of RHP distribution in PP/NBRr/RHP composites	103
Figure 5.10	Thermograms of PP/NBRr/RHP composites at different filler content	104
Figure 5.11	Typical DTG curves of the PP/NBRr/RHP composites at different filler content	104
Figure 5.12	Heat flow vs. temperature of PP/NBRr/RHP composites at different filler content (second heating)	107
Figure 5.13	Heat flow vs. temperature of PP/NBRr/RHP composites at different filler content (cooling)	107
Figure 6.1	Torque-time curves development of PP/NBRr/RHP composites at different NBRr content	111

Figure 6.2	Effect of NBRr content on stabilization torque of	112
	PP/NBRr/RHP composites	
Figure 6.3	Effect of NBRr content on tensile strength of	113
	PP/NBRr/RHP composites	
Figure 6.4	Effect of NBRr content on Young's modulus of	113
	PP/NBRr/ RHP composites	
Figure 6.5	Effect of NBRr content on E _b of RHP filled	114
	PP/NBRr/RHP composites	
Figure 6.6	Micrographs of tensile fracture surfaces of	116
	PP/NBRr/RHP composites at different NBRr content	
Figure 6.7	Effect of NBRr content on Swelling Percentage of	117
	PP/NBRr/RHP composites (immersed in ASTM oil	
	No. 3 for 70 hours)	
Figure 6.8	Thermograms of PP/NBRr/RHP composites at	118
	different NBRr content	
Figure 6.9	Typical DTG curves of PP/NBRr/RHP composites at	118
	different NBKr filler content	
Figure 6.10	Heat flow versus temperature of PP/NBRr/RHP	120
	composites at different NBRr content (Second heating)	
Figure 6.11	Heat flow versus temperature of PP/NBRr/RHP	121
	composites at different NBRr content (Cooling)	
Figure 7.1	Effect of Ac and x-APS treatment on the torque-time	126
	curves of PP/INDRI/ RHP composites	
Figure 7.2	Effect of Ac and x-APS treatment on the stabilization	127
	torque of PP/NBRI/RHP composites	
Figure 7.3	Effect of Ac, x-APS and filler content on tensile	128
	strength of PP/INBKr/KHP composites	

Figure 7.4	Effect of Ac and x-APStreatment on Young's modulus of PP/NBRr/RHP composites	128
Figure 7.5	General mechanism of reaction between fibre's surfaces with functional group of the Ac	130
Figure 7.6	General mechanism of silane coupling agent to fibre's surface	131
Figure 7.7	Effect of Ac and x-APS filler content on E_B of PP/NBRr/RHP composites	132
Figure 7.8	FTIR spectra corresponding to PP/NBRr/RHP composites with or without of Ac and x- APS	134
Figure 7.9	Micrograph of tensile fracture surfaces of untreated PP/NBRr/RHP composites at mag. 100× and at different filler content	136
Figure 7.10	Micrograph of tensile fracture surfaces of Ac-treated PP/NBRr/RHP composites at mag. 100× and at different filler content	136
Figure 7.11	Micrograph of tensile fracture surfaces of x -APStreated PP/NBRr/RHP composites at mag. 100× and at different filler content	137
Figure 7.12	Effect of Ac and x-APS treatment on water absorption curves of PP/NBRr/RHP composites at 70/ 30/ 30	139
Figure 7.13	Typical TGA curves of the x-APS treated RHP and Ac- treated PP/NBRr/RHP composites at 10 phr of filler content	141
Figure 7.14	Typical DTG curves of the x-APS treated and Ac- treated PP/NBRr/RHP composites at 70/30/10 phr filler content	141

Figure 7.15	Heat flow vs. temperature of Ac and x-APS treated	144
	PP/NBRr/RHP composites at different filler content	
Figure 8.1	Stabilization torque at 9 minutes of PP/NBRr/RHP	149
	composites with and without PPMAH and DGEBA compatibilizer	
Figure 8.2	Illustration of proposed reaction mechanism for PPMAH with PP/NBRr/RHP composite	150
Figure 8.3	Illustration of proposed reaction mechanism for DGEBA with NBRr	151
Figure 8.4	Illustration of proposed reaction mechanism for epoxy resin(DGEBA) with PP/NBRr/RHP composite	152
Figure 8.5	Tensile strength of PP/NBRr/RHP composite with PPMAH and DGEBA compatibilization	153
Figure 8.6	Young's modulus of PP/NBRr/RHP composite with PPMAH and DGEBA compatibilization	154
Figure 8.7	Elongation at break (E _b) of PP/NBRr/RHP composite with PPMAH and DGEBA compatibilization	154
Figure 8.8	Swelling of PP/NBRr/RHP composite with PPMAH and DGEBA compatibilization	155
Figure 8.9	Gel content (%) of PP/NBRr/RHP composite with PPMAH and DGEBA compatibilization	156
Figure 8.10	FTIR spectra for NBRr, RHP and PP/NBRr/RHP/DGEBA composites at 60/40/15(PP/NBRr/RHP)	157
Figure 8.11	FTIR spectra for DGEBA	158

Figure 8.12	FTIR spectra for PP/NBRr/RHP and PP/NBRr/RHP/	160
	PPMAH composites at 60/40/15 (PP/NBRr/RHP)	
Figure 8.13	SEM micrographs of tensile fracture surfaces of	162
	uncompatibilized PP/NBRr/RHP composites at	
	different NBRr content	
Figure 8.14	SEM micrographs of tensile fracture surfaces of	163
	PPMAH compatibilized PP/NBRr/RHP composites at	
	different NBRr content	
Figure 8.15	SEM micrographs of tensile fracture surfaces of	163
	DGEBA compatibilized PP/NBRr/RHP composites at	
	different NBRr content	
Figure 8.16	The variation of water absorption-time curves for	165
	selected composites compatibilized with PPMAH and	
	DGEBA at 70/30/15(PP/NBRr/RHP) composition	
Figure 8.17	Thermograms of PPMAH and DGEBA compatibilized	166
	and control PP/ NBRr/RHP composites at 70/30/15	
	(PP/NBRr/RHP) content	
Figure 8.18	Typical DTG curves of the PPMAH and DGEBA	166
	compatibilizated PP/ NBRr/RHP composites at	
	70/30/15 (PP/NBRr/RHP) content	
Figure 8.19	Heat flow (Second Heating) vs. temperature of	168
	PP/NBRr/RHP composites with PPMAH and DGEBA	
	compatibilized at 70/30/15 (PP/NBRr/RHP) content	
Figure 8.20	Heat flow (Cooling) vs temperature of RHP filled PP/	168
	NBRr composites at PPMAH and DGEBA	
	compatibilized PP/NBRr/RHP composites at 70/30/15	
	(PP/NBRr/RHP) content	

Figure 9.1 171 Gel content of PP/NBRr/RHP composites with TMPTA and electron beam irradiation at 40 kGray Figure 9.2 Typical molecular structure of crosslinked PP (Albano 172 et al., 2003) Figure 9.3 173 Typical molecular structure of irradiation-induced crosslink NBRr (Noriman et al., 2010) Figure 9.4 Illustration of the possible cross linking reactions of 174 NBR and PFMs at the presence of electron beam radiation (Yasin et al., 2002) Figure 9.5 Stabilization torque of PP/NBRr/RHP composites with 176 TMPTA co-agent Figure 9.6 Effect of tensile strength on PP/NBRr/RHP composites 177 with TMPTA and electron beam irradiation at 40 kGray Figure 9.7 Effect of Young's modulus on PP/NBRr/RHP 178 composites with TMPTA and electron beam irradiation at 40 kGray Figure 9.8 178 Effect of Elongation at break E_b on PP/NBRr/RHP composites with TMPTA and electron beam irradiation at 40 kGray Figure 9.9 **FTIR** PP/NBRr/RHP PP/NBRr/RHP-IC 180 of and composites Figure 9.10 SEM of tensile fracture surfaces of TMPTA co-agent 181 irradiated-RHP filled PP/ NBRr composites at 40 kGray Figure 9.11 182 Effect of **TMPTA** compatibilization on water absorption - time curves of PP/NBRr/RHP composites at 40 kGray irradiation dose