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PEMECUT BERASASKAN FPGA UNTUK PENJANAAN 

KOMPOSISI ASID AMINO PSEUDO 

 

ABSTRAK 
 

Pengurangan jurang antara bilangan protein baru yang belum dicirikan dan yang telah 

dikenali di dalam bank data protein telah muncul sebagai salah satu cabaran terbesar era 

pasca genomik. Permintaan kian meningkat untuk teknik-teknik yang dapat meramal ciri-

ciri protein dengan cekap dan tepat berdasarkan maklumat urutan protein sahaja. 

Komposisi Asid Amino Pseudo (PseAAC) telah muncul sebagai teknik pemodelan yang 

berupaya menggabungkan maklumat urutan protein terpilih dalam model diskret. 

PseAAC telah digunakan secara meluas dalam ujikaji protein melalui pelbagai perisian 

penjana PseAAC. Oleh sebab penjanaan PseAAC lazimnya melibatkan pemprosesan data 

berskala besar, tempoh pemprosesan amat penting. Prospek untuk mengurangkan tempoh 

tersebut terhad kerana proses perisian lazimnya berjujukan. Maka, perkakasan yang boleh 

diaturcara seperti Field Programmable Gate Array (FPGA) muncul sebagai alternatif 

baru dengan keupayaan pemprosesan selari yang dapat mempercepat penghitungan 

PseAAC. Dalam penyelidikan ini, suatu pemecut berasaskan FPGA untuk penjanaan 

PseAAC telah diperkenalkan. Penjana tersebut terdiri daripada beberapa modul. Untuk 

mempercepat proses, dua modul yang paling intensif dalam penghitungan, iaitu Sum-of-

Small-T dan T-u-minus-20, direka untuk pelaksanaan secara selari. Penjana tersebut 

direalisasikan melalui FPGA Altera Cyclone III. Proses berjaya dipercepat sehingga 31.5 

kali ganda berbanding suatu penjana PseAAC berasaskan perisian Perl. Kesimpulannya, 

pengurangan tempoh penghitungan yang ketara telah dicapai melalui rekabentuk penjana 

PseAAC yang menggunakan kebolehan pemprosesan selari FPGA.  
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FPGA-BASED ACCELERATOR FOR THE GENERATION OF 

PSEUDO-AMINO ACID COMPOSITION 

 

ABSTRACT 
 

One of the biggest challenges in protein prediction post genomic age is narrowing the gap 

between the number of newly discovered and uncharacterized proteins and the number of 

known proteins in protein data banks. This leads to increased demand for efficient 

techniques to accurately predict protein attributes based solely on its sequence-order 

information. The Pseudo-Amino Acid Composition (PseAAC) is a modeling technique 

that incorporates, selectively, sequence-order information of a protein into a discrete 

model. PseAAC has been applied in numerous protein-related researches using various 

software-based PseAAC generators. Since this often involves large-scale data processing, 

computation time is of the essence. The prospect of further reducing computation time of 

the software is limited due to the sequential nature of software execution. Alternative 

platform such as programmable hardware has emerged as a solution to this bottleneck. 

Programmable hardware such as Field Programmable Gate Array (FPGA) enables 

parallel processing that speeds up computation of PseAAC. In this research, an FPGA-

based PseAAC generator architecture is proposed. The architecture consists of several 

modules. To speed up computation, the two most computation-heavy modules of the 

architecture, the Sum-of-Small-T and T-u-minus-20, are designed to run in parallel. The 

generator is realized on the Altera Cyclone III FPGA and achieves computation speed 

increase of up to 31.5 times over a Perl-based PseAAC generator. In conclusion, 

significant computation speed improvement is achieved by designing the PseAAC 

generator to capitalize on the parallel processing capability of the FPGA. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

 

 Proteins are large molecules made up of one or more chains of amino acids bonded 

together by peptide linkages. It contains elements such as carbon, hydrogen, nitrogen, 

oxygen and sulfur. A protein chain consists of amino acid residues that can be categorized 

into 20 naturally-occurring, or native, amino acid types (Mondal & Pai, 2014). The 

sequence arrangement of these residues plays an important role in determining the 

structural and functional attributes of a protein. 

Protein-based genomics, or proteomics, is the study of proteins, particularly on 

their structures and functions. Proteomics enables scientists to obtain insights into the 

interactive relationship between protein and cell. This information is important especially 

in drug discovery (Schirle, et al., 2012) and cancer studies (Cho, 2014). Proteomics has 

emerged as an important field, especially in biology and medicine. Research in cell 

behavior based on genes alone is no longer sufficient and needs to be expanded to include 

proteins given their close correlation to cell activities. 

The increased importance of proteomics and the advancement in bioinformatics 

applications are inter-dependable. Bioinformatics is a multi-disciplinary field that applies 

computing, statistics, mathematics and engineering techniques in biological data 

processing. As proteomics often involves large amount of data, it is highly desirable to 

handle this data in a computational and mathematical manner in order to increase 
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processing efficiency and speed. The ability to interpret large-scale data, also known as 

Mass Spectrometry (MS), is one of the determining factor in the growth of proteomics. 

The rapid expansion of MS data in proteomics research has stimulated the growth of 

bioinformatics applications (Colangelo, et al., 2015). 

Systems biology is the study of the relationship among components of a biological 

system. A system may consists of components that range from a small number of protein 

molecules to groups of cells that perform specific functions in the system (Weston & 

Hood, 2004). Proteomics plays an important role in systems biology by providing MS-

based analytical methods to identify components in a biological system (Sabido, et al., 

2012). With improved understanding of systems biology, scientists and doctors are able 

to find solutions for predicting, preventing and remedying health issues. 

The importance of proteomics, bioinformatics and systems biology and their inter-

dependency has been discussed. In the post-genomic age, the number of new and 

uncharacterized proteins being discovered is increasing rapidly (Liu, et al., 2015). By 

decoding their structural and functional attributes, the new proteins may provide solutions 

to the discovery of new drugs. The most conventional method in extracting such 

information is by conducting biochemical experiments which are often expensive and 

time-consuming. As such, various alternatives have been proposed to predict attributes 

of new proteins in an efficient and timely manner. One of the most prominent alternatives 

is the use of Pseudo-Amino Acid Composition (PseAAC) in protein prediction (Mandal, 

et al., 2015). PseAAC is widely adopted for its modeling simplicity and ability to retain 

some sequence-order information essential to predicting protein attributes. Due to wide 

application of PseAAC, numerous software-based PseAAC generators have been 
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developed. Among such generators are the Nuc-PLoc webserver (Shen & Chou, 2007), 

PseAAC webserver (Shen & Chou, 2008), GPCR-GIA webserver (Lin, et al., 2009), 

PseAAC-Builder (Du, et al., 2012), propy (Cao, et al., 2013), and PseAAC-General (Du, 

et al., 2014). 

PseAAC generation often involves large-scale data processing. As such, 

computation time is of the essence. Software-based PseAAC generators have limitation 

in terms of further reducing the computation time due to the sequentially-executed nature 

of software codes. As such, it is of interest to this research to explore a faster alternative 

solution to generating PseAAC by proposing a hardware-based generator that has 

improved computation speed over the software-based version. 

 

1.2 Problem Statement 

 

 PseAAC is one of the most widely used model in protein prediction. Together 

with machine learning algorithm such as Covariance Discriminant (CD) (Xu, et al., 2013), 

Fuzzy K-Nearest Neighbor (K-NN) (Xiao, et al., 2013) and Support Vector Machine 

(SVM) (Kumar, et al., 2015) among others (Qiu, et al., 2014), PseAAC has been used in 

a number of bioinformatics applications involving large-scale dataset processing. 

 Bioinformatics applications are usually software-based and developed to run on 

general purpose computer. Computer programs typically operate in sequential manner, 

with lines of codes executed serially. The speed of running the program is dependent on 

the processor clock speed. In today’s computer, the processor is capable of running at the 

gigahertz range, making it a popular choice for running bioinformatics applications. In 
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spite of this, there is growing interest in exploring alternatives to computers in search of 

higher computation speed. One such alternative is programmable hardware (Aluru & 

Jammula, 2014). 

 Programmable hardware such as Field Programmable Gate Array (FPGA) has 

steadily gained prominence in bioinformatics (Dollas, 2014). One of the main advantage 

of FPGA is its capability in parallel processing at all levels. As protein prediction usually 

involves large number of protein sequences, it is highly desired for the process to be faster. 

One area of protein prediction that can take advantage of improved computation speed is 

the generation of PseAAC. 

 Two of the most prominent applications for generating PseAAC are the PseAAC 

webserver (Shen & Chou, 2008) and PseAAC-Builder (Du, et al., 2012). These 

applications run on general purpose computer. The webserver requires internet 

connection in order to generate PseAAC. As such, the duration required to obtain results 

may vary according to internet connection speed. This can be a disadvantage to user with 

slower connection. The PseAAC-Builder, on the other hand, offers a standalone package 

that installs the computation engine and supporting frameworks on a local computer. It 

being a computer software, however, means the execution of codes are performed 

sequentially. As such, its potential for improvement in computation speed is limited. The 

FPGA-based PseAAC generator can overcome the limitations of these applications as it 

does not require internet connection and has the potential for faster computation speed 

through parallel processing. Motivated by these advantages, this research proposes an 

architecture for an FPGA-based accelerator for the generation of PseAAC. 



5 
 

1.3 Objectives 

 

This research has the following objectives: 

 To propose the PseAAC generator’s Register Transfer Level (RTL) design and 

implement it on hardware using FPGA. 

 To establish accuracy and performance speed up of the FPGA-based PseAAC 

generator by comparing its results and computation time to a software-based 

generator that is developed using the Perl programming language. Both generators 

are implemented with the same PseAAC algorithm. The Perl-based generator’s 

accuracy is also measured against the PseAAC webserver. 

 

1.4 Research Scope 

 

The scope of the research covers the following area: 

1) Review of the two most common PseAAC modes; Chou’s Type 1 and Type 2 

PseAAC, which are supported by most bioinformatics applications such as the Nuc-

PLoc webserver (Shen & Chou, 2007), PseAAC webserver (Shen & Chou, 2008), 

GPCR-GIA webserver (Lin, et al., 2009), PseAAC-Builder (Du, et al., 2012), propy 

(Cao, et al., 2013), and PseAAC-General (Du, et al., 2014). 

2) PseAAC generator implementation on software platform using Perl programming 

language that runs on a general purpose computer. This version of the generator is 

used in performance comparison to the FPGA-based version. For fair comparison, 

both Perl-based and FPGA-based versions are developed using the same PseAAC 

algorithm. 
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3) Accuracy measurement of the Perl-based generator benchmarked by the PseAAC 

webserver (Shen & Chou, 2008). The webserver is chosen because it is also the 

benchmark tool of choice by the PseAAC-Builder (Du, et al., 2012). 

4) RTL architecture development of the FPGA-based PseAAC generator using Verilog-

Hardware Description Language (HDL). The design is developed using the Altera 

Quartus II Web Edition design software and realized using the Cyclone III FPGA. 

5) Computation time evaluation of the FPGA-based PseAAC generator. The results are 

compared to the Perl-based version to establish performance gain. The accuracy of 

the FPGA-based version will also be compared to the Perl-based version. 

 

1.5 Research Contribution 

 

 This research contributes to run time improvement of PseAAC generation by 

proposing an FPGA-based architecture which has improved computation speed over 

a software version that runs on a general purpose computer. The software version is 

developed using Perl programming language. The improvement is achieved by 

capitalizing on the parallel processing capability of FPGA. 
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1.6 Thesis Outline 

 

The content of this thesis is arranged into five chapters. 

 In Chapter 1, the background of the research is reviewed. The problem statement 

and objectives are defined to establish clear goals of the research. The scope of the 

research is also outlined to narrow down the area of focus. Contribution by the research 

is also discussed. 

 In Chapter 2, the outcome of a comprehensive literature review is deliberated. The 

review covers various subjects related to the research such as the challenges of protein 

prediction post-genomic age, protein sequence modeling such as sequential and discrete 

modeling, the Type 1 and Type 2 PseAAC equations, bioinformatics applications related 

to the generation of PseAAC and the role of programmable hardware in bioinformatics. 

 In Chapter 3, the methodology of the research is charted. The four development 

stages of the research are discussed in detail. Functional specification of the proposed 

PseAAC generator is assessed in the first stage. The development strategy of the Perl-

based generator is outlined in the second stage. It includes discussion on the PseAAC 

computation flows and accuracy evaluation of the Perl-based generator. In the third stage, 

development strategy of the FPGA-based generator is discussed. The RTL architecture 

of the generator is also proposed and its various modules are explained in detail. In the 

fourth stage, accuracy and computation speed measurements of the Perl-based and 

FPGA-based generator are discussed. 

 In Chapter 4, results of various evaluations on the Perl-based and FPGA-based 

generator are presented and discussed. The evaluations include accuracy measurements 
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of the Perl-based and FPGA-based generator, compilation and simulation results of the 

RTL design and computation time comparison between the Perl-based and FPGA-based 

generator. The reasons and implications of each result is explored to gain insights into the 

proposed software and hardware generator’s performance. 

 In Chapter 5, the overall summary of the research is made. The limitation of the 

proposed FPGA-based generator is also highlighted and recommendations to improve 

and expand the performance of the generator are discussed.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 

 This chapter discusses a variety of research subjects related to PseAAC. It reviews 

the challenges faced by the research community in the post genomic age and protein 

modeling techniques that have been developed for protein prediction. PseAAC is a 

modeling technique developed to improve prediction quality. This technique has been 

widely used in many bioinformatics applications. It has been adapted into several 

different modes, each tailored to specific requirements to further enhance the accuracy. 

In the ensuing sections, two of the most common PseAAC modes, Type 1 and Type 2, 

will be examined. These modes are also popularly known as the basic PseAAC and 

amphiphilic PseAAC respectively. 

 In the wake of PseAAC’s popularity, several bioinformatics applications have 

been developed to process large set of protein sequences into PseAAC. These applications 

come in various forms such as webservers and standalone software. The emergence of 

programmable hardware such as FPGA as a faster solution for bioinformatics applications 

will also be reviewed. The potential for improved computation speed by capitalizing on 

the parallel processing ability of FPGA has led to its increased role in bioinformatics. 
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2.2 Protein and protein sequences 

 

 Protein is a macromolecule formed by one or more chains of amino acid residues. 

It is one of the building blocks of life that serves a variety of biochemical functions in a 

living organism (Singh, et al., 2012). For example, proteins in a human body act as 

support structure for cells and bind the body together, as enzymes to store and release 

energy, as transporters to move molecules within the body, as hormones to regulate bodily 

activity and as antibodies against infections. 

 A polypeptide is a chain of amino acid residues. Each residue in a polypeptide is 

bonded to an adjacent residue linearly by a peptide bond. An illustration of a polypeptide 

is shown in Figure 2.1. Protein sequence is the arrangement of the amino acid residues in 

a polypeptide. The arrangement is determined by the genetic information within the 

Deoxyribonucleic Acid (DNA) of a particular polypeptide. Generally, all residues can be 

categorized into 20 native amino acid types. Table 2.1 lists the 20 native amino acids and 

their three- and one-letter codes. Each amino acid residue shown in Figure 2.1 is formed 

by one of the 20 native amino acids listed in Table 2.1. 

Protein sequencing is the process of characterizing the sequence arrangement of 

amino acids in a protein. The sequence of a protein can be determined by techniques such  

 

 

 

Figure 2.1: Schematic diagram of a polypeptide (Naik, 2012) 


	Fpga-Based Accelerator for The Generation of Pseudo-Amino Acid Composition
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRAK
	ABSTRACT
	1.1  Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Research Scope
	1.5 Research Contribution
	1.6 Thesis Outline
	2.1 Introduction
	2.2 Protein and protein sequences
	2.3 Challenges in protein prediction post-genomic age
	2.4 Protein sequence modeling
	2.4.1 Sequential modeling
	2.4.2 Discrete modeling
	2.4.3 Pseudo-Amino Acid Composition
	2.4.3.1 Type 1 PseAAC
	2.4.3.2 Type 2 PseAAC


	2.5 Bioinformatics applications for generating PseAAC
	2.5.1 PseAAC webserver
	2.5.1.1 FASTA format

	2.5.2 PseAAC-Builder

	2.6 FPGA in bioinformatics
	2.6.1 Parallel accelerator for GlimmerHMM
	2.6.2 High speed BLAST using FPGA
	2.6.3 FPGA-based accelerator for prediction of protein secondary class using Fuzzy K-NN with Lempel-Ziv Complexity-based Distance Measure

	2.7 Conclusion
	3.1 Introduction
	3.2 Stage 1 – Functional Specification
	3.3 Stage 2 – Development of Perl-based PseAAC generator
	3.3.1 Perl programming language
	3.3.2 PseAAC computation formula
	3.3.2.1 Extension of Type 1 equations
	3.3.2.2 Extension of Type 2 equations
	3.3.2.3 Type 1 and Type 2 shared equations
	3.3.2.4 Pre-calculated AA index values

	3.3.3 PseAAC generator computation flow
	3.3.4 Accuracy measurement by comparison to PseAAC webserver

	3.4 Stage 3 – Development of FPGA-based PseAAC generator
	3.4.1 Altera Quartus II design software
	3.4.2 Altera Cyclone III development board
	3.4.3 Digital representation of protein sequences
	3.4.4 Identifying inherent parallelism of computation flow
	3.4.5 FPGA design flow
	3.4.6 Architecture overview
	3.4.7 Type 1 and Type 2 Pre-calculated Index modules
	3.4.7.1 Handling number with fractional part in hardware

	3.4.8 Main Controller module
	3.4.9 Flash Read module
	3.4.10 Sum-of-Small-T module
	3.4.11 Occurrence Frequency module
	3.4.12 T-u-minus-20 module
	3.4.13 Hardware setup and implementation
	3.4.14 Hardware results storage and extraction
	3.4.15 Hardware results post-conversion to PseAAC

	3.5 Stage 4 – Performance comparison between Perl-based PseAAC generator and FPGA-based PseAAC generator
	3.6 Conclusion
	4.1 Introduction
	4.2 Accuracy of Perl-based PseAAC generator
	4.3 Compilation results of RTL design
	4.4 Simulation results of RTL design
	4.4.1 Flash Read module simulation results
	4.4.2 Sum-of-Small-T module simulation results
	4.4.3 Occurrence Frequency module simulation results
	4.4.4 T-u-minus-20 module simulation results
	4.4.5 Computation cycles by modules

	4.5 Accuracy of FPGA-based PseAAC generator
	4.6 Computation speed of FPGA-based PseAAC generator
	4.7 Conclusion
	5.1 Conclusion
	5.2 Recommendation for future research
	REFERENCES
	APPENDICES
	Appendix A: Perl script for the generation of PseAAC
	Appendix B: Top-level module of the PseAAC generator’s Verilog-HDL codes
	Appendix C: Quartus II Fitter Resource Usage Summary



