

FPGA-BASED ACCELERATOR FOR THE GENERATION OF

PSEUDO-AMINO ACID COMPOSITION

By

CHING CHEE CHOW

A Dissertation submitted for partial fulfilment of the requirement for

the degree of Master of Science (Microelectronic Engineering)

August 2015

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my research

supervisor, Dr. Bakhtiar Affendi Rosdi, for his dedication and commitment in providing

guidance and support throughout the research. His willingness to impart knowledge and

share his experience played a major role in ensuring the success of the research. He had

always offered constructive feedback and insightful opinion whilst affording me the space

to be creative in my work. I had learned a lot from him in both theoretical and practical

aspects of the research. I would also like to thank the School of Electrical and Electronic

Engineering of Universiti Sains Malaysia, and Dr. Bakhtiar in particular, for assisting in

acquiring the hardware necessary for the research. The hardware plays an important role

in achieving the objectives of the research. I am grateful to the Ministry of Education of

Malaysia for offering financial support in the form of the MyMaster scholarship. The

financial aid had given me peace of mind and motivation to work hard and complete my

study successfully. Last but not least, I am also grateful to my family and friends for being

a pillar of strength to me during the entire course of the research. Their encouragement

and support had given me the inspiration to perform to the best of my ability.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vi

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... xi

ABSTRAK .. xiii

ABSTRACT ... xiv

CHAPTER 1 - INTRODUCTION

1.1 Background ... 1

1.2 Problem Statement .. 3

1.3 Objectives ... 5

1.4 Research Scope ... 5

1.5 Research Contribution .. 6

1.6 Thesis Outline ... 7

CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction .. 9

2.2 Protein and protein sequences .. 10

2.3 Challenges in protein prediction post-genomic age ... 12

2.4 Protein sequence modeling ... 13

2.4.1 Sequential modeling ... 13

2.4.2 Discrete modeling ... 14

2.4.3 Pseudo-Amino Acid Composition .. 15

2.4.3.1 Type 1 PseAAC ... 16

2.4.3.2 Type 2 PseAAC ... 20

2.5 Bioinformatics applications for generating PseAAC ... 23

2.5.1 PseAAC webserver ... 23

2.5.1.1 FASTA format ... 25

iv

2.5.2 PseAAC-Builder ... 26

2.6 FPGA in bioinformatics ... 28

2.6.1 Parallel accelerator for GlimmerHMM .. 29

2.6.2 High speed BLAST using FPGA ... 31

2.6.3 FPGA-based accelerator for prediction of protein secondary class using

Fuzzy K-NN with Lempel-Ziv Complexity-based Distance Measure ... 33

2.7 Conclusion .. 34

CHAPTER 3 - METHODOLOGY

3.1 Introduction .. 36

3.2 Stage 1 – Functional Specification ... 37

3.3 Stage 2 – Development of Perl-based PseAAC generator 38

3.3.1 Perl programming language ... 39

3.3.2 PseAAC computation formula ... 39

3.3.2.1 Extension of Type 1 equations ... 40

3.3.2.2 Extension of Type 2 equations ... 41

3.3.2.3 Type 1 and Type 2 shared equations 43

3.3.2.4 Pre-calculated AA index values ... 45

3.3.3 PseAAC generator computation flow ... 48

3.3.4 Accuracy measurement by comparison to PseAAC webserver 52

3.4 Stage 3 – Development of FPGA-based PseAAC generator 53

3.4.1 Altera Quartus II design software ... 53

3.4.2 Altera Cyclone III development board ... 54

3.4.3 Digital representation of protein sequences.. 55

3.4.4 Identifying inherent parallelism of computation algorithm 58

3.4.5 FPGA design flow .. 60

3.4.6 Architecture overview .. 62

3.4.7 Type 1 and Type 2 Pre-calculated Index modules 65

3.4.7.1 Handling number with fractional part in hardware 66

3.4.8 Main Controller module ... 67

3.4.9 Flash Read module ... 70

3.4.10 Sum-of-Small-T module ... 71

3.4.11 Occurrence Frequency module ... 73

v

3.4.12 T-u-minus-20 module .. 74

3.4.13 Hardware setup and implementation ... 76

3.4.14 Hardware results storage and extraction ... 78

3.4.15 Hardware results post-conversion to PseAAC 79

3.5 Stage 4 – Performance comparison between Perl-based PseAAC generator and

FPGA-based PseAAC generator .. 80

3.6 Conclusion .. 81

CHAPTER 4 - RESULTS AND DISCUSSION

4.1 Introduction .. 83

4.2 Accuracy of Perl-based PseAAC generator ... 84

4.3 Compilation results of RTL design .. 85

4.4 Simulation results of RTL design ... 88

4.4.1 Flash Read module simulation results .. 89

4.4.2 Sum-of-Small-T module simulation results ... 91

4.4.3 Occurrence Frequency module simulation results 93

4.4.4 T-u-minus-20 module simulation results .. 95

4.4.5 Computation cycles by modules ... 98

4.5 Accuracy of FPGA-based PseAAC generator .. 100

4.6 Computation speed of FPGA-based PseAAC generator 102

4.7 Conclusion .. 105

CHAPTER 5 - CONCLUSION AND RECOMMENDATION

5.1 Conclusion .. 107

5.2 Recommendation for future research ... 110

REFERENCES ... 111

APPENDICES

Appendix A: Perl script for the generation of PseAAC

Appendix B: Top-level module of the PseAAC generator’s Verilog-HDL codes

Appendix C: Quartus II Fitter Resource Usage Summary

vi

LIST OF TABLES

Page

Table 2.1: Three- and one-letter abbreviation of the 20 native amino acids 11

Table 2.2: Average absolute difference between results of PseAAC-Builder and

PseAAC webserver with 𝒘 = 0.05 and 𝝀 = 10 26

Table 3.1: Functional specification of the proposed PseAAC generator 38

Table 3.2: Original AA index values of the 20 native amino acids 46

Table 3.3: Converted AA index values of the 20 native amino acids (𝒈 = 1 to 3) .. 47

Table 3.4: Converted AA index values of the 20 native amino acids (𝒈 = 4 to 6) .. 47

Table 3.5: User input parameters ... 49

Table 3.6: Input test configuration for comparison between PseAAC webserver and

Perl-based PseAAC generator .. 53

Table 3.7: Digital representation of the 20 native amino acids 56

Table 3.8: Assignment of DIP switches as input ... 77

Table 3.9: Status LED description ... 78

Table 4.1: Average absolute difference between results of PseAAC webserver and

Perl-based PseAAC generator .. 84

Table 4.2: Summary of overall resource utilization .. 86

Table 4.3: Summary of resource utilization by module .. 87

Table 4.4: List of top 10 most critical paths in FPGA-based PseAAC generator ... 88

Table 4.5: Summary of number of cycles required by module (Type 1)................. 99

Table 4.6: Summary of number of cycles required by module (Type 2)................. 99

Table 4.7: Average absolute difference between results of Perl-based PseAAC

generator and FPGA-based PseAAC generator.................................... 101

vii

Table 4.8: Basic specification of the general purpose computer for running Perl-

based PseAAC generator .. 103

Table 4.9: Summary of computation time of the Perl-based PseAAC generator and

the FPGA-based PseAAC generator .. 103

viii

LIST OF FIGURES

Page

Figure 2.1: Schematic diagram of a polypeptide .. 10

Figure 2.2: Illustration of the first-tier correlation factor, 𝜃1 18

Figure 2.3: Illustration of the second-tier correlation factor, 𝜃2 18

Figure 2.4: Illustration of the third-tier correlation factor, 𝜃3 18

Figure 2.5: GUI of the PseAAC webserver .. 24

Figure 2.6: Example of protein sequence in FASTA format 25

Figure 2.7: Block diagram of get_prob_of_window function of the FPGA-based

GlimmerHMM .. 30

Figure 2.8: Schematic of the FPGA-based BLAST with multi-Core match-finding

modules ... 32

Figure 2.9: Block diagram of the Fuzzy K-NN Lempel-Ziv Complexity-based

Distance Measure protein secondary class predictor 34

Figure 3.1: Flowchart of the development stages for the FPGA-based PseAAC

generator ... 36

Figure 3.2: Flowchart of the main computation algorithm of the proposed Perl-based

PseAAC generator .. 49

Figure 3.3: Flowchart of the computation algorithm for Σ𝑡𝑗 (𝑗 = 1 to Ω) of the

proposed Perl-based PseAAC generator .. 50

Figure 3.4: Flowchart of the computation algorithm for 𝑥𝑢 of the proposed Perl-

based PseAAC generator .. 51

Figure 3.5: Typical Quartus II design flow ... 53

Figure 3.6: Format of 16-bit information flag prepended to the start of every binary-

represented protein sequence .. 57

ix

Figure 3.7: Encoding flow of two protein sequences .. 59

Figure 3.8: Flowchart of the main computation algorithm of the proposed FPGA-

based PseAAC generator .. 61

Figure 3.9: Top-down FPGA design flow .. 62

Figure 3.10: Overview of the proposed PseAAC generator architecture.................... 63

Figure 3.11: Main Controller module’s ASM chart .. 68

Figure 3.12: Flowchart of the Flash Read module operation 71

Figure 3.13: Block diagram of Sum-of-Small-T module’s datapath 72

Figure 3.14: Block diagram of T-u-minus-20 module’s datapath............................... 74

Figure 3.15: Top-level view of the Cyclone III development board. 77

Figure 3.16: Screenshot of the Quartus II In-System Memory Content Editor 79

Figure 3.17: Example of Intel Hex formatted line .. 79

Figure 4.1: Flash Read module simulation results .. 90

Figure 4.2: Digital protein sequence check ... 91

Figure 4.3: Type 1 PseAAC simulation results of the Sum-of-Small-T module 92

Figure 4.4: Equivalent Type 1 PseAAC software results of the Sum-of-Small-T

module .. 92

Figure 4.5: Type 2 PseAAC simulation results of the Sum-of-Small-T module 93

Figure 4.6: Equivalent Type 2 PseAAC software results of the Sum-of-Small-T

module .. 93

Figure 4.7: Occurrence Frequency module simulation results 94

Figure 4.8: Equivalent software results of the Occurrence Frequency module 94

Figure 4.9: Type 1 PseAAC simulation results of the T-u-minus-20 module (A) First

five of 10 results and (B) Remaining five of 10 results 95

x

Figure 4.10: Equivalent Type 1 PseAAC software results of the T-u-minus-20 module

 .. 96

Figure 4.11: Type 2 PseAAC simulation results of the T-u-minus-20 module (A) First

five of 20 results, (B) 6th to 10th of 20 results, (C) 11th to 15th of 20

results and (D) Remaining five of 20 results .. 96

Figure 4.12: Equivalent Type 2 PseAAC software results of the T-u-minus-20 module

 .. 97

Figure 4.13: Control and status signals of the Main Controller module (Type 1) 98

Figure 4.14: Control and status signals of the Main Controller module (Type 2) 99

xi

LIST OF ABBREVIATIONS

AA Amino Acid

AAC Amino Acid Composition

AAIndex1 Amino Acid Index One

ASM Algorithmic State Machine

BLAST Basic Local Alignment Search Tool

CAST Complexity Analysis of Sequence Tracts

CD Covariance Discriminant

CDM Complexity-based Distance Measure

CPU Central Processor Unit

CSV Comma-separated Value

DIP Dual-in line Package

DNA Deoxyribonucleic Acid

DSP Digital Signal Processor

FASTA Fast-All

FPGA Field Programmable Gate Array

GlimmerHMM Gene Locator and Interpolated Markov Model ER Hidden

Markov Model

GUI Graphic User Interface

HDL Hardware Description Language

I/O Input/Output

IC Integrated Circuit

IMM Interpolated Markov Model

JTAG Joint Test Action Group

K-NN K-Nearest Neighbor

LE Logic Element

LED Light-emitting Diode

LSB Least Significant Bit

xii

LUT Look-up Table

LZ Lempel-Ziv

MAFFT Multiple Alignment using Fast Fourier Transform

MB Megabyte

MIF Memory Initialization File

mRMR Minimum Redundancy Maximum Relevance

MS Mass Spectrometry

MSA Multiple Sequence Alignment

MSB Most Significant Bit

NN-CDM Nearest Neighbor-Complexity-based Distance Measure

PseAAC Pseudo-Amino Acid Composition

PLL Phase-locked Loop

PSI Position-specific Iterated

RAM Random Access Memory

RNA Ribonucleic Acid

RTL Register Transfer Level

sed Stream editor

SOF SRAM Object File

SRAM Static Random Access Memory

SVM Support Vector Machine

UI User Interface

xiii

PEMECUT BERASASKAN FPGA UNTUK PENJANAAN

KOMPOSISI ASID AMINO PSEUDO

ABSTRAK

Pengurangan jurang antara bilangan protein baru yang belum dicirikan dan yang telah

dikenali di dalam bank data protein telah muncul sebagai salah satu cabaran terbesar era

pasca genomik. Permintaan kian meningkat untuk teknik-teknik yang dapat meramal ciri-

ciri protein dengan cekap dan tepat berdasarkan maklumat urutan protein sahaja.

Komposisi Asid Amino Pseudo (PseAAC) telah muncul sebagai teknik pemodelan yang

berupaya menggabungkan maklumat urutan protein terpilih dalam model diskret.

PseAAC telah digunakan secara meluas dalam ujikaji protein melalui pelbagai perisian

penjana PseAAC. Oleh sebab penjanaan PseAAC lazimnya melibatkan pemprosesan data

berskala besar, tempoh pemprosesan amat penting. Prospek untuk mengurangkan tempoh

tersebut terhad kerana proses perisian lazimnya berjujukan. Maka, perkakasan yang boleh

diaturcara seperti Field Programmable Gate Array (FPGA) muncul sebagai alternatif

baru dengan keupayaan pemprosesan selari yang dapat mempercepat penghitungan

PseAAC. Dalam penyelidikan ini, suatu pemecut berasaskan FPGA untuk penjanaan

PseAAC telah diperkenalkan. Penjana tersebut terdiri daripada beberapa modul. Untuk

mempercepat proses, dua modul yang paling intensif dalam penghitungan, iaitu Sum-of-

Small-T dan T-u-minus-20, direka untuk pelaksanaan secara selari. Penjana tersebut

direalisasikan melalui FPGA Altera Cyclone III. Proses berjaya dipercepat sehingga 31.5

kali ganda berbanding suatu penjana PseAAC berasaskan perisian Perl. Kesimpulannya,

pengurangan tempoh penghitungan yang ketara telah dicapai melalui rekabentuk penjana

PseAAC yang menggunakan kebolehan pemprosesan selari FPGA.

xiv

FPGA-BASED ACCELERATOR FOR THE GENERATION OF

PSEUDO-AMINO ACID COMPOSITION

ABSTRACT

One of the biggest challenges in protein prediction post genomic age is narrowing the gap

between the number of newly discovered and uncharacterized proteins and the number of

known proteins in protein data banks. This leads to increased demand for efficient

techniques to accurately predict protein attributes based solely on its sequence-order

information. The Pseudo-Amino Acid Composition (PseAAC) is a modeling technique

that incorporates, selectively, sequence-order information of a protein into a discrete

model. PseAAC has been applied in numerous protein-related researches using various

software-based PseAAC generators. Since this often involves large-scale data processing,

computation time is of the essence. The prospect of further reducing computation time of

the software is limited due to the sequential nature of software execution. Alternative

platform such as programmable hardware has emerged as a solution to this bottleneck.

Programmable hardware such as Field Programmable Gate Array (FPGA) enables

parallel processing that speeds up computation of PseAAC. In this research, an FPGA-

based PseAAC generator architecture is proposed. The architecture consists of several

modules. To speed up computation, the two most computation-heavy modules of the

architecture, the Sum-of-Small-T and T-u-minus-20, are designed to run in parallel. The

generator is realized on the Altera Cyclone III FPGA and achieves computation speed

increase of up to 31.5 times over a Perl-based PseAAC generator. In conclusion,

significant computation speed improvement is achieved by designing the PseAAC

generator to capitalize on the parallel processing capability of the FPGA.

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Proteins are large molecules made up of one or more chains of amino acids bonded

together by peptide linkages. It contains elements such as carbon, hydrogen, nitrogen,

oxygen and sulfur. A protein chain consists of amino acid residues that can be categorized

into 20 naturally-occurring, or native, amino acid types (Mondal & Pai, 2014). The

sequence arrangement of these residues plays an important role in determining the

structural and functional attributes of a protein.

Protein-based genomics, or proteomics, is the study of proteins, particularly on

their structures and functions. Proteomics enables scientists to obtain insights into the

interactive relationship between protein and cell. This information is important especially

in drug discovery (Schirle, et al., 2012) and cancer studies (Cho, 2014). Proteomics has

emerged as an important field, especially in biology and medicine. Research in cell

behavior based on genes alone is no longer sufficient and needs to be expanded to include

proteins given their close correlation to cell activities.

The increased importance of proteomics and the advancement in bioinformatics

applications are inter-dependable. Bioinformatics is a multi-disciplinary field that applies

computing, statistics, mathematics and engineering techniques in biological data

processing. As proteomics often involves large amount of data, it is highly desirable to

handle this data in a computational and mathematical manner in order to increase

2

processing efficiency and speed. The ability to interpret large-scale data, also known as

Mass Spectrometry (MS), is one of the determining factor in the growth of proteomics.

The rapid expansion of MS data in proteomics research has stimulated the growth of

bioinformatics applications (Colangelo, et al., 2015).

Systems biology is the study of the relationship among components of a biological

system. A system may consists of components that range from a small number of protein

molecules to groups of cells that perform specific functions in the system (Weston &

Hood, 2004). Proteomics plays an important role in systems biology by providing MS-

based analytical methods to identify components in a biological system (Sabido, et al.,

2012). With improved understanding of systems biology, scientists and doctors are able

to find solutions for predicting, preventing and remedying health issues.

The importance of proteomics, bioinformatics and systems biology and their inter-

dependency has been discussed. In the post-genomic age, the number of new and

uncharacterized proteins being discovered is increasing rapidly (Liu, et al., 2015). By

decoding their structural and functional attributes, the new proteins may provide solutions

to the discovery of new drugs. The most conventional method in extracting such

information is by conducting biochemical experiments which are often expensive and

time-consuming. As such, various alternatives have been proposed to predict attributes

of new proteins in an efficient and timely manner. One of the most prominent alternatives

is the use of Pseudo-Amino Acid Composition (PseAAC) in protein prediction (Mandal,

et al., 2015). PseAAC is widely adopted for its modeling simplicity and ability to retain

some sequence-order information essential to predicting protein attributes. Due to wide

application of PseAAC, numerous software-based PseAAC generators have been

3

developed. Among such generators are the Nuc-PLoc webserver (Shen & Chou, 2007),

PseAAC webserver (Shen & Chou, 2008), GPCR-GIA webserver (Lin, et al., 2009),

PseAAC-Builder (Du, et al., 2012), propy (Cao, et al., 2013), and PseAAC-General (Du,

et al., 2014).

PseAAC generation often involves large-scale data processing. As such,

computation time is of the essence. Software-based PseAAC generators have limitation

in terms of further reducing the computation time due to the sequentially-executed nature

of software codes. As such, it is of interest to this research to explore a faster alternative

solution to generating PseAAC by proposing a hardware-based generator that has

improved computation speed over the software-based version.

1.2 Problem Statement

 PseAAC is one of the most widely used model in protein prediction. Together

with machine learning algorithm such as Covariance Discriminant (CD) (Xu, et al., 2013),

Fuzzy K-Nearest Neighbor (K-NN) (Xiao, et al., 2013) and Support Vector Machine

(SVM) (Kumar, et al., 2015) among others (Qiu, et al., 2014), PseAAC has been used in

a number of bioinformatics applications involving large-scale dataset processing.

 Bioinformatics applications are usually software-based and developed to run on

general purpose computer. Computer programs typically operate in sequential manner,

with lines of codes executed serially. The speed of running the program is dependent on

the processor clock speed. In today’s computer, the processor is capable of running at the

gigahertz range, making it a popular choice for running bioinformatics applications. In

4

spite of this, there is growing interest in exploring alternatives to computers in search of

higher computation speed. One such alternative is programmable hardware (Aluru &

Jammula, 2014).

 Programmable hardware such as Field Programmable Gate Array (FPGA) has

steadily gained prominence in bioinformatics (Dollas, 2014). One of the main advantage

of FPGA is its capability in parallel processing at all levels. As protein prediction usually

involves large number of protein sequences, it is highly desired for the process to be faster.

One area of protein prediction that can take advantage of improved computation speed is

the generation of PseAAC.

 Two of the most prominent applications for generating PseAAC are the PseAAC

webserver (Shen & Chou, 2008) and PseAAC-Builder (Du, et al., 2012). These

applications run on general purpose computer. The webserver requires internet

connection in order to generate PseAAC. As such, the duration required to obtain results

may vary according to internet connection speed. This can be a disadvantage to user with

slower connection. The PseAAC-Builder, on the other hand, offers a standalone package

that installs the computation engine and supporting frameworks on a local computer. It

being a computer software, however, means the execution of codes are performed

sequentially. As such, its potential for improvement in computation speed is limited. The

FPGA-based PseAAC generator can overcome the limitations of these applications as it

does not require internet connection and has the potential for faster computation speed

through parallel processing. Motivated by these advantages, this research proposes an

architecture for an FPGA-based accelerator for the generation of PseAAC.

5

1.3 Objectives

This research has the following objectives:

 To propose the PseAAC generator’s Register Transfer Level (RTL) design and

implement it on hardware using FPGA.

 To establish accuracy and performance speed up of the FPGA-based PseAAC

generator by comparing its results and computation time to a software-based

generator that is developed using the Perl programming language. Both generators

are implemented with the same PseAAC algorithm. The Perl-based generator’s

accuracy is also measured against the PseAAC webserver.

1.4 Research Scope

The scope of the research covers the following area:

1) Review of the two most common PseAAC modes; Chou’s Type 1 and Type 2

PseAAC, which are supported by most bioinformatics applications such as the Nuc-

PLoc webserver (Shen & Chou, 2007), PseAAC webserver (Shen & Chou, 2008),

GPCR-GIA webserver (Lin, et al., 2009), PseAAC-Builder (Du, et al., 2012), propy

(Cao, et al., 2013), and PseAAC-General (Du, et al., 2014).

2) PseAAC generator implementation on software platform using Perl programming

language that runs on a general purpose computer. This version of the generator is

used in performance comparison to the FPGA-based version. For fair comparison,

both Perl-based and FPGA-based versions are developed using the same PseAAC

algorithm.

6

3) Accuracy measurement of the Perl-based generator benchmarked by the PseAAC

webserver (Shen & Chou, 2008). The webserver is chosen because it is also the

benchmark tool of choice by the PseAAC-Builder (Du, et al., 2012).

4) RTL architecture development of the FPGA-based PseAAC generator using Verilog-

Hardware Description Language (HDL). The design is developed using the Altera

Quartus II Web Edition design software and realized using the Cyclone III FPGA.

5) Computation time evaluation of the FPGA-based PseAAC generator. The results are

compared to the Perl-based version to establish performance gain. The accuracy of

the FPGA-based version will also be compared to the Perl-based version.

1.5 Research Contribution

 This research contributes to run time improvement of PseAAC generation by

proposing an FPGA-based architecture which has improved computation speed over

a software version that runs on a general purpose computer. The software version is

developed using Perl programming language. The improvement is achieved by

capitalizing on the parallel processing capability of FPGA.

7

1.6 Thesis Outline

The content of this thesis is arranged into five chapters.

 In Chapter 1, the background of the research is reviewed. The problem statement

and objectives are defined to establish clear goals of the research. The scope of the

research is also outlined to narrow down the area of focus. Contribution by the research

is also discussed.

 In Chapter 2, the outcome of a comprehensive literature review is deliberated. The

review covers various subjects related to the research such as the challenges of protein

prediction post-genomic age, protein sequence modeling such as sequential and discrete

modeling, the Type 1 and Type 2 PseAAC equations, bioinformatics applications related

to the generation of PseAAC and the role of programmable hardware in bioinformatics.

 In Chapter 3, the methodology of the research is charted. The four development

stages of the research are discussed in detail. Functional specification of the proposed

PseAAC generator is assessed in the first stage. The development strategy of the Perl-

based generator is outlined in the second stage. It includes discussion on the PseAAC

computation flows and accuracy evaluation of the Perl-based generator. In the third stage,

development strategy of the FPGA-based generator is discussed. The RTL architecture

of the generator is also proposed and its various modules are explained in detail. In the

fourth stage, accuracy and computation speed measurements of the Perl-based and

FPGA-based generator are discussed.

 In Chapter 4, results of various evaluations on the Perl-based and FPGA-based

generator are presented and discussed. The evaluations include accuracy measurements

8

of the Perl-based and FPGA-based generator, compilation and simulation results of the

RTL design and computation time comparison between the Perl-based and FPGA-based

generator. The reasons and implications of each result is explored to gain insights into the

proposed software and hardware generator’s performance.

 In Chapter 5, the overall summary of the research is made. The limitation of the

proposed FPGA-based generator is also highlighted and recommendations to improve

and expand the performance of the generator are discussed.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This chapter discusses a variety of research subjects related to PseAAC. It reviews

the challenges faced by the research community in the post genomic age and protein

modeling techniques that have been developed for protein prediction. PseAAC is a

modeling technique developed to improve prediction quality. This technique has been

widely used in many bioinformatics applications. It has been adapted into several

different modes, each tailored to specific requirements to further enhance the accuracy.

In the ensuing sections, two of the most common PseAAC modes, Type 1 and Type 2,

will be examined. These modes are also popularly known as the basic PseAAC and

amphiphilic PseAAC respectively.

 In the wake of PseAAC’s popularity, several bioinformatics applications have

been developed to process large set of protein sequences into PseAAC. These applications

come in various forms such as webservers and standalone software. The emergence of

programmable hardware such as FPGA as a faster solution for bioinformatics applications

will also be reviewed. The potential for improved computation speed by capitalizing on

the parallel processing ability of FPGA has led to its increased role in bioinformatics.

10

2.2 Protein and protein sequences

 Protein is a macromolecule formed by one or more chains of amino acid residues.

It is one of the building blocks of life that serves a variety of biochemical functions in a

living organism (Singh, et al., 2012). For example, proteins in a human body act as

support structure for cells and bind the body together, as enzymes to store and release

energy, as transporters to move molecules within the body, as hormones to regulate bodily

activity and as antibodies against infections.

 A polypeptide is a chain of amino acid residues. Each residue in a polypeptide is

bonded to an adjacent residue linearly by a peptide bond. An illustration of a polypeptide

is shown in Figure 2.1. Protein sequence is the arrangement of the amino acid residues in

a polypeptide. The arrangement is determined by the genetic information within the

Deoxyribonucleic Acid (DNA) of a particular polypeptide. Generally, all residues can be

categorized into 20 native amino acid types. Table 2.1 lists the 20 native amino acids and

their three- and one-letter codes. Each amino acid residue shown in Figure 2.1 is formed

by one of the 20 native amino acids listed in Table 2.1.

Protein sequencing is the process of characterizing the sequence arrangement of

amino acids in a protein. The sequence of a protein can be determined by techniques such

Figure 2.1: Schematic diagram of a polypeptide (Naik, 2012)

	Fpga-Based Accelerator for The Generation of Pseudo-Amino Acid Composition
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRAK
	ABSTRACT
	1.1 Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Research Scope
	1.5 Research Contribution
	1.6 Thesis Outline
	2.1 Introduction
	2.2 Protein and protein sequences
	2.3 Challenges in protein prediction post-genomic age
	2.4 Protein sequence modeling
	2.4.1 Sequential modeling
	2.4.2 Discrete modeling
	2.4.3 Pseudo-Amino Acid Composition
	2.4.3.1 Type 1 PseAAC
	2.4.3.2 Type 2 PseAAC

	2.5 Bioinformatics applications for generating PseAAC
	2.5.1 PseAAC webserver
	2.5.1.1 FASTA format

	2.5.2 PseAAC-Builder

	2.6 FPGA in bioinformatics
	2.6.1 Parallel accelerator for GlimmerHMM
	2.6.2 High speed BLAST using FPGA
	2.6.3 FPGA-based accelerator for prediction of protein secondary class using Fuzzy K-NN with Lempel-Ziv Complexity-based Distance Measure

	2.7 Conclusion
	3.1 Introduction
	3.2 Stage 1 – Functional Specification
	3.3 Stage 2 – Development of Perl-based PseAAC generator
	3.3.1 Perl programming language
	3.3.2 PseAAC computation formula
	3.3.2.1 Extension of Type 1 equations
	3.3.2.2 Extension of Type 2 equations
	3.3.2.3 Type 1 and Type 2 shared equations
	3.3.2.4 Pre-calculated AA index values

	3.3.3 PseAAC generator computation flow
	3.3.4 Accuracy measurement by comparison to PseAAC webserver

	3.4 Stage 3 – Development of FPGA-based PseAAC generator
	3.4.1 Altera Quartus II design software
	3.4.2 Altera Cyclone III development board
	3.4.3 Digital representation of protein sequences
	3.4.4 Identifying inherent parallelism of computation flow
	3.4.5 FPGA design flow
	3.4.6 Architecture overview
	3.4.7 Type 1 and Type 2 Pre-calculated Index modules
	3.4.7.1 Handling number with fractional part in hardware

	3.4.8 Main Controller module
	3.4.9 Flash Read module
	3.4.10 Sum-of-Small-T module
	3.4.11 Occurrence Frequency module
	3.4.12 T-u-minus-20 module
	3.4.13 Hardware setup and implementation
	3.4.14 Hardware results storage and extraction
	3.4.15 Hardware results post-conversion to PseAAC

	3.5 Stage 4 – Performance comparison between Perl-based PseAAC generator and FPGA-based PseAAC generator
	3.6 Conclusion
	4.1 Introduction
	4.2 Accuracy of Perl-based PseAAC generator
	4.3 Compilation results of RTL design
	4.4 Simulation results of RTL design
	4.4.1 Flash Read module simulation results
	4.4.2 Sum-of-Small-T module simulation results
	4.4.3 Occurrence Frequency module simulation results
	4.4.4 T-u-minus-20 module simulation results
	4.4.5 Computation cycles by modules

	4.5 Accuracy of FPGA-based PseAAC generator
	4.6 Computation speed of FPGA-based PseAAC generator
	4.7 Conclusion
	5.1 Conclusion
	5.2 Recommendation for future research
	REFERENCES
	APPENDICES
	Appendix A: Perl script for the generation of PseAAC
	Appendix B: Top-level module of the PseAAC generator’s Verilog-HDL codes
	Appendix C: Quartus II Fitter Resource Usage Summary

