
BEHAVIOUR OF CONCRETE MASONRY WALLS WITH
MORTAR STRONGER THAN BLOCK SUBJECTED TO

COMPRESSIVE LOADING

ATMAN MOLOUD MOHAMED ALI PZABEZ

UNIVERSITI SAINS MALAYSIA

2011



BEHAVIOUR OF CONCRETE MASONRY WALLS WITH

MORTAR STRONGER THAN BLOCK SUBJECTED TO

COMPRESSIVE LOADING

by

ATMAN MOLOUD MOHAMED ALI PZABEZ

Thesis submitted in fulfilment of the requirements
for the degree of

Master of Science

MAY 2011



ACKNOWLEDGEMENTS

All gratitude is to Allah, the ALL knowing, The most High; without His permission,

nothing is possible. Alhamdu Lillah!

I would like to take this opportunity to express my sincere gratitude to all those

who provided me guidance during the completion of this research project. Without

them, it would have been impossible for me to complete my experiments alone.

First on the list, I would like to thank my main supervisor, Prof. Madya Dr. Badorul

Hisham Abu Bakar and my co-supervisor, Dr. Izwan Johari for their guidance during

the conduct and completion of this experimental project.

I would also like to say a big "thank you" to ALL the technicians in Structure and

Materials laboratory of the School of Civil Engineering, Universiti Sains Malaysia.

I also express sincere appreciation to all my friends who were involved directly or

indirectly with my experimental project. I thank them for their supports.

Last but not the least, I also want to express a thousand thanks to both my loving

wife and the Government of Libya for their support and the high level of confidence

reposed in me.

ii



TABLE OF CONTENTS

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstrak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 – INTRODUCTION

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Objectives of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Scope of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 – LITERATURE REVIEW

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Properties of concrete block masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Compressive stress in masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Masonry wall behavior under vertical loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The stress-strain curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Materials used in masonry walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Use of bricks/blocks in masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Concrete blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Mixture of cement and lime in mortar for masonry . . . . . . . . . . . . . . . . . 26

iii



2.6.4 Properties of good mortars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Interaction of blocks and bed joints in masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 3 – METHODOLOGY

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Mortar performance prior to use in masonry wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Flow table test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Materials preparation for mortar cube test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Compressive strength test for mortar cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Determination of water absorption rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Determination of density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Compressive strength test for concrete blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Compressive strength test for walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 4 – RESULTS AND DISCUSSIONS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Flow table test result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Compressive strength results for mortar cube in 14 and 28 days. . . . . . . . . . . . 45

4.4 Rates of water absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Moisture contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Density of concrete block units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Compressive strength of concrete block units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Compressive strength of wall specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Theoretical analysis using the method of Hendry (1981). . . . . . . . . . . . . . . . . . . . 62

4.10 Theoretical analysis using the method of Hilsdorf (1969). . . . . . . . . . . . . . . . . . . 66

CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

v



LIST OF TABLES

Page

Table 2.1 Standard Specification of mortar for Unit Masonry (ASTM C
270), American Society for Testing Materials, Philadelphia, PA 27

Table 2.2 ASTM C 270 Proportion Specification 28

Table 2.3 ASTM C 270 Property Specification 28

Table 4.1 Flow table test result for experimental mortar 44

Table 4.2 Result of mortar strength after 14 days 46

Table 4.3 Comparison of mortar compressive strength after 28 days 46

Table 4.4 Water absorption in blocks after 24 hours 48

Table 4.5 Moisture content of concrete block specimens 50

Table 4.6 The density values of concrete block specimens 51

Table 4.7 Comparison of strength of concrete blocks using laboratory tests 53

Table 4.8 Comparison of compressive strength of laboratory tested wall
specimens 56

Table 4.9 Comparison of compressive strain of laboratory tested wall
specimens 57

Table 4.10 Theoretical compressive strength of the concrete block 63

Table 4.11 Characteristic compressive strength of the concrete block 64

Table 4.12 Comparison of experimental compressive strength of the
concrete block with theoretical calculations 67

vi



LIST OF FIGURES

Page

Figure 3.1 Schematic representation of the summary of laboratory works 34

Figure 4.1 Comparison of mortar compressive strength after 14 and 28 days 46

Figure 4.2 Stress-strain curve of cube mortar at the age of 28 days 47

Figure 4.3 Comparison of the water content absorption in the block
specimens 48

Figure 4.4 Comparison of the moisture content in the concrete block
specimens 50

Figure 4.5 The density of concrete block specimens used in the experiment 51

Figure 4.6 Comparison of compressive strength of concrete blocks using
laboratory tests 53

Figure 4.7 Stress-strain curve of concrete block specimen 1 using
laboratory tests 54

Figure 4.8 Stress-strain curve of concrete block specimen 2 using
laboratory tests 54

Figure 4.9 Stress-strain curve of concrete block specimen 3 using
laboratory tests 55

Figure 4.10 Comparison of compressive strength of wall specimens using
laboratory tests 56

Figure 4.11 Stress-strain curve for wall specimen 1 using laboratory test 57

Figure 4.12 Stress-strain curve for wall specimen 2 using laboratory test 57

Figure 4.13 Stress-strain curve for wall specimen 3 using laboratory test 58

Figure 4.14 Stress-strain curve for wall specimen 4 using laboratory test 58

Figure 4.15 Failure on specimen wall 1 59

Figure 4.16 Failure on specimen wall 2 60

Figure 4.17 Failure on specimen wall 3 61

vii



LIST OF PLATES

Page

Plate 1.1 A sample of concrete block masonry wall 4

Plate 1.2 Concrete block masonry wall under construction 4

Plate 1.3 Failure along mortar joints in a concrete block masonry wall 5

Plate 1.4 Cracks due to failure in mortar of concrete block masonry wall 6

Plate 1.5 A example of structural failures in Concrete block masonry wall 7

Plate 2.1 Rows of hollow concrete blocks 25

Plate 2.2 Sample of solid concrete block 25

Plate 3.1 Flow table test 36

Plate 3.2 Compressive test specimens 36

Plate 3.3 A mould used for cube test 37

Plate 3.4 3000 kN compression machine cube tester 38

Plate 3.5 Specimen wall tested 43

viii



PERLAKUAN DINDING KERJA BATU BONGKAH KONKRIT
TERTAKLUK PADA BEBANAN MAMPAT APABILA

MORTAR/LEPA LEBIH KUAT DARIPADA BONGKAH

ABSTRAK

Penyelidikan ini mengkaji keberkesanan beban mampat menegak dalam dinding

kerja batu tidak bertetulang. Empat spesimen dinding bersaiz (1228 mm x 685mm x

100 mm) dengan sifat sambungan mortal atau lepa yang berlainan digunakan. Penye-

lidikan ini dijalankan berdasarkan standard Bs dan ASTM. Ciri kekuatan mampat pada

bongkah konkrit serta dengan bahan lain diperoleh bagi kekuatan mampat. Keputusan

penyelidikan menunjukkan bahawa kekuatan mampat sambungan lepa / mortal adalah

tinggi bagi bongkah konkrit. Kegagalan yang berlaku pada bongkah konkrit semasa

proses pemampatan adalah retakan menegak sepanjang pusat bongkah. Di samping

itu, keputusan yang diperoleh dibandingkan juga dengan nilai kaedah teori, iaitu yang

dikira berdasarkan rumusan analisis anjal. Keadah yang digunakan adalah berkaitan

dengan (HANDRY-1981) dan (HILSDORF-1969).
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BEHAVIOUR OF CONCRETE MASONRY WALLS WITH
MORTAR STRONGER THAN BLOCK SUBJECTED TO

COMPRESSIVE LOADING

ABSTRACT

This research experiment presents an investigation of the behavior of vertical com-

pressive loading in un-reinforced masonry walls. A total of four specimen walls sized

1228mm x 685mm x 100mm (height x length x width) were investigated, when the

compressive strength properties of the mortar joints is higher than that of the con-

crete block. The experiment was evaluated by both the British Standard (BS) and

the American Standard (ASTM). The characteristic compressive strength properties of

the concrete block, together with the properties of other materials were obtained to

determine the total compressive strength of the masonry wall built from them. The

experimental results obtained for the materials of the wall showed that the compres-

sive strength of mortar joints was higher than the compressive strength of the concrete

blocks (as was in the experimental design). With progressive vertical loading up to

the maximum compressive load which the wall can bear, the concrete block which are

weaker in tensile strength showed failure as splitting cracks. Consequently, loading the

wall beyond the maximum load capacity, the mortar began to spread outwards leading

to more severe cracks, which will make the wall to collapse when the maximum load

is exceeded. The failure in the wall specimens occurred principally in the concrete

block during compression as a consequence of the general failure which occurred in

the specimens, as shown by vertical cracking along the center of concrete blocks. The

x



result obtained from the present experiment was compared with the values of the the-

oretical method calculated with the formula for elastic analysis. The results obtained

are in conformity to that stated in the literature, especially the method of Hendry and

Hilsdorf.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since ancient times, masonry has been used to build all sorts of structures, to provide

excellent resistance in the presence of different natural phenomena. In recent times

around the world however, a large variety of masonry units have been adopted for

many structural and architectural forms in extensive varieties of construction such as

buildings, bridges, dams, walls and others (Tomazevic 2000). Masonry units, solid

or hollow are made with different materials: sand-cement, lime-cement, concrete or

clay. The mechanical properties governing their behavior are the compressive strengths

and the initial rate of absorption (IRA). Masonry walls are used in almost all types of

building construction in many parts of the world because of its low cost materials, good

sound and heat insulation properties, easy availability, and locally available material

and skilled labour (Kaushik et al., 2007)

Masonry is an excellent structural system when compressive stress controls the

ultimate response. On the other hand, it is also well established that the low tensile

strength of masonry could lead to inadequate response when lateral forces reach high

values. Reinforcement appears to be a solution adopted to increase the tensile strength

and thus, improve the mechanical behavior of masonry under lateral loading (Haach

et al., 2011). The nature of masonry is such that its construction could be achieved
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without very heavy and expensive plants. Although it depends to a large extent on

skilled labour for a high standard of construction, productivity could be maintained by

the use of larger units, improved materials handling and off-site preparation of mortar

(Hendry 2001).

However, masonry shear walls have been reported to exhibit complex structural

behaviors since masonry is a composite material with anisotropic behavior and shear

walls are subjected to a bi-axial stress state. Several experimental studies on masonry

shear walls have been carried out in order to evaluate and better understand their be-

havior (Kaushik et al., 2007; Hendry 2001).

Existing un-reinforced masonry structures are vulnerable to seismic, wind, and

other dynamic out-of-plane loads and as such, the emphasis on the demand for strength-

ening of such structures have recently gained much attention. Specifically, the ten-

dency of out-of-plane dynamically loaded masonry walls to collapse in a brittle manner

and to cause severe damage or even injury to the occupants has been emphasized.

In some cases, failures of masonry walls have been identified as the main cause

of loss of lives under seismic events (Ehsani et al., 1999). In order to avoid this, an

improvement in the structural performance of masonry wall is required. This could be

achieved by a broad range of strengthening and upgrade techniques, among which is

the use of reinforcements (Triantafillou 1998) and the examination of the right com-

bination of composite materials used in the construction of masonry walls; especially

the strength of the mortar and concrete blocks as it affects the dynamics of the wall

stability and construction (Hilborn 1994).
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In many practical cases, masonry walls (Plates 1.1; 1.2) are built within a sur-

rounding frame that restrains their longitudinal deformations (McDowell et al., 1956;

Hamed and Rabinovitch 2007). To that effect, cracking at the joints and the out-of-

plane displacement may yield eccentric longitudinal reactions of the supporting frame.

Under dynamic loads, the magnitude of the arching force and the location of its line of

action vary in time. Dynamic cracking may also give rise to the rocking phenomenon,

where the point of contact between adjacent masonry units shifts from one side of the

joint to another. This effect gives rise to longitudinal inertial forces and couples the

in-plane and the out-of-plane response (McDonald 1991). All the unique phenomena

mentioned above critically affect the design and the performance of the reinforcement

strengthening system and highlight the difficulties and the challenges associated with

the modeling and the dynamic analysis of the reinforcement strengthened masonry

walls.

The bearing capacity of a masonry element subject to compression is generally

determined by elastic calculations which take into account the different mechanical

properties of the constituents (Venanzi and Materazzi 1991). From damages observed

after earthquakes and test results of confined masonry walls, several mechanisms of

failure have been identified under in-plane lateral loads. Among many other variables,

the resistance of masonry (combination of masonry units and joints), the resistance of

the concrete columns, the quality of workmanship and steel reinforcement ratio define

the failure pattern (Paulay and Priestley 1992; Tomazevic 2000). Four main failure

modes have been identified as follows;

1. Flexion failure; This failure mode appears on slender walls, where the tension is

3



Plate 1.1: A sample of concrete block masonry wall

Plate 1.2: Concrete block masonry wall under construction
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high and causes the yield of the longitudinal steel and the compression failure

on the wall corners

2. Sliding shear failure; Sliding of a portion of the wall along the horizontal joint

occurs when the shear stress is greater than the shear strength. Sliding produces

the short column effect on the concrete elements which generates plastic hinges

3. Diagonal tension failure; This failure mode occurs because the diagonal stress

along the wall exceeds the masonry tensile strength, causing diagonal cracking

(Plate 1.3)

4. Splitting failure by diagonal compression; This happens when there is separation

between masonry and concrete columns on discharged corners (Plate 1.4). A

compression strut is then formed. This generates compression at the loaded

corners and causes crushing of the masonry units (Plate 1.5) (Tomazevic 2000).

Plate 1.3: Failure along mortar joints in a concrete block masonry wall
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Plate 1.4: Cracks due to failure in mortar of concrete block masonry wall

The dynamic behavior of masonry walls strengthened with composite materials

could be characterized by a variety of nonlinear and unique physical phenomena, many

of which result from the cracking of the mortar joints. In many cases, the tensile

strength of the mortar or that of the masonry-mortar interface is relatively low or even

null. In the event of dynamic or cyclic loadings, the response of the wall involves

a cyclic opening and closure of the cracks (crack breathing) and correspondingly, a

non-periodic or even chaotic nonlinear dynamic response (Dimarogonas 1996; Carpin-

teri and Pugno 2005). The cracking at mortar joints could trigger the formation of

debonded regions in their vicinity, which may reduce the efficiency of the strengthen-

ing system, resulting in a local buckling/wrinkling of the compressed reinforcements

and amplify the shear and the out-of-plane normal (peeling) stresses in the adhesive
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Plate 1.5: A example of structural failures in Concrete block masonry wall

layers near the joints (Hamed and Rabinovitch 2007).

Consequently however, in preliminary tests performed to study some characteris-

tics of the masonry blocks and the mortar, tension tests showed that the mortar bed

joint failures occur at the contact interface between the mortar and the block (Yagust

and Yankelevsky 2009). The test data provided the following relationships;

1. a relationship between the maximum shear stress and the tension bonding strength

of mortar bed joint, subjected to the normal compression stress

2. relationship between the shear stress and the shear displacement

3. relationship between the maximum dilatation displacement

4. relationship between the dilatation displacements

7



These relationships are necessary for any numerical simulation of the masonry in filled

wall.

The tensile strength of masonry units both direct and flexural influences the re-

sistance of masonry under various stress conditions, but is not normally specified ex-

cept in relation to concrete blocks used in partition walls, where typically a breaking

strength of 0.05 N/mm2 is required (Hendry 2001).

Although mortar accounts for as little as 7% of the total volume of masonry, it

influences the performance far more than this proportion has indicated. Mortar requires

to have certain properties prior to setting, particularly workability. Hardened mortar

has to be sufficiently strong and to develop adequate adhesion to the units and also

to set without excessive shrinkage, which would reduce the resistance of the masonry

to rain penetration or even cause cracking of the units. It should also be capable of

accommodating some degree of movement in the masonry resulting from creep or

thermal effects without cracking (Hendry 2001).

Conventionally, mortar mixes are based on Portland cement, lime or plasticiser

and sand, graded according to compressive strength. The stronger the mortar is, the

less able it is to accommodate movement so that it is not advisable to use a stronger

mix than is necessary, to meet structural requirements. A compressive strength of 2-

5 N/mm2 is considered adequate for most low-rise structures. For special purposes

a type of cement other than ordinary Portland cement could be used, e.g. a sulfate

resisting variety for blockwork below damp-proof course level where ground water is

contaminated by sulfates (Watford 1991).
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A workable mortar is that with a smooth, plastic consistency which is easily spread

with a trowel and readily which adheres to a vertical surface. Well graded, smooth

aggregates enhance workability as also do lime, air entrainment agents (plasticisers)

and proper amounts of mixing water. Lime imparts plasticity and ability to retain

water in the mix whilst plasticisers improve frost resistance. Thin bed mortars with

a 1:2 cement/sand mix together with water retaining and workability admixtures are

increasingly used with accurately dimensioned units (Watford 1998).

On the other hand, absorption and pore structure of blocks and blocks varies widely

and is important in a number of ways. Thus certain clay blocks which absorb between

4.5 and 7.0% of their weight can be used as a dampproof course material. Highly ab-

sorptive clay blocks, on the other hand, may remove water from the mortar preventing

complete hydration of the cement. Absorption is of less relevance in the case of cal-

cium silicate and concrete units but pore structure affects resistance to frost damage

(Hendry 2001).

In addition to units and mortar, masonry wall construction requires the use of a

number of subsidiary components including damp-proof course material, cavity trays,

wall ties and fixings. Each of these must be as durable as the masonry itself as well as

meeting its particular function.

It is therefore important that thermal and moisture movements in masonry walls

need to be taken into account in the design of walls, depending on the characteristics

of the units. This becomes better appreciated considering that clay units tend to expand

in service whereas concrete and calcium silicate units shrink (Watford 1979)
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Masonry wall construction has a number of advantages; the first is the fact that a

single element can fulfil several functions including structure, fire protection, thermal

and sound insulation, weather protection and sub-division of space. Masonry materi-

als exist, with properties capable of meeting most of these functions, requiring only

to be supplemented in some cases by other materials for thermal insulation, damp-

proof courses and other considerations (Hendry 2001). The second major advantage

of masonry wall construction relates to the durability of the materials which, when ap-

propriately selected, could be expected to remain serviceable for many decades, if not

centuries, with relatively little maintenance. From the architectural point of view, ma-

sonry offers advantages in terms of great flexibility of plan form, spatial composition

and appearance of external walls for which materials are readily available in a wide

variety of colors and textures. Complex wall arrangements, including curved walls

could be readily built without the need for expensive and wasteful formwork.

The advantages of masonry wall construction are therefore considerable but, as

with all materials, appropriateness to the application has to be considered, assuming

acceptability from the architectural viewpoint. If for instance, the masonry is not to

be load bearing it will be necessary to consider the implications of the weight of the

masonry as it affects the supporting structure. If the walls are to be load bearing, it

will be important to ensure that their layout is consistent with overall stability and with

avoidance of failure in the event of accidental damage (Hendry 2001).

These advantages are only beneficial when masonry materials are used in the pro-

portions described according to the various standards. Where the use of masonry ma-

terials (especially mortar and blocks) are not according to standard specifications (as is
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the case when the mortar has more compressive strength than blocks), it is very likely

that these advantages of masonry may not be attained.

1.2 Problem statement

Structural designs of masonry walls are carried out in accordance with national codes

of practice. These codes are based on the limits of national principles, with safety being

assured by the use of characteristic values of loads or actions and material strengths,

together with partial safety factors and applied as a multiplier to loads and as a divisor

to strengths. Characteristic values are intended to represent a 95% confidence limit of

not being exceeded in the case of loads and of being attained in the case of strengths

(Hendry 2001).

For every nation, the standard codes of practice as it applies to the specifications

for mortar and block types depends on the strength of mortar or block needed for an

application. Under normal circumstances, the block is usually stronger than the mortar.

However, there is no assurance that these codes of practices as it applies to mortars will

be followed strictly by all masons. It is therefore important to investigate the behavior

of a masonry wall built when the mortar is stronger than the block.

Primary variables in the calculation of the compressive strength of a masonry wall,

in addition to the unit strength includes the eccentricity of loading and the slenderness

ratio of the wall. Both of these are difficult to assess on a theoretical basis depending

as they do on interaction between walls and floors. Creep effects may be significant in

some walls. In some cases, this may increase the eccentricity at mid-height of a wall

but where there are interacting floor slabs, the eccentricity may reduce with time.

11



Compressive strength of masonry walls is thus a complex problem and a consider-

able amount of research work is still being carried out on it over many years (Hendry

1998). Since it is very presumable that masons (or owners of masonry buildings for

that matter) may want to construct masonry walls with mortars of higher compres-

sive strength than blocks, this phenomenon needs to be investigated under laboratory

conditions and therefore the need of the present experiment.

The principal focus of the present study as therefore as follows;

1. The behavior of a concrete block-masonry wall when subjected to vertical, com-

pressive loading and the effects on the wall

2. The maximum compressive load bearing capacity which a concrete block-masonry

wall could tolerate without cracking, when the mortar has higher compressive

strength than the concrete blocks and the safety of masonry construction

3. The characteristics of the ideal mortar to be used in the construction of concrete

block-masonry walls

4. The relationship between the strength of the mortar and that for concrete blocks

in the resistance of concrete walls to compressive loading

5. The effects of compressive loading on masonry walls when the mortar strength

exceeds the required level and the types of failure which happen as a result of

this loading of the walls

The proper understanding of behavior of a concrete block-masonry wall when sub-

jected to compressive loading is necessary for safety of the walls being assured by the
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