FORMATION OF ZIRCONIA SHEETS WITH NANOTUBULAR STRUCTURE PREPARED BY ANODIZATION OF ZIRCONIUM

by

SURIYATI BINTI MOHAMED ANSARI

Thesis submitted in fulfillment of the requirements for the Degree of Master of Science

AUGUST 2014

DECLARATION

I declare that this thesis is the result of my own research, does not incorporate without acknowledgement any material submitted for the degree or diploma in any university and does not contain any materials previously published, written or produced by another person except where due references are made in the text.

Signature	:
Candidate's Name	: Suriyati binti Mohamed Ansari
Date	:
Signature	:
Supervisor's Name	: Associate Professor Dr. Zainovia Lockman
Date	:

DECLARATION

I declare that this thesis is the result of my own research, does not incorporate without acknowledgement any material submitted for the degree or diploma in any university and does not contain any materials previously published, written or produced by another person except where due references are made in the text.

Signature	:
Candidate's Name	: Suriyati binti Mohamed Ansari
Date	:
Signature	:
Supervisor's Name	: Associate Professor Dr. Zainovia Lockman
Date	:
Signature	:
Examiner's Name	: Dr Pung Swee Yong
Date	:

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praise to Allah for the strengths and His blessing in completing this thesis. It would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable help in the preparation and completion of this study.

First and foremost, I would like to thanks with all my heart to my supervisor, Assoc. Prof. Dr. Zainovia Lockman for her supervision and constant support. Her invaluable help of constructive comments and suggestion throughout the experimental and thesis works have contributed to the success of this research. Not forgotten also, my appreciation to my subject advisor, Prof. Zainal Ariffin Ahmad for his support and understanding regarding this works.

I am deeply thankful to USM for giving me the opportunity of being a postgraduate student in School of Materials and Mineral Resources Engineering. My sincere thanks to Dean, Deputy Deans, lecturers, technicians, staffs and others whose also contributed in my study. Special thanks to my fellow friends in GEMs group that always gives me support and help when I am facing with difficulties.

My never ending gratitude and thanks to my parents, Puan Habsah binti Mohd Gani and my late father, Mohamed Ansari bin Abdullah, my brothers, my sister and their families. Without their encouragement and attentive, it would have been impossible for me to complete this work. Last but not least, to everybody who has directly or indirectly involved in accomplishment of my study successfully. Your cooperation is highly appreciated.

TABLE OF CONTENT

ACKNOLEDGEMNT	ii
TABLE OF CONTENT	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVATIVES	xii
LIST OF SYMBOLS	xiii
ABSTRAK	xiv
ABSTRACT	xvi
CHAPTER 1 – INTRODUCTION	1
1.1 Nanometerial	1
1.2 ZrO ₂ nanotube photocatalyst	4
1.3 Synthesis of ZrO ₂ nanotube sheets	6
1.4 Problem Statement	9
1.5 Research objectives	11
1.6 Thesis outline	11
CHAPTER 2 – LITERTAURE REVIEW	13
2.1 Introduction	13
2.2 Properties of ZrO ₂	13
2.3 Formation of ZrO ₂ nanotubes	16
2.4 Anodic formation of oxide NT sheets (membrane)	29
2.4.1 Anodization of free-standing TiO ₂ membranes	29
2.4.2 Mechanism of development of free-standing and flow-through TiO_2	34

nanotube membranes

2.4.2.1 Detachment and flow-through of TiO_2 nanotube arrays	34
2.4.2.1 (a) Mechanical delamination	34
2.4.2.1 (b) Physical parameter regulation	36
2.4.2.1 (c) Chemical separation	37
2.4.2.1 (d) Selective ICP dissolution or ICP etching	37
2.4.3 Synthesis of ZrO_2 nanotube sheets via anodization	38
2.5 Properties of ZrO ₂ nanotube arrays	43
2.5.1 Crystallinity of ZrO ₂ nanotube formed by anodic process	43
2.5.2 Photocatalyst of ZrO_2 nanotube arrays	48
CHAPTER 3 – METHODOLOGY	57
3.1 Introduction	57
3.2 Raw materials	59
3.3 Procedure of experiment and parameter studied	60
3.3.1 Anodization of ZrO ₂ nanotube sheets in Ethylene Glycol (EG) with addition of carbonates	65
3.3.1.1 Effect of different carbonates	66
3.3.1.2 Effect of different carbonates concentration	66
3.3.1.3 Effect of applied voltage	67
3.3.1.4 Effect of anodization time	68
3.3.1,5 Effect of annealing temperature	69
3.3.1.6 Methyl orange degradation	69
3.4 Characterization technique	70

3.4.1 Field emission scanning electron microscopy (FESEM)	70
3.4.2 X-Ray Diffraction spectrometry (XRD)	71
3.4.3 Transmission Electron Microscopy (TEM)	73
3.4.4 UV-Visible	73
CHAPTER 4 – RESULTS AND DISCUSSION	75
4.1 Introduction	75
4.2 Formation of ZrO ₂ nanotube sheets	75
4.3 Effect of different carbonates addition	76
4.4 Effect of different concentration of carbonate on the formation of ZrO ₂ nanotube sheets	85
4.5 Effect of anodization voltages on the Formation of ZrO ₂ Nanotube Sheets	91
4.6 Effect of anodization times on the formation of ZrO ₂ nanotubes Sheets	94
4.7 Effect of annealing	100
4.8 Photodegradation of ZrO ₂ nanotube sheets	110
CHAPTER 5 – CONCLUSION AND RECOMMENDATIONS	113
5.1 Conclusion	113
5.2 Recommendations	115
REFERENCES	116

LIST OF TABLES

Table 3.1	Chemical used for the anodization of nanotubes oxide	59
Table 3.2	Parameter of anodization in 1M Na ₂ CO ₃	65
Table 3.3	Parameter of anodization in 1M K ₂ CO ₃	66
Table 3.4	Parameter of anodization in different carbonate (K ₂ CO ₃)	66
	concentration	
Table 3.5	Constant Parameter of anodization in different voltages (20 V,	67
	40 V, 60 V)	
Table 3.6	Constant parameter of anodization at different anodization time	68
Table 4.1	Comparison of length and diameter of nanotubes formed in	90
	different carbonates concentration	

LIST OF FIGURES

		Page
Figure 1.1	Formation of ZrO ₂ nanotube sheets	8
Figure 2.1	Crystal structure of zirconia (a) cubic (b) tetragonal	15
Figure 2.2	Crystal structure of monoclinic zirconia	15
Figure 2.3	(a) SEM image of zirconia nanotubes, (b) TEM image showing hollow nanotubes of zirconia. Inset gives the electron diffraction pattern	17
Figure 2.4	SEM images of anodic porous ZrO_2 layer. (a) Top view and (b) cross sectional of the porous layer formed on Zr in 1 M H_2SO_4 with 0.2 wt% NaF electrolyte at 20 V	18
Figure 2.5	SEM images ZrO_2 nanotube layer formed on Zr in 1 M $(NH_4)_2SO_4$ with 0.5 wt% NH_4F at 20 V after a potential sweep from OCP to 20 V: (a) top view; (b) cross section; (c) bottom view	19
Figure 2.6	(a) Typical surface, (b) bottom views of nanotube structured Zr oxide fabricated by anodic oxidation	20
Figure 2.7	SEM images of the prepared samples after anodization of Zr at 50 V for 24 h. a: surface structure (inset is TEM image of the top part), b: surface structure after being rinsed ultrasonically, c: cross section, d: cross section of higher magnification (inset is TEM image of ZrO_2 nanotube)	21
Figure 2.8	SEM showing nanotubes formed to $780 \text{ cm-}2$ with (a) 0, (b) 1 and (c) 5 vol % added water. (d) shows the bottom of the think film of (c)	24
Figure 2.9	Sketched process of anodization	26
Figure 2.10	Fabrication procedure of the TNMs (1) first anodization initiates a layer of amorphous TNT. (2) Annealing to crystallize the TNT layer. (3) Second anodization to grow a beneath layer of amorphous TNT and meanwhile detach the first layer crystallized layer. (4) The crystalline TNM is separated from the parent substrate after drying in air	33
Figure 2.11	Detachment and open bottom methods for the membrane	35

	(A) Mechanical delamination (B) physical parameter regulation (C) chemical separation (D) selective dissolution or ICP etching	
Figure 2.12	Photographs showing the detachments of (a) the anodic ZrO_2 nanotubular layer from the underlying Zr metal and (b) the anodic TiO ₂ nanotubular layer from the underlying Ti metal with an adhesion tape method, respectively. FESEM images of the anodic ZrO ₂ nanotubes' bottom side (c) before cathodic polarization (inset: a photograph illustrating the detachment of the anodized ZrO_2 nanotubular layer from the underlying remaining-Zr with an adhesion tape) and after cathodic polarization (d) for 1 min and (e) for 3 min at -2 V in 0.5 M H ₂ SO ₄ at 20 ^o C. (f) The photograph of a freestanding ZrO ₂ membrane (right).	39
Figure 2.13	 (a) A digital image of a freestanding ZrO₂ nanotube membrane. SEM images of ZrO2 membrane: (b) top view, (c) cross-sectional view, and (d) bottom view 	41
Figure 2.14	Cross sectional SEM images of ZrO2 nanotube obtained at 20 V (a), 30 V (b), 40 V (c) and 50 V (d)	43
Figure 2.15	X-ray diffraction patterns for zirconia nanotubes formed by anodisation in solution containing different concentration of NH ₄ F (all samples were anodised at 20 V for 1 h in bath with pH \sim 4)	44
Figure 2.16	XRD result of unannealed ZNT and annealed ZNT under 300 °C (a) unannealed ZNT and (b) annealed ZNT under 300 °C.	45
Figure 2.17	XRD patterns of zirconia nanotubes annealed at different temperatures in air	46
Figure 2.18	XRD spectra of as-prepared freestanding ZrO2 membrane and the membranes annealed at 400 °C, 600 °C, 800 °C and 900 °C.	48
Figure 2.19	Mechanism of photocatalysis reaction	49
Figure 2.20	Application of photocatalysis	50
Figure 2.21	The variation in the concentration of 2,4-D as a function of time	52

Figure 2.22	(a) The influence of pH value on decolorization percentage with different decolorization time (C0: 20 mg/L);(b)the influence of solution concentration (pH:3.5);(c) the influence of anodization voltage (C0: 20 mg/L, pH: 3.5, t = 120 min);(d)The decolorization percentage with different decolorization time using ZrO_2 nanotube film and P25 thin film as catalysts, respectively (C0: 20 mg/L, pH: 3.5),	55
Figure 2.23	MO degradation rate against time with different ZNT sample	55
Figure 3.1	Flow chart of the experimental works	58
Figure 3.2	Schematic illustration of equipments and setup in anodization process	62
Figure 3.3	Schematic illustration of equipments and setup in	64
	photocatalytic activity of MO	
Figure 4.1	The ZrO_2 formed on Zr foil in different electrolyte, (a) EG without carbonate, (b) EG with 1M K ₂ CO ₃ , (c) EG with 1M Na ₂ CO ₃	77
Figure 4.2	FESEM images for ZNTs in different electrolyte composition, (a) EG without carbonate: (i) surface, (ii) cross section, (b) EG with K ₂ CO ₃ : (i) surface, (ii) cross section, (c) EG with Na ₂ CO ₃ : (i) surface, (ii) cross section	79
Figure 4.3	Illustrations on mechanism of ZrO ₂ nanotubes formation, (a) thin oxide film formation, (b) pits formation, (c) pores formation, (d) pores separation	80
Figure 4.4	Illustration to show the steps in the of ZrO_2 nanotube film formation	81
Figure 4.5	(a) Experimental equipment of accelerated anodic oxidation of ZrO_2 nanotubes sheets, (b) Schematic representation of the ZrO_2 nanotube detachment	85
Figure 4.6	Figure 4.8: FESEM images of ZrO_2 anodized with different concentration, (a) 0.2M: (i) surface, (ii) cross section, (b) 0.4M: (i) surface, (ii) cross section, (c) 0.6M: (i) surface, (ii) cross section, (d) 0.8M: (i) surface, (ii) cross section, (e) 1.0M : (i) surface, (ii) cross section	88

Figure 4.7	FESEM images of ZrO_2 anodized at different voltages, (a) 20V, (b) 40V: (i) surface, (ii) cross section, (c) 60V: (i) surface, (ii) cross section	92
Figure 4.8	FESEM images of ZrO_2 anodized at different times, (a) 1 min: (i) surface, (ii) cross section, (b) 5 min: (i) surface, (ii) cross section, (c) 15 min: (i) surface, (ii) cross section, (d) 30 min: (i) surface, (ii) cross section, (e) 60 min: (i) surface, (ii) cross section	97
Figure 4.9	XRD patterns for as-anodized samples in form of foil	101
Figure 4.10	XRD patterns for as-anodized samples in form of sheets	102
Figure 4.11	XRD spectra of ZrO_2 nanotube sheets annealed at 200 °C, 400 °C and 600 °C	104
Figure 4.12	TEM images of ZrO_2 nanotube sheets anodized with 60V for 1h in 97 ml EG , 0.3g NH ₄ F, 3ml 1M K ₂ CO ₃ (a(i))magnification: 25K, (a(ii))magnification:50K	106
Figure 4.13	TEM images of ZrO_2 nanotube sheets annealed at 200° for 2h (a (i, ii)) magnification: 25K, (b (i, ii)) magnification: 50K, (c(i, ii)) magnification: 80K	107
Figure 4.14	TEM images of ZrO ₂ nanotube sheets annealed at 400°C(a(i))magnification: 25K, (a(ii))magnification: 50K, (a(iii)) magnification: 80K	108
Figure 4.15	TEM images of ZrO ₂ nanotube sheets annealed at 600°C(a(i))magnification: 25K, (a(ii))magnification: 50K, (a(iii)) magnification: 80K	109
Figure 4.16	Photodegradation of methyl orange (MO) using ZrO ₂ nanotube sheets annealed at different temperatures.	111

LIST OF ABBREVIATIONS

ZNT'S	Zirconium oxide nanotubes
ZrO ₂	Zirconium Oxide
C	Cubic
Т	Tetragonal
М	Monoclinic
МО	Methyl Orange
PC	Photocatalyst
FESEM	Field Emission Scanning
	Electron Microscopy
XRD	X-ray Diffraction
TEM	Transmission Electron
	Microscope

LIST OF SYMBOLS

%	Percentage
<	Less than
>	More than
°C	Degree Celsius
cm	Centimetre
h	Hour
L	Liter
m	Metre
min	Minute
ml	Millilitre
mm	Millimetre
wt%	Weight percent
V	Voltage
nm	Nanometre
g	Gram
S	Second
eV	Electron volt
λ	Wave length
Т	Temperatur

ABSTRAK

Dalam karya ini, proses anodik dilakukan untuk menghasilkan lapisan anodik yang terdiri daripada tiub nano ZrO₂. Lapisan anodik kemudian dikeluarkan dari kepingan Zr untuk menghasilkan berdiri bebas lembaran ZrO₂ tiub nano. Jenis-jenis karbonat, berbeza kepekatan karbonat, voltan penganodan dan juga masa penganodan telah dieksperimen bertujuan untuk membentuk lembaran ZNTs. Kehadiran karbonat, Na_2CO_3 dan K_2CO_3 sebagai penambah memainkan peranan yang penting dalam pembentukan kepingan tiub nano. Untuk membandingkan, dalam EG ditambah dengan 3 ml 1 M K₂CO₃ menunjukkan lebih pembentukan kepingan tiub nano berbanding EG dengan Na₂CO₃. Dalam pembentukan ZNTs, H^+ dilepaskan dalam tiub nano dan apabila H⁺ bertindak balas dengan CO₃²⁻, gas CO₂ dilepaskan. Pembentukan gas CO₂ memberi kesan kepada lekatan filem ZrO₂ dari foil. Kesan kepekatan K₂CO₃ yang berbeza menambah, jumlah kepingan tiub nano yang terbentuk. Bagi kesan voltan penganodan dan masa, didapati bahawa pada 40 V dan 60 V, jumlah ZNTs dibentuk dan pada 60 V, filem itu adalah lebih mudah untuk dikeluarkan daripada foil Zr. Bagi kesan masa penganodan, ia seolah-olah bahawa pada masa yang lebih lama, tindak balas lebih bagi CO₃²⁻ dan H⁺ berlaku membentuk lebih CO₂. Gas CO₂ yang dihasilkan daripada tindak balas CO_3^{2-} dan H⁺ terkumpul pada antara muka logam dan oksida dan membuat filem oksida anodik untuk menanggalkan dengan mudah dari Zr substrat tanpa memerlukan prarawatan. Lembaran tiub nano ZrO₂ didapati amorfus, oleh itu ia telah disepuh lindap pada tiga suhu yang berbeza 200 °C, 400 °C dan 600 °C. Pembentukan fasa dan perubahan pada setiap suhu diperhatikan dengan semua tetragon (T), padu (C), dan wujud bersama-monoklinik (M) fasa selepas penyepuhlindapan pada 400 °C dan 600 °C Aktiviti lembaran tiub nano ZrO₂ anil adalah kajian oleh degradasi MO. Selepas 300 minit, kira-kira 37% daripada MO telah di hina oleh sampel disepuh lindap pada 600 ^oC, 35% daripada MO dihina oleh sampel anil pada 400 ^oC dan 22% daripada MO dihina oleh sampel disepuh lindap pada 200 ^oC. Ini menunjukkan bahawa penghabluran adalah penting dalam fotopemangkinan.

ABSTRACT

In this work, anodic process was done to produce anodic layer of comprising of ZrO₂ nanotubes. The anodic layer was then removed from the Zr foil to produce free standing ZrO_2 nanotube sheets. Types of carbonates, different concentration of carbonates, anodization voltage and also anodization time were experimented aiming at forming ZNTs sheets. The presence of carbonates, K₂CO₃ and Na₂CO₃ as an additive plays an important role during the formation of the nanotube sheets. To compare, in EG added with 3 ml 1 M K₂CO₃ shows more nanotube sheets formation compared to EG with Na₂CO₃. In ZNTs formation, H^+ is released in the nanotubes and when H^+ reacts with CO_3^{2-} , CO_2 gas is released. The formation of CO_2 gas effect the adhesion of ZrO_2 film from the foil. Effect of different concentrations of K₂CO₃ added, the amount of nanotube sheets that formed was also increased. As for the effect of anodization voltage and time, it appears that at 40 V and 60 V, the amount of ZNTs were formed and at 60 V, the film was easier to be removed from Zr foil. As for the effect of anodization time, it seems that at longer time, more reaction between the CO_3^{2-} and H⁺ occurs forming more CO₂. The CO₂ gas produced from the reaction of CO_3^{2-} and H⁺ accumulated at the metal and oxide interface and makes the anodic oxide film to detach easily from Zr substrate without the need of pretreatment. The ZrO2 nanotube sheets were found to be amorphous, thus it were annealed at three different temperatures of 200 °C, 400 °C and 600 °C. The phase formation and transformation at each temperature was observed with all tetragonal (T), cubic (C), and monoclinic (M) phase co-exist after annealing at 400 ^oC and 600 ^oC. The activity of the annealed ZrO₂ nanotube sheets was study by degradation of MO. After 300 min, about 37 % of the MO was degraded by the annealed

sample at 600 0 C, 35 % of MO degraded by sample annealed at 400 0 C and 22 % of MO degraded by sample annealed at 200 0 C. This indicates that crystallinity is important in photocatalysis

•

CHAPTER 1

INTRODUCTION

1.1 Nanomaterials

In order to achieve a modern science and technology development, nanotechnology had been recognized to have a big potential in bringing benefits to many areas of research. This technology had been attracting rapid increasing investment from government and from industry in many parts of the world. According to Halimaton et. al., (2007), nanotechnology can be defined as the science of materials and systems with structures and components which display improved novel physical, chemical and biological properties. This phenomenon exists in the nano size scale (1-100 nm) where a nanometer (nm) is one billionth of a meter (Halimaton et *al.*, 2007).

The term nanotechnology was first used by Norio Taniguchi to refer to the precise and accurate tolerances required for machining and finishing materials. The term nano derives from the Greek word for dwarf. It is used as a prefix for any unit such as a second or a meter, and it means a billionth of that unit. People are interested at the nanoscale because at this scale that the properties of materials can be very different from those at a larger scale. Nanomaterial has a relatively larger surface area when compared to same mass of materials produced in a larger form. This can make materials more chemically active and affect their strength or electrical properties.

To properly understand and appreciate the diversity of nanomaterial, some form of categorization is required. Currently, the most typical way of classifying nanomaterial is to identify them according to their dimensions. Nanomaterials can be classified as zero-dimensional (0-D), one-dimensional (1-D), two-dimensional (2-D) and threedimensional (3-D). This classification is based on the number of dimensions, which are not confined to the nanoscale range (<100nm). Zero-dimensional nanomaterials are materials where in all the dimensions are measured within the nanoscale (larger than 100nm). These nanomaterials can be amorphous or crystalline, be single crystalline or polycrystalline, be composed of single or multichemical elements and exhibit various shapes or form. On the other hand, 1-D nanomaterials differ from 0-D nanomaterials in that the former have one dimension that is outside the nanoscale. One-dimensional nanomaterials include nanotubes, nanorods, and nanowires. These 1-D nanomaterials can be amorphous or crystalline, can be single crystalline or polycrystalline, can be chemically pure or impure and it also can be standalone materials or embedded in within another medium.

Two-dimensional nanomaterials are somewhat more difficult to classify. However, 2-D nanomaterials are materials in which two of the dimensions are not confined in the nanoscale. As a result, 2-D nanomaterials exhibit platelike shapes. Twodimensional nanomaterials include nanofilm, nanolayers and nanocoatings. This nanomaterial can exhibit properties of amorphous or crystalline, made up of various chemical compositions, used as a single layer or multilayer structures, deposited on substrates and integrated in surrounding matrix materials. Three-dimensional of nanomaterials, also known as bulk nanomaterials are relatively difficult to classify also. However, it is true to say bulk nanomaterials are materials that are not confined in nanoscale in any dimension. Three-dimensional nanomaterials can have the properties of amorphous or crystalline, chemically pure or impure, composite materials and composed of multi nano layers.

In this work, thin film comprising of ZrO_2 nanotube arrays were formed then the film was separated to form freestanding ZrO_2 nanotube sheets. The nanotube arrays that been produced consist of 1-D structure because it is in the form of nanotubular structure and the sheets are not in nanoscale, the end product in this experiment has 2-D nanostructure. However, if the thickness of the ZrO_2 sheets exceeds $10\mu m$, thus this nanotube sheets also will experience three-dimensional structure. As a result, the ZrO_2 nanotube sheets compiled of all these three dimensions in it structure.

 ZrO_2 , zirconium dioxide has been investigated extensively due to its many interesting properties. The typical properties exhibited by ZrO_2 that are commonly utilized include high strength, excellent wear resistance, high toughness and ionic conductivity. ZrO_2 has three polymorphs that are monoclinic (M), tetragonal (T) and cubic (C). T and C of ZrO_2 are stable at high temperatures. Monoclinic is the most stable phase at room temperature. However, most engineering applications make use of the T and C phases.

1.2 ZrO₂ Nanotube Photocatalyst

The oxidation of most hydrocarbons proceeds rather slowly in absence of a catalytic active substance. A photocatalyst decrease the activation energy and photoinduced processes occur. A photocatalytic system consists of semiconductor particles which are in close contact with a liquid or gaseous reaction medium. Exposing the catalyst to ultraviolet light processes like redox reactions and melocular transformations take place (Wiemhofer et. al., 1992). This property is important because the photocatalytic reaction can stabilized the harmful organic compounds into degradable substances.

Advanced Oxidation process (AOP) is a well-known method for wastewater treatment due to its ability to degrade and mineralize organic pollutants. One of the ways to initiate the AOPs is by using semiconductor heterogeneous photocatalyst. Heterogeneous photocatalysis can be described as the acceleration of photoreaction in the presence of photocatalyst. In heterogeneous photocatalyst, two or more phases are used in the photocatalytic reaction. A light source is used to initiate the photoreaction. Thus, the semiconductor material will promote electrons from the valance bond to the excited states in the conduction band if the material is illuminated by photons having energy greater than or equal to its band gap. The generation of electron and hole pair leading to the formation of hydroxyl radical and superoxide radical. These radicals are the primary oxidizing species in the photocatalytic oxidation process (AOP). ZrO_2 is an important material widely used in heterogeneous catalysis (Corma et. al., 1995). It has been considered recently as a photocatalyst in photochemical heterogenous reaction due to its nature as n-type semiconductor. The reported value of the energy of the bandgap (Eg) of ZrO_2 is in the range between 3.25 and 5.1 eV, depending on the preparation technique of the sample. The most frequent and accepted value of ZrO_2 is 5.0 eV, with a conduction band potential of -1.0V vs. NHE at pH 0. Accordingly, the corresponding value of the valence band potential is +4.0 V vs. NHE. The relatively wide E_g value and the high negative value of the conduction band potential allowed its use as a photocatalyst in the production of hydrogen through water decomposition. Although ZrO_2 presents an absorption maximum around 250 nm, some samples show a non-negligible absorption in the near UV range (290-390 nm). Moreover, some photocatalytic reactions can be performed under irradiation in this range without the participant of light of higher energy (Botta et. al., 1999).

In a photocatalytic reaction, the oxide material is the one which is responsible in the adsorption and degradation of organic compounds and the presence of the Zr foil does not gives any direct influence to the reaction. As the foil is seen as redundant for the photocatalytic process, in this project, the anodic film comprising of the nanotubes was removed from the Zr foil and the nanotube sheets alone were weighed and added to the solution to be degraded. It is also thought that when the anodic film is removed from the foil, the area for reaction can also be increased as both sides of the foil can now be used.