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ABSTRAK 

                Dalam karya ini, proses anodik dilakukan untuk menghasilkan lapisan anodik 

yang terdiri daripada tiub nano ZrO2. Lapisan anodik kemudian dikeluarkan dari 

kepingan Zr untuk menghasilkan berdiri bebas lembaran ZrO2 tiub nano. Jenis-jenis 

karbonat, berbeza kepekatan karbonat, voltan penganodan dan juga masa penganodan 

telah dieksperimen bertujuan untuk membentuk lembaran ZNTs. Kehadiran karbonat, 

Na2CO3 dan K2CO3 sebagai penambah memainkan peranan yang penting dalam 

pembentukan kepingan tiub nano. Untuk membandingkan, dalam EG ditambah dengan 

3 ml 1 M K2CO3 menunjukkan lebih pembentukan kepingan tiub nano berbanding EG 

dengan Na2CO3. Dalam pembentukan ZNTs, H
+
 dilepaskan dalam tiub nano dan apabila 

H
+
 bertindak balas dengan CO3

2-
, gas CO2 dilepaskan. Pembentukan gas CO2 memberi 

kesan kepada lekatan filem ZrO2 dari foil. Kesan kepekatan K2CO3 yang berbeza 

menambah, jumlah kepingan tiub nano yang terbentuk. Bagi kesan voltan penganodan 

dan masa, didapati bahawa pada 40 V dan 60 V, jumlah ZNTs dibentuk dan pada 60 V, 

filem itu adalah lebih mudah untuk dikeluarkan daripada foil Zr. Bagi kesan masa 

penganodan, ia seolah-olah bahawa pada masa yang lebih lama, tindak balas lebih bagi 

CO3
2-

 dan H
+
 berlaku membentuk lebih CO2. Gas CO2 yang dihasilkan daripada tindak 

balas CO3
2-

 dan H
+
 terkumpul pada antara muka logam dan oksida dan membuat filem 

oksida anodik untuk menanggalkan dengan mudah dari Zr substrat tanpa memerlukan 

prarawatan. Lembaran tiub nano ZrO2 didapati amorfus, oleh itu ia telah disepuh lindap 

pada tiga suhu yang berbeza 200 ⁰C, 400 ⁰C dan 600 ⁰C. Pembentukan fasa dan 

perubahan pada setiap suhu diperhatikan dengan semua tetragon (T), padu (C), dan 

wujud bersama-monoklinik (M) fasa selepas penyepuhlindapan pada 400 ⁰C dan 600 ⁰C 
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Aktiviti lembaran tiub nano ZrO2 anil adalah kajian oleh degradasi MO. Selepas 300 

minit, kira-kira 37% daripada MO telah di hina oleh sampel disepuh lindap pada 600 ⁰C, 

35% daripada MO dihina oleh sampel anil pada 400 ⁰C dan 22% daripada MO dihina 

oleh sampel disepuh lindap pada 200 ⁰C. Ini menunjukkan bahawa penghabluran adalah 

penting dalam fotopemangkinan. 
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ABSTRACT 

                In this work, anodic process was done to produce anodic layer of comprising 

of ZrO2 nanotubes. The anodic layer was then removed from the Zr foil to produce free 

standing ZrO2 nanotube sheets. Types of carbonates, different concentration of 

carbonates, anodization voltage and also anodization time were experimented aiming at 

forming ZNTs sheets. The presence of carbonates, K2CO3 and Na2CO3 as an additive 

plays an important role during the formation of the nanotube sheets. To compare, in EG 

added with 3 ml 1 M K2CO3 shows more nanotube sheets formation compared to EG 

with Na2CO3. In ZNTs formation, H
+
 is released in the nanotubes and when H

+
 reacts 

with CO3
2-

, CO2 gas is released. The formation of CO2 gas effect the adhesion of ZrO2 

film from the foil. Effect of different concentrations of K2CO3 added, the amount of 

nanotube sheets that formed was also increased. As for the effect of anodization voltage 

and time, it appears that at 40 V and 60 V, the amount of ZNTs were formed and at 60 

V, the film was easier to be removed from Zr foil. As for the effect of anodization time, 

it seems that at longer time, more reaction between the CO3
2-

 and H
+
 occurs forming 

more CO2. The CO2 gas produced from the reaction of CO3
2-

 and H
+
 accumulated at the 

metal and oxide interface and makes the anodic oxide film to detach easily from Zr 

substrate without the need of pretreatment. The ZrO2 nanotube sheets were found to be 

amorphous, thus it were annealed at three different temperatures of 200 ⁰C, 400 ⁰C and 

600 ⁰C. The phase formation and transformation at each temperature was observed with 

all tetragonal (T), cubic (C), and monoclinic (M) phase co-exist after annealing at 400 

⁰C and 600 ⁰C. The activity of the annealed ZrO2 nanotube sheets was study by 

degradation of MO. After 300 min, about 37 % of the MO was degraded by the annealed 
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sample at 600 ⁰C, 35 % of MO degraded by sample annealed at 400 ⁰C and 22 % of MO 

degraded by sample annealed at 200 ⁰C. This indicates that crystallinity is important in 

photocatalysis

.     
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CHAPTER 1 

INTRODUCTION 

1.1 Nanomaterials  

In order to achieve a modern science and technology development, nanotechnology 

had been recognized to have a big potential in bringing benefits to many areas of 

research. This technology had been attracting rapid increasing investment from 

government and from industry in many parts of the world. According to Halimaton et. 

al., (2007), nanotechnology can be defined as the science of materials and systems with 

structures and components which display improved novel physical, chemical and 

biological properties. This phenomenon exists in the nano size scale (1-100 nm) where a 

nanometer (nm) is one billionth of a meter (Halimaton et al., 2007).  

 

The term nanotechnology was first used by Norio Taniguchi to refer to the precise 

and accurate tolerances required for machining and finishing materials. The term nano 

derives from the Greek word for dwarf. It is used as a prefix for any unit such as a 

second or a meter, and it means a billionth of that unit. People are interested at the 

nanoscale because at this scale that the properties of materials can be very different from 

those at a larger scale. Nanomaterial has a relatively larger surface area when compared 

to same mass of materials produced in a larger form. This can make materials more 

chemically active and affect their strength or electrical properties.  
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To properly understand and appreciate the diversity of nanomaterial, some form 

of categorization is required. Currently, the most typical way of classifying nanomaterial 

is to identify them according to their dimensions. Nanomaterials can be classified as 

zero-dimensional (0-D), one-dimensional (1-D), two-dimensional (2-D) and three-

dimensional (3-D). This classification is based on the number of dimensions, which are 

not confined to the nanoscale range (<100nm). Zero-dimensional nanomaterials are 

materials where in all the dimensions are measured within the nanoscale (larger than 

100nm). These nanomaterials can be amorphous or crystalline, be single crystalline or 

polycrystalline, be composed of single or multichemical elements and exhibit various 

shapes or form. On the other hand, 1-D nanomaterials differ from 0-D nanomaterials in 

that the former have one dimension that is outside the nanoscale. One-dimensional 

nanomaterials include nanotubes, nanorods, and nanowires. These 1-D nanomaterials 

can be amorphous or crystalline, can be single crystalline or polycrystalline, can be 

chemically pure or impure and it also can be standalone materials or embedded in within 

another medium. 

 

Two-dimensional nanomaterials are somewhat more difficult to classify. 

However, 2-D nanomaterials are materials in which two of the dimensions are not 

confined in the nanoscale. As a result, 2-D nanomaterials exhibit platelike shapes. Two-

dimensional nanomaterials include nanofilm, nanolayers and nanocoatings. This 

nanomaterial can exhibit properties of amorphous or crystalline, made up of various 

chemical compositions, used as a single layer or multilayer structures, deposited on 

substrates and integrated in surrounding matrix materials. Three-dimensional of 
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nanomaterials, also known as bulk nanomaterials are relatively difficult to classify also. 

However, it is true to say bulk nanomaterials are materials that are not confined in 

nanoscale in any dimension. Three-dimensional nanomaterials can have the properties of 

amorphous or crystalline, chemically pure or impure, composite materials and composed 

of multi nano layers.  

 

In this work, thin film comprising of ZrO2 nanotube arrays were formed then the 

film was separated to form freestanding ZrO2 nanotube sheets. The nanotube arrays that 

been produced consist of 1-D structure because it is in the form of nanotubular structure 

and the sheets are not in nanoscale, the end product in this experiment has 2-D 

nanostructure. However, if the thickness of the ZrO2 sheets exceeds 10µm, thus this 

nanotube sheets also will experience three-dimensional structure.  As a result, the ZrO2 

nanotube sheets compiled of all these three dimensions in it structure.  

 

 ZrO2, zirconium dioxide has been investigated extensively due to its many 

interesting properties. The typical properties exhibited by ZrO2 that are commonly 

utilized include high strength, excellent wear resistance, high toughness and ionic 

conductivity. ZrO2 has three polymorphs that are monoclinic (M), tetragonal (T) and 

cubic (C). T and C of ZrO2 are stable at high temperatures. Monoclinic is the most stable 

phase at room temperature. However, most engineering applications make use of the T 

and C phases.  
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1.2 ZrO2 Nanotube Photocatalyst 

The oxidation of most hydrocarbons proceeds rather slowly in absence of a 

catalytic active substance. A photocatalyst decrease the activation energy and 

photoinduced processes occur. A photocatalytic system consists of semiconductor 

particles which are in close contact with a liquid or gaseous reaction medium. Exposing 

the catalyst to ultraviolet light processes like redox reactions and melocular 

transformations take place (Wiemhofer et. al., 1992). This property is important because 

the photocatalytic reaction can stabilizied the harmful organic compounds into 

degradable substances.  

 

Advanced Oxidation process (AOP) is a well-known method for wastewater 

treatment due to its ability to degrade and mineralize organic pollutants. One of the ways 

to initiate the AOPs is by using semiconductor heterogeneous photocatalyst. 

Heterogeneous photocatalysis can be described as the acceleration of photoreaction in 

the presence of photocatalyst. In heterogeneous photocatalyst, two or more phases are 

used in the photocatalytic reaction. A light source is used to initiate the photoreaction. 

Thus, the semiconductor material will promote electrons from the valance bond to the 

excited states in the conduction band if the material is illuminated by photons having 

energy greater than or equal to its band gap. The generation of electron and hole pair 

leading to the formation of hydroxyl radical and superoxide radical. These radicals are 

the primary oxidizing species in the photocatalytic oxidation process (AOP).  
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ZrO2 is an important material widely used in heterogeneous catalysis (Corma et. 

al., 1995). It has been considered recently as a photocatalyst in photochemical 

heterogenous reaction due to its nature as n-type semiconductor. The reported value of 

the energy of the bandgap (Eg) of ZrO2 is in the range between 3.25 and 5.1 eV, 

depending on the preparation technique of the sample. The most frequent and accepted 

value of ZrO2 is 5.0 eV, with a conduction band potential of -1.0V vs. NHE at pH 0. 

Accordingly, the corresponding value of the valence band potential is +4.0 V vs. NHE. 

The relatively wide Eg value and the high negative value of the conduction band 

potential allowed its use as a photocatalyst in the production of hydrogen through water 

decomposition. Although ZrO2 presents an absorption maximum around 250 nm, some 

samples show a non-negligible absorption in the near UV range (290-390 nm). 

Moreover, some photocatalytic reactions can be performed under irradiation in this 

range without the participant of light of higher energy (Botta et. al., 1999).   

 

In a photocatalytic reaction, the oxide material is the one which is responsible in 

the adsorption and degradation of organic compounds and the presence of the Zr foil 

does not gives any direct influence to the reaction.  As the foil is seen as redundant for 

the photocatalytic process, in this project, the anodic film comprising of the nanotubes 

was removed from the Zr foil and the nanotube sheets alone were weighed and added to 

the solution to be degraded.  It is also thought that when the anodic film is removed 

from the foil, the area for reaction can also be increased as both sides of the foil can now 

be used.   
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