## DEVELOPMENT OF SUPPORT SYSTEM FOR IDENTIFICATION OF BULLET-INDUCED GLASS FRACTURES

by

## MALEK BIN RADUAN

## Thesis submitted in fulfillment of the requirements for the degree of Master of Science

March 2015

#### ACKNOWLEDGEMENTS

The authors would particularly like to take this opportunity to acknowledge the members of the research group who have been involved directly and indirectly in this study. I first want to appreciate to my main supervisor, Assoc. Prof. Dr. Sharifah Mastura Syed Mohamad for always providing me with the right balance of guidance and freedom during the research. I am much thankful of your "datadriven" and "physically-based" backgrounds ended up being a very productive combination: our fruitful discussions always led to way more ideas than I ever could try! Thank you for your dedication, mentorship, and for always challenging me to go beyond and for continuous support, professional guidance, encouragement, and patience throughout my study.

I would also like to thank my co-supervisors, Assoc. Prof. Dr. R. Kuppuswamy for the advices on how to obtain the forensic data and to apply fractal dimensions to analyze glass fracture patterns and for Syarifah Mastura Syed Mohd Daud for giving me to use the data of the fracture phenomena in soda lime silica glass caused by bullet impacts from her study. I wish to extend my appreciation to Dr. Mohammad Hadzri and Mr. Mohd Nazri Mat Husin for encouragement, time, advice and critique of my system development Forensic Support System (ForeSS). Special thanks are expressed to Professor R. Jagannathan, Chennai Mathematical Institute, India for his advice and also his valuable comments and help during the course of the work. Special thanks to Professor Oldrich Zmeškal, Institute of Physical and Applied Chemistry, Brno University of Technology, Czech Republic for kindly allowed me to download the latest version of HarFA 5.5 full version software to obtain the fractal dimension data for glass fracture analysis.

A special thanks goes to The Director, Royal Malaysian Police Forensic Laboratory, and Mr. Mad Yussof bin Akop and from Logistic (Firearm) Department, Malaysian Royal Police, Kuala Lumpur for their kind permission and assistance to conduct shooting experiments for the research work and also thank the numerous Superintendent Mr. Muhammad Koey Abdullah for his help and advice, to Inspector Rasyidi Harun, Inspector Wan Zulizzi Wan Muda, SM Yaacob Abdulla L/kpl/T Mr. Azlan Shamsul Kamar Abdul Rashid, Mr. Johari Rahidin, and Mr. Mohd Sharman Razaki for their help during shooting tests.

I would like to thank staff from Photography Unit, UKAST, USM for their good natured and held liable Mr. Rose Samsuri Mamat, Mr. Rusli Mohammad and Mr. Muhammad Sham Mustapha for the photographic assistance in capturing images of glass fracture patterns.

I wish to thank my parents, Mr. Raduan Mohd Zain and Mrs. Siti Hasanah Deraman for always encouraging me to follow my dreams. And last but certainly not least, I thank my wife Noorazlin Mohd Kassim and daughters Raudhatul Husna, Raudhatus Syahidah, Raudhatul Solehah and Raudhatul Az-Zahra: I couldn't have done it without your unconditional love.

## TABLE OF CONTENTS

#### PAGE

| ACKNOWLEDGEMENTS     | ii   |
|----------------------|------|
| TABLE OF CONTENTS    | iv   |
| LIST OF TABLES       | X    |
| LIST OF FIGURES      | xii  |
| LIST OF ABBREVIATION | xvi  |
| ABSTRAK              | xvii |
| ABSTRACT             | xvii |

## CHAPTER 1 - INTRODUCTION

| 1.0 | Introduction                     | 1  |
|-----|----------------------------------|----|
| 1.1 | Problem Statement.               | .2 |
| 1.2 | Scope and Objectives of Research | 3  |
| 1.3 | Methodology                      | 4  |
| 1.4 | Research Outline                 | 5  |

## CHAPTER 2 - LITERATURE REVIEW

| 2.0 | Introduction                                                              |
|-----|---------------------------------------------------------------------------|
| 2.1 | The identification process                                                |
| 2.2 | The firearm                                                               |
| 2.3 | The ammunition10                                                          |
| 2.4 | The glass characteristics                                                 |
|     | 2.4.1 The experiments on soda lime glass                                  |
|     | 2.4.2 The analysis of glass fracture using Leica Application Suite (LAS)  |
|     | software                                                                  |
|     | 2.4.3 The analysis of fractal properties using Harmonic and Fractal Image |
|     | Analysis (HarFA) software                                                 |

|     | 2.4.4           | The digital image capture of glass fracture            | 34            |
|-----|-----------------|--------------------------------------------------------|---------------|
|     | 2.4.5           | The identification of glass fracture image using Image | Comparer (IC) |
|     | softwa          | are                                                    |               |
| 2.5 | Existing system | ns                                                     | 40            |
|     | 2.5.1           | Virtual Introspection for XEN (VIX)                    | 41            |
|     | 2.5.2           | FORensics ZAchman framework (FORZA)                    | 42            |

## CHAPTER 3 - METHODOLOGY

| 3.0 | Introduction  |                                                      | 44 |
|-----|---------------|------------------------------------------------------|----|
| 3.1 | Leica Applica | ation Suite of MZ16 Stereomicroscope Research        |    |
|     | Grade         |                                                      | 46 |
| 3.2 | Harmonic and  | l Fractal Image Analysis (HarFA)                     | 48 |
| 3.3 | Image Compar  | er (IC)                                              | 50 |
| 3.4 | The developm  | nent of the micro topographic database               | 51 |
|     | 3.4.1         | The database of the Forensic Support System (ForeSS) | 52 |
|     | 3.4.2         | Table of Bullet                                      | 53 |
|     | 3.4.3         | Table of Chronograph                                 | 54 |
|     | 3.4.4         | Table of Deformation                                 | 55 |
|     | 3.4.5         | Table of Firearm                                     | 56 |
|     | 3.4.6         | Table of Glass                                       | 56 |
|     | 3.4.7         | Table of Harfa                                       | 57 |
|     | 3.4.8         | Table of Image Comparer                              | 58 |
|     | 3.4.9         | Table of Leica Application Suite                     | 58 |
|     | 3.4.10        | Table of System Users                                | 59 |
|     | 3.4.11        | Table of Thickness                                   | 60 |

| 3.5 | The developm | nent of the Forensic Support System (ForeSS)            | 61 |
|-----|--------------|---------------------------------------------------------|----|
|     | 3.5.1        | The system development methodology                      | 62 |
|     |              | 3.5.1(a) System Planning                                | 63 |
|     |              | 3.5.1(b)System Analysis                                 | 63 |
|     |              | 3.5.1(c) System Design                                  | 66 |
|     |              | 3.5.1(d)System Implementation                           | 67 |
|     |              | 3.5.1(e) System Maintenance                             | 68 |
|     | 3.5.2        | System Modelling                                        | 69 |
|     |              | 3.5.2(a) The Data Flow Diagram (DFD) – Context Diagram  | 71 |
|     |              | 3.5.2(b)DFD Level O Diagram                             | 72 |
|     |              | 3.5.2(c) DFD Level 1 Diagram                            | 73 |
|     |              | 3.5.2(d) Unified Modelling Language (UML) State Diagram | 75 |
|     | 3.5.3        | Data Modelling                                          | 77 |
|     |              | 3.5.3(a) Entity Relationship Diagram (ERD)              | 77 |

## CHAPTER 4 – RESULTS

| 4.0 | Introd | uction                                                                  | 81 |
|-----|--------|-------------------------------------------------------------------------|----|
| 4.1 | Syster | n Design                                                                | 82 |
| 4.2 | Obtain | ning the data of the glass fracture                                     | 85 |
| 4.3 | Datab  | ase of the micro topographic data                                       | 85 |
|     | 4.3.1  | Micro topographic data of the chronograph table                         | 87 |
|     | 4.3.2  | The micro topographic of bullet deformation table                       | 89 |
|     | 4.3.3  | Table micro topographic data of the firearm table                       | 90 |
|     | 4.3.4  | The micro topographic data of the glass table                           | 91 |
|     | 4.3.5  | The table result of the HarFA                                           | 95 |
|     | 4.3.5( | a) The Fractal Dimension (FD) measurement result of SME 0.38 in. Specia | 1  |

| calibre (Revolver)                                                                |
|-----------------------------------------------------------------------------------|
| 4.3.5(b)The Fractal Dimension (FD) measurement result of 7.65 FMJ calibre         |
| (pistol)                                                                          |
| 4.3.5(c) The Fractal Dimension (FD) measurement result of 9 mm SME FMJ            |
| (pistol)                                                                          |
| 4.3.4(d)The Fractal Dimension (FD) measurement result of 9 mm Flat nose calibre   |
| (pistol)                                                                          |
| 4.3.5(e) The Fractal Dimension (FD) measurement result of 9 mm FMJ Hollow point   |
| (SMG)                                                                             |
| 4.3.5(f) The Fractal Dimension (FD) measurement result of 9 mm Luger Hollow Point |
| calibre (pistol)                                                                  |
| 4.3.5(g)The Fractal Dimension (FD) measurement result of 5.56 mm FMJ              |
| (rifle)                                                                           |
| 4.3.5(h)The Fractal Dimension (FD) measurement result of 5.56 mm FMJ              |
| (carbine)104                                                                      |
| 4.3.5(i) The Fractal Dimension (FD) measurement result of 7.62 mm FMJ             |
| (Rifle)                                                                           |
| 4.3.6 The Image Comparer                                                          |
| 4.3.7 The micro topographic data of the leica application suite110                |
| 4.3.8 Table of glass thickness                                                    |
| Identification of glass fractures using Forensic Support System                   |
| (ForeSS)114                                                                       |
| 4.4.1 Front-page – user login interface 115                                       |
| 1.1.1 From page user togat unerface                                               |

4.4

| 4.4.2 System | n administrator management interface/module116            |
|--------------|-----------------------------------------------------------|
| 4.4.3 Foren  | sic investigator (FI) interface/module117                 |
| 4.4.3(a)     | Forensic investigator (FI) – Image Comparison Software118 |
| 4.4.3(b)     | Forensic investigator (FI) – Image Comparison Software119 |
| 4.4.3(c)     | Forensic investigator (FI) – image comparison120          |
| 4.4.3(d)     | Forensic investigator (FI) – image comparison121          |
| 4.4.3(e)     | Forensic investigator (FI)122                             |
| 4.4.3(f)     | Result Reporting123                                       |

| 4.5 Conclusion | 123 |
|----------------|-----|
|----------------|-----|

### CHAPTER 5 – DISCUSSIONS

| 5.0 | Introduction                                      | 124 |
|-----|---------------------------------------------------|-----|
| 5.1 | Data obtaining                                    | 125 |
| 5.2 | Leica Application Suite (LAS)                     | 126 |
| 5.3 | Harmonic and Fractal Image Analysis (HarFA)       | 127 |
| 5.4 | Image Comparer (IC)                               | 128 |
| 5.5 | Systems comparisons between ForeSS, VIX and FORZA | 130 |
| 5.6 | The development of support system                 | 131 |

## CHAPTER 6 – CONCLUSIONS

| 6.0 | Introduction                         | 133 |
|-----|--------------------------------------|-----|
| 6.1 | Crime scene scenario that use ForeSS | 134 |
| 6.2 | Limitations                          | 136 |
| 6.3 | Recommendations for Future Study     | 137 |
| 6.4 | Conclusion                           | 138 |

| REFERENCES | <br> |
|------------|------|
|            |      |

```
APPENDICES.....
```

## LIST OF TABLES

|                     |                                                                           | PAGE |
|---------------------|---------------------------------------------------------------------------|------|
| Table 2.1:          | Description of firearms and ammunitions used in the study                 | 12   |
| <b>Table 2.2</b> :  | Bullets deformation data and the striking and remaining velocity,         |      |
|                     | which were shot on two type of glasses                                    | 13   |
| <b>Table 2.3</b> :  | Striking, remaining and loss of velocity, momentum and kinetic            |      |
|                     | energy loss for all glass thickness                                       | 14   |
| Table 2.4:          | Description of firearms and ammunitions used in the study                 | 15   |
| Table 2.5:          | Summary of ballistic data for samples of shots on glass panes             | 16   |
| <b>Table 2.6</b> :  | Composition and general properties of soda lime glass                     | 18   |
| <b>Table 2.7</b> :  | Description of glass fracture characteristics                             | 22   |
| <b>Table 2.8</b> :  | Description of glass fracture characteristics                             | 26   |
| Table 2.9:          | Soda lime glass shooting experiments detailed                             | 28   |
| Table 2.10:         | Glass images JPG format stored in the micro topographic                   | 30   |
| Table 2.11:         | Description of the glass properties, geometry and glass fracture patterns |      |
|                     | caused by 0.38 Smith & Wesson Heavy Barrel revolver and                   |      |
|                     | SME 0.38 in. special calibre fired on the 2 mm, 3 mm, 5 mm and            |      |
|                     | 10 mm glass thickness                                                     | 31   |
| Table 2.12:         | Description of the Fractal Dimension using Harmonic and                   |      |
|                     | Fractal Image Analysis (HarFA) software                                   | 32   |
| Table 2.13:         | Details of the camera used and the image capture settings of              |      |
|                     | glass fracture pattern as shown in Figure 2.7                             | 35   |
| Table 2.14:         | Details of the camera used and the image capture settings of              |      |
|                     | glass fracture pattern                                                    | 36   |
| <b>Table 2.15</b> : | Glass images in JPG format stored in the micro topographic database       | 39   |
| Table 3.1:          | The bullet table of the micro topographic database                        | 53   |
| Table 3.2:          | The chronograph table of the micro topographic database                   | 54   |
| Table 3.3:          | Bullet deformation table of the micro topographic database                | 55   |
| Table 3.4:          | The Firearm table of the micro topographic database                       | 56   |
| Table 3.5:          | The Glass table of the micro topographic database                         | 57   |
| Table 3.6:          | The HarFA table of the micro topographic database                         | 57   |
| Table 3.7:          | The Image Comparer table of the micro topographic database                | 58   |
| Table 3.8:          | The Leica Application Suite table of the micro topographic database       | 58   |
| Table 3.9:          | The Users table of the micro topographic database                         | 59   |

| <b>Table 3.10</b> : | The Thickness Table of the micro topographic database                                                                      | 60  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.1:          | The ballistic data in the micro topographic database                                                                       | 86  |
| <b>Table 4.2</b> :  | The result of chronograph in the micro topographic database                                                                | 87  |
| Table 4.3:          | The deformation data of bullet in the micro topographic database                                                           | 89  |
| Table 4.4:          | The firearm data in the micro topographic database                                                                         | 90  |
| Table 4.5:          | The data of glass fractures characteristic in the micro topographic database                                               | 92  |
| Table 4.6:          | The fractal dimension data in Table HarFA of the micro topographic database                                                | 107 |
| Table 4.7:          | The data of image_comparer table in the micro topographic database                                                         | 109 |
| Table 4.8:          | The record of images in LAS table of the micro topographic database                                                        | 112 |
| Table 4.9:          | Data of glass fractured characteristic in relation to glass thickness in thickness table of the micro topographic database | 113 |

## LIST OF FIGURES

|                   |                                                                                  | PAGE |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| Figure 2.1: (a, b | <b>b</b> , <b>c</b> , <b>d</b> ) Firearms used in the previous research study    | 9    |  |  |  |  |  |  |
| Figure 2.2: (a, b | <b>b</b> , <b>c</b> , <b>d</b> ) Ammunitions used in the previous research study | 10   |  |  |  |  |  |  |
| Figure 2.3:       | Glass fracture pattern on soda lime window glass pane                            | 19   |  |  |  |  |  |  |
| Figure 2.4:       | various fracture pattern characteristics on soda lime window glass panes         |      |  |  |  |  |  |  |
|                   | caused by bullet impact                                                          | 20   |  |  |  |  |  |  |
| Figure 2.5: (a)   | Hackles are long and coarse and closely spaced to one another                    | 29   |  |  |  |  |  |  |
| Figure 2.5: (b)   | Deflected radial cracks dimensions                                               |      |  |  |  |  |  |  |
| Figure 2.6:       | Box dimension illustrates HarFA which employs the same methodology               |      |  |  |  |  |  |  |
|                   | such as a box-counting method                                                    | 33   |  |  |  |  |  |  |
| Figure 2.7:       | Glass fracture pattern caused by 7.65 mm FMJ calibre                             | 34   |  |  |  |  |  |  |
| Figure 2.8:       | Glass fracture pattern caused by 7.65 mm FMJ calibre new formatted               | 36   |  |  |  |  |  |  |
| Figure 2.9:       | Comparison result between new images GALLERY45.ICG between                       |      |  |  |  |  |  |  |
|                   | Gallery46.icg shows 5.56 mm M16 rifle                                            | 38   |  |  |  |  |  |  |
| Figure 2.10:      | DomU virtual memory address mapping into Dom0                                    | 41   |  |  |  |  |  |  |
| Figure 2.11:      | Process flow of the specific roles in FORZA Framework                            | 43   |  |  |  |  |  |  |
| Figure 3.1:       | Phases of developing Forensic Support System (ForeSS)                            | 45   |  |  |  |  |  |  |
| Figure 3.2:       | Leica MZ16 Stereomicroscope (Research Grade) with                                |      |  |  |  |  |  |  |
|                   | Leica Application Suite software                                                 | 46   |  |  |  |  |  |  |
| Figure 3.3:       | Box dimension illustrates HarFA which employs the same methodology               |      |  |  |  |  |  |  |
|                   | such as a box-counting method                                                    | 48   |  |  |  |  |  |  |
| Figure 3.4:       | (ia) (iia) Shows the fractal dimension calculated by HarFA and two               |      |  |  |  |  |  |  |
|                   | typical glasses caused by 7.62 mm bullets on 5 mm thick glass                    | 49   |  |  |  |  |  |  |
| Figure 3.5:       | The micro topographic database development using MySQL                           | 52   |  |  |  |  |  |  |
| Figure 3.6:       | SDLC model process for the ForeSS system development                             | 62   |  |  |  |  |  |  |
| Figure 3.7:       | The server architecture and ForeSS client workstation                            | 64   |  |  |  |  |  |  |
| Figure 3.8:       | The client workstation designed for ForeSS                                       | 65   |  |  |  |  |  |  |
| Figure 3.9:       | Five process of the system implementation                                        | 67   |  |  |  |  |  |  |
| Figure 3.10:      | Forensic Support System dialogue diagram                                         | 70   |  |  |  |  |  |  |
| Figure 3.11:      | Context diagram for the ForeSS system flows                                      | 71   |  |  |  |  |  |  |
| Figure 3.12:      | Level 0 Diagram for the ForeSS system flows                                      | 72   |  |  |  |  |  |  |
| Figure 3.13:      | Process Log in and register user in level O diagrams                             | 73   |  |  |  |  |  |  |
| Figure 3.14:      | Key-in evidence and new evidence process                                         | 73   |  |  |  |  |  |  |

| Figure 3.15:     | Comparing image by forensic investigator using ForeSS                        | 74 |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------|----|--|--|--|--|--|
| Figure 3.16:     | Searching record of image using the ForeSS search engine                     |    |  |  |  |  |  |
| Figure 3.17: (a) | ) Unified Modelling Language (UML) State Diagram for system                  |    |  |  |  |  |  |
|                  | administrator                                                                | 75 |  |  |  |  |  |
| Figure 3.17: (b  | ) Unified Modelling Language (UML) State Diagram for forensic                |    |  |  |  |  |  |
|                  | Investigator                                                                 | 76 |  |  |  |  |  |
| Figure 3.18:     | Entity Relationship Diagram (ER Diagram) of the ForeSS                       | 79 |  |  |  |  |  |
| Figure 4.1:      | Front page to enter the Foresic Support System (ForeSS)                      | 82 |  |  |  |  |  |
| Figure 4.2:      | Admin section: a) User management to register new user and update user       |    |  |  |  |  |  |
|                  | b) Data Management is to key-in new data into micro topographic database     | 83 |  |  |  |  |  |
| Figure 4.3:      | Image comparison and searching engine in the Forensic support system table   | 83 |  |  |  |  |  |
| Figure 4.4:      | Forensic Investigator section: a) Process the image to compare new image     |    |  |  |  |  |  |
|                  | with an existing image in the database                                       |    |  |  |  |  |  |
|                  | b) Result of the new image descriptions                                      | 87 |  |  |  |  |  |
| Figure 4.5:      | Tables of the micro topographic database developed using                     |    |  |  |  |  |  |
|                  | phpMyAdmin webserver                                                         | 85 |  |  |  |  |  |
| Figure 4.6:      | Fractal spectrum (left column) and fractal analysis (right column) for       |    |  |  |  |  |  |
|                  | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused by |    |  |  |  |  |  |
|                  | SME 0.38 in. Special                                                         | 95 |  |  |  |  |  |
| Figure 4.7:      | Fractal spectrum (left column) and fractal analysis (right column) for glass |    |  |  |  |  |  |
|                  | 2 shots at 300 x 300 x 5 $\text{mm}^3$ glass dimensions caused by            |    |  |  |  |  |  |
|                  | SME 0.38 in. Special (revolver)                                              | 96 |  |  |  |  |  |
| Figure 4.8:      | Fractal spectrum (left column) and fractal analysis (right column) for       |    |  |  |  |  |  |
|                  | glass 1 shot on 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused        |    |  |  |  |  |  |
|                  | by 7.65 FMJ calibre (pistol)                                                 | 97 |  |  |  |  |  |
| Figure 4.9:      | Fractal spectrum (left column) and fractal analysis (right column) for       |    |  |  |  |  |  |
|                  | glass 2 shots at 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused       |    |  |  |  |  |  |
|                  | by 7.65 FMJ (pistol)                                                         | 97 |  |  |  |  |  |
| Figure 4.10:     | Fractal spectrum (left column) and fractal analysis (right column) for       |    |  |  |  |  |  |
|                  | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused    |    |  |  |  |  |  |
|                  | by a 9 mm SME FMJ (pistol)                                                   | 98 |  |  |  |  |  |
| Figure 4.11:     | Fractal spectrum (left column) and fractal analysis (right column) for       |    |  |  |  |  |  |
|                  | glass 2 shots on the 300 x 300 x 5 $\text{mm}^3$ glass dimensions caused     |    |  |  |  |  |  |
|                  | by a 9 mm SME FMJ (pistol)                                                   | 99 |  |  |  |  |  |

| Figure 4.12: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|--------------|-----------------------------------------------------------------------------------|-----|
|              | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused         |     |
|              | by 9 mm flat nose (pistol)                                                        | 99  |
| Figure 4.13: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 2 shots on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused        |     |
|              | by 9 mm flat nose (pistol)                                                        | 100 |
| Figure 4.14: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused         |     |
|              | by 9 mm hollow point (SMG)                                                        | 101 |
| Figure 4.15: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 2 shots on the 300 x $300 \times 5 \text{ mm}^3$ glass dimensions caused by |     |
|              | 9 mm hollow point (SMG)                                                           | 101 |
| Figure 4.16: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 1 shots on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused by     |     |
|              | 9 mm luger hollow point (pistol)                                                  | 102 |
| Figure 4.17: | Fractal spectrum (left column) and fractal analysis (right column) for glass      |     |
|              | 2 shots on the 300 x 300 x 5 $\text{mm}^3$ glass dimensions caused by             |     |
|              | 9 mm luger hollow point (pistol)                                                  | 103 |
| Figure 4.18: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused         |     |
|              | by 5.56 mm FMJ (rifle)                                                            | 103 |
| Figure 4.19: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 2 shots on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused        |     |
|              | by 5.56 mm FMJ (rifle)                                                            | 104 |
| Figure 4.20: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused         |     |
|              | by 5.56 mm FMJ (carbine)                                                          | 105 |
| Figure 4.21: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 2 shots on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused        |     |
|              | by 5.56 mm FMJ (carbine)                                                          | 105 |
| Figure 4.22: | Fractal spectrum (left column) and fractal analysis (right column) for            |     |
|              | glass 1 shot on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused         |     |
|              | by 7.62 mm FMJ (rifle)                                                            | 106 |

| Figure 4.23: | Fractal spectrum (left column) and fractal analysis (right column) for glass 2 |     |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------|-----|--|--|--|--|--|
|              | shots on the 300 x 300 x 5 mm <sup>3</sup> glass dimensions caused             |     |  |  |  |  |  |
|              | by 7.62 mm FMJ (rifle)                                                         | 107 |  |  |  |  |  |
| Figure 4.24: | Image comparison of glass fractures by 7.65 mm FMJ calibre                     | 108 |  |  |  |  |  |
| Figure 4.25: | (a) (b) (c) (d) (e) Analysis images by LAS from 9 types of firearm and         |     |  |  |  |  |  |
|              | calibre under 32 X and 100 X magnification                                     | 111 |  |  |  |  |  |
| Figure 4.26: | Login interface of Forensic Support System (ForeSS)                            | 115 |  |  |  |  |  |
| Figure 4.27: | Forensic support system for system administrator management                    | 116 |  |  |  |  |  |
| Figure 4.28: | Image comparison and bullet profile search interface of                        |     |  |  |  |  |  |
|              | the Forensic Investigator                                                      | 117 |  |  |  |  |  |
| Figure 4.29: | Choosing types of image comparison i) a group comparison                       |     |  |  |  |  |  |
|              | ii) two group comparisons                                                      | 118 |  |  |  |  |  |
| Figure 4.30: | Upload new images in the evidence directory and existing                       |     |  |  |  |  |  |
|              | images in the micro topographic server                                         | 119 |  |  |  |  |  |
| Figure 4.31: | New image of the glass fracture in evidence folder to be compared              |     |  |  |  |  |  |
|              | with existing images in the micro topographic database                         | 120 |  |  |  |  |  |
| Figure 4.32: | Producing the type of exact duplicate result of the glass fracture             | 121 |  |  |  |  |  |
| Figure 4.33: | Result of the new image exactly acquired from the IC folder                    | 121 |  |  |  |  |  |
| Figure 4.34: | Result searching of the data value in the searching box                        | 122 |  |  |  |  |  |
| Figure 4.35: | Forensic support system (ForeSS) for report result-page                        | 123 |  |  |  |  |  |
| Figure 6.1:  | ForeSS use case diagram                                                        | 135 |  |  |  |  |  |

| Figure 4.19:    | Fractal spectrum (left column) and fractal analysis (right column)                    |     |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|                 | for glass 2 shots on the 300 x $300 \times 5 \text{ mm}^3$ glass dimensions caused by |     |  |  |  |  |  |
|                 | 7.62 mm FMJ (rifle)                                                                   | 98  |  |  |  |  |  |
| Figure 4.20:    | Image comparison induces glass fractures by 7.65 mm FMJ calibre                       |     |  |  |  |  |  |
| Figure 4.21: (a | ( <b>, b, c, d, e</b> ) Analysis images by LAS from 9 types of firearm and            |     |  |  |  |  |  |
|                 | calibre under $32 \times and 100 \times magnification$                                | 102 |  |  |  |  |  |
| Figure 4.22:    | Login interface design at first stage of the system processing                        | 105 |  |  |  |  |  |
| Figure 4.23:    | Forensic support system for system administrator management                           | 106 |  |  |  |  |  |
| Figure 4.24:    | Image processing page for comparing images in the micro topographic database          |     |  |  |  |  |  |
| Figure 4.25:    | Choosing types of image comparison a) a group comparison b) two group comparisons     |     |  |  |  |  |  |
| Figure 4.26:    | Upload new images in the evidence directory and existing images in the id directory   |     |  |  |  |  |  |
| Figure 4.27:    | New image of the glass fracture in evidence folder to be compared                     |     |  |  |  |  |  |
| Figure 4.28:    | Producing the type of exact duplicate result of the glass fracture                    | 110 |  |  |  |  |  |
| Figure 4.29:    | Result of the new image exactly acquired from the IC folder                           | 111 |  |  |  |  |  |
| Figure 4.30:    | Result searching of the data value in the searching box                               | 111 |  |  |  |  |  |
| Figure 4.31:    | Forensic support system (ForeSS) for report result-page                               | 112 |  |  |  |  |  |
| Figure 6.1:     | ForeSS use case diagram                                                               | 123 |  |  |  |  |  |

## LIST OF ABBREVIATION

| API                             | Application program interface            |
|---------------------------------|------------------------------------------|
| D                               | Fractal dimension                        |
| $D_B$                           | Box counting method                      |
| DFD                             | Data flow diagram                        |
| Dom0                            | Privileged domain                        |
| DomU                            | Unprivileged domain                      |
| dpi                             | Dots per inch                            |
| FMJ                             | Fully metal jacketed                     |
| ForeSS                          | Forensic support system                  |
| FORZA                           | Digital forensic investigation framework |
| gr                              | Grain                                    |
| HarFA                           | Harmonic and fractal image analysis      |
| hollpt                          | Hollow point                             |
| IC                              | Image Comparer                           |
| JPEG                            | Joint photographic expert group          |
| LAS                             | Leica Application Suite                  |
| Na <sub>2</sub> CO <sub>3</sub> | Sodium Carbonate                         |
| NBW                             | Number of black and white                |
| PAE                             | Physical address extension               |
| pis                             | Pistol                                   |
| rev                             | Revolver                                 |
|                                 |                                          |

rif Rifle

| SEM              | Scanning electron microscope     |
|------------------|----------------------------------|
| SiO <sub>2</sub> | Silicon dioxide                  |
| SMG              | Sub machine gun                  |
| sRGB             | Standard red green blue          |
| VIX              | Virtual introspection techniques |

#### PEMBANGUNAN SISTEM SOKONGAN BAGI MENGENALPASTI KERETAKAN KACA YANG TERARUH OLEH PELURU

#### ABSTRAK

Ahli Sains Forensik dalam bidang analisis kaca mendapati bahawa gabungan senjata api dan peluru menghasilkan corak unik pada retakan kaca. Penyiasat forensik yang berpengalaman boleh mengenal pasti ciri-ciri senjata api dan peluru berdasarkan keretakan. Biasanya, analisis retakan kaca perlu mengikuti prosedur yang panjang dan membosankan serta melibatkan kos yang tinggi. Teknik tradisional yang telah digunakan dalam menjaga data telah menyebabkan kesukaran untuk mendapatkan semula data kerana data boleh menjadi rosak atau hilang. Skop kajian ini adalah untuk membangunkan Sistem Sokongan Forensik (ForeSS) untuk membantu Penyiasat forensik mempercepatkan proses mengenal pasti peluru yang menyebabkan keretakan kaca berdasarkan data yang telah dikumpul oleh ahli sains forensik. Metodologi kitaran hayat pembangunan sistem telah digunakan untuk pembangunan sistem. Data telah dibahagikan kepada sepuluh kumpulan: 1) Peluru, 2) Chronograph, 3) Perubahan bentuk, 4) Senjata api, 5) Kaca, 6) Harfa, 7) Image Comparer, 8) Leica Application Suite, 9) Jadual pengguna, dan 10) Ketebalan. ForeSS telah dibangunkan menggunakan aplikasi sumber terbuka yang melibatkan MySQL dan phpMyAdmin. Macromedia Dreamweaver MX telah digunakan sebagai sistem pengkodan. Hasil daripada kajian ini adalah satu sistem sokongan keputusan yang boleh memberi manfaat kepada siasatan yang melibatkan kes-kes keretakan kaca yang teraruh oleh peluru. Di dalam kajian ini ahli sains forensik boleh menggunakan sistem ini untuk menguruskan semua data yang berkaitan seperti memuat naik dan memasukkan maklumat data manakala Penyiasat forensik boleh menggunakan system ini untuk mendapatkan profil senjata api dan peluru berdasarkan ciri-ciri keretakan kaca. Pada masa hadapan, ForeSS boleh ditambah baik supaya boleh digunakan untuk mengenal pasti senjata api dan peluru yang menembak tubuh manusia.

#### DEVELOPMENT OF SUPPORT SYSTEM FOR IDENTIFICATION OF BULLET-INDUCED GLASS FRACTURES

#### ABSTRACT

Forensic Scientist in the field of glass analyses observed that combination of firearms and ammunitions produced unique pattern on glass fractures. Experienced forensic investigator could identify the characteristics of the firearms and ammunitions based on the fractures. Normally, analysis of the glass fracture has to follow lengthy and tedious procedures that were costly. The traditional technique that was used in keeping the data has caused difficulty to retrieve the data because the data could be damaged or loss. The scope of the study was to develop the Forensic Support System (ForeSS) to help forensic investigators expedite the identification of bullet induced glass fractures based on the data that was collected by forensic scientist. System Development Life Cycle methodology was used for the system development. Data were divided into ten groups: 1) Bullet, 2) Chronograph, 3) Deformation, 4) Firearm, 5) Glass, 6) HarFA, 7) Image Comparer, 8) Leica Application Suite, 9) Table pengguna and 10) Thickness. ForeSS was developed using open source applications involving MySQL and phpMyAdmin. Macromedia Dreamweaver MX was used as a coding system. The result from this study is a support system that can benefit the investigations involving cases of bulletinduced glass fractures. In this study, forensic scientist also can be a system administrator where they can use the system to manage all related data such as upload and key-in data info meanwhile forensic investigator can use this system to find the result profile of firearms and ammunitions based on the characteristics of the glass fractures. Overall, ForeSS could reduce the use of resources in terms of manpower and investigation time.

#### **CHAPTER 1**

#### **INTRODUCTION**

#### **1.0** Introduction

A forensic scientist in the field of glass analyses observed that combination of weapons and ammunitions produced unique pattern on the characteristics of the fracture marks. The pattern characteristics provide evidences such as type of bullets and weapons.

All the data collected from the glass analyses should be stored in an appropriate place and safely to ensure the legitimacy and security of the data, this analyses practice using the traditional method where all the data documentation were kept in a proper filing system or in a offline hard disk. The traditional technique that was applied by forensic scientist to store data such as offline hard disk acquisition and analysis are not effective (Hay & Nance, 2008). In 2012, Syed-MohdDaud's study of the fracture phenomena in soda lime silica glass caused by bullet impacts suggested to develop a database as a support system to store the data of the glass fracture (Syed-MohdDaud, 2012).

This encourages us to conduct this study a forensic support system should be developed to support forensic scientist for identification of bullet-induced glass fractures in order to reduce investigation time, manpower, cost and simplify the investigation of the crime scene. ForeSS is a computerized support system to help forensic scientist finding the glass fracture characteristics of the pattern on the glass panes that caused by the bullet and it also can support forensic investigator to produce the result of the glass fracture and solving the crime case.

#### **1.1 Problem Statement**

Information gathered from research conducted by Syed-MohdDaud (2012) is very important because the study documented that combination of firearm and ammunition has produced distinctive characteristics of the fracture marks where the fracture patterns should be stored in a database. The data collected from the shooting range and all the information is only available in the Syed-MohdDaud's thesis. The data can be further analysed and use by forensic scientist for future cases involving glass fractures induced by bullet if they are kept in digital forms and shared through Information Communication Technology (ICT) (Vacca, 2005). Based on findings and observations that have been made, there is no proper system developed to analyse the glass fracture that was collected by forensic scientists.

The traditional technique in keeping the data properly such as filing system or in a offline hard disk has caused difficulty to retrieve the glass fracture data each time it is required and could be damaging and loss of data (Bui, Enyeart, & Luong, 2003). Previously, analysis of the glass fracture has to follow a lengthly and tedious procedure that were costly. Certain parts of the process performed can be negligible due to the very limited access and not efficient (Carrier & Spafford, 2004).

Agarwal *et al.*, (2011) propose a systematic model of the digital forensic procedure that can assist the forensic scientist to decrease the cost of time, manpower and money in digital forensic investigation. Based on findings and observations that have been made, there is no proper system developed to analyse the glass fracture that was collected by forensic scientists.

This system could be helpful to expedite the identification process and reduce the use of resources in terms of manpower and investigation time because the support system (SS) for bullet-induced glass fractures might help forensic scientists to identify the profile of the bullet that caused the fractures to the glass panel.

#### **1.2** Scope and Objectives of Research

The scope of the study was to develop the Forensic Support System (ForeSS) based on bullet-induce glass fracture, the data that was collected earlier and the data of glass fracture analysis acquired from HarFA, LAS and IC. ForeSS can be used by forensic scientists to expedite the identification process of bullet identification in new cases involving glasses. The system can also reduce the use of resources in terms of manpower and investigation time.

The specific objectives of this study are:

(i) To develop a Forensic Support System (ForeSS) and Micro Topographic Database System which may assist forensic scientists and forensic investigators to analyse bullet induced glass fracture.

(i) To store the data of glass fracture characteristics, fractal dimensions and ballistic

data in the Micro Topographic Database System that was done by Syed-MohdDaud (2012).

(iii) To calculate the fractal dimension of glass fracture using Harmonic and Fractal Image Analysis (HarFA)

(iv) To evaluate performance of Image Comparer (IC) software in analysing or creating similar images.

#### 1.3 Methodology

The micro topographic database was designed to store all the data of the ammunations, ballistic and glass fracture marking pattern induced by bullet impact that was analysed by Syed-MohdDaud (2012). The data and images of glass were further analysed in this study in three stages using the Leica Application Suite (LAS) version V2.7 developed by Leica Microsystems in Wetzlar, Germany, Harmonic Fractal Analysis (HarFA) version 5.5 developed by Institute of Physical and Applied Chemistry Faculty of Chemistry Brno University of Technology Brno Czech Republic and Image Comparer (IC) version 3.7 developed by Bolide Software in Seattle, USA

Leica Application Suite (LAS) was used to measure the basic micro topographic data of the glass fractures where the analysis was done by Syed-MohdDaud (2012). Harmonic Fractal Analysis (HarFA) was used to calculate fracture dimension (Zmeškal, 2001) and Image Comparer (IC) was used to compare the similarity of the new glass fracture image and existing images in the database (Raduan, 2012). All the data were divided into ten groups to be stored in the micro topographic database; 1) Bullet, 2) Chronograph, 3) Deformation, 4) Firearm, 5) Glass, 6) HarFA, 7) Image Comparer, 8) Leica Application Suite, 9) Table User and 10) Thickness.

The Macromedia Dreamweaver MX version 6.0 developed by Macromedia, Inc. in the United States, was used for coding system in developing Forensic Support System (ForeSS), Micro Topographic Database was developed by using MySQL web server version 5.6.17 where the administrator of the MySQL web server is phpMyAdmin.

#### 1.4 Research Outline

The study of the literature review was described in Chapter 2. There are four phases of methodologies in developing the Forensic Support System, which are described in Chapter 3. Chapter 4 describes the process of acquiring the result of analysis by using the applications (LAS, HarFA and IC) and Forensic Support System (ForeSS) to identify which firearms and ammunitions caused the fractured glass. Chapter 5 discusses the results of the glass fracture produced by ForeSS in terms of fracture phenomena, and fractal dimension of fracture patterns. Finally, the conclusion of the research will be explained in Chapter 6 with the recommendations for future study.

#### **CHAPTER 2**

#### LITERATURE REVIEW

#### 2.0 Introduction

Forensic scientists are often being asked to examine broken glass to reconstruct events surrounding a crime (Almirall *et al.*, 2000). The examination and interpretation of glass fractures provide a wealth of interpretable information in criminal investigations. The fracture patterns generally provide information regarding the point and angle of impact, direction of force, sequence of firing and the type of bullet that causes the fractures (Ahearn *et al.*, 2006; Syed-MohdDaud, 2012).

Syed-MohdDaud (2012) has carried out a study to identify the fracture pattern of the glass surface when a projectile such as a bullet hit glass panes, the impact causes changes in the form of fractures within the glass. Fracture patterns caused by a bullet are unique. Fracture patterns in a piece of glass reflect the nature of the glass and the travelling direction and velocity of the breaking object (Mecholsky *et al.*, 1992).

Mecholsky *et al.*, (1992) noted that the fractures have a certain symmetric pattern in terms of cracks, craters, wallner lines and hackle marks (Mecholsky *et al.*, 1992). Glass fracture examination can provide information the breaking force of the direction and the type of bullet that cause the fracture (Mecholsky *et al.*, 1992).

Forensic scientists used the traditional procedures to obtain a result with experiments on the samples and then make decisions through the analysis as static analysis techniques (Hay and Nance, 2008). In addition, this procedure should be enhanced by the latest support system such as digital Forensics analysis (Hay and Nance, 2008).

Forensic scientists have conducted numerous studies of the glass fracture and they have published various aspects broken glass (Syed-MohdDaud, 2012). Unfortunately all the relationships data between the projectile impact factors and fracture patterns such as shape and velocity, its bullet type and calibre are not well stored (Syed-MohdDaud, 2012).

The ballistic data that were obtained from forensic studies scientist should be stored securely and systematically, to ensure the data can be easily retrived in solving crime scene cases (Leong, 2006). To solve this problem, it requires an information communication technology (ICT) in order to resolve the crime scene investigation. Computer forensics is a method that can be used to securely store all the forensics data digitally and electronically (Turner, 2007).

# 2.1 The identification process of the bullet induced glass fractures components

The forensic ballistic data could be stored electronically when an identification process is been done as to allow system administrator to further classify the data (Turner, 2007). The data collection used three material components, namely the firearms, ammunitions and window glass panes. This materials components were used by forensic scientist to acquired data for their computer forensic investigation (Bui, Enyeart, & Luong 2003).

These materials; i) firearms, ii) ammunitions and iii) window glass panes was used in all experiments involved to find the characteristics of the glass panes such as type and size which are related to impact resistance, fracture pattern and surface markings (Syed-MohdDaud, 2012). The glass panels were analysed by Leica MZ16 Stereomicroscope Research Grade with Leica Application Suite (LAS) software to measure basic micro topographic data in forms of line length, width, diameter and radius of the glass fractures (Syed-MohdDaud, 2012).

Fractal dimension was measured using HarFA (Zmeskal *et al.*, 2001) and Image Comparer was used to make comparison between the new glass fracture image and images of glass fracture in the database (Raduan *et al.*, 2012).

#### 2.2 The firearms

Figure 2.1 exhibits seven types of firearms used in the study by Syed-MohdDaud (2012). There are provided by Logistic (Firearm) Department, Bukit Aman, Kuala Lumpur and also by Firearms Unit, Police Headquarters, Kelantan. The firearms was used in the glass shooting experiments to produce glass fracture patterns on soda lime window glass. These experiment results illustrate the fracture pattern characteristics of the glass panes involving high velocity impacts.



(a) 0.38 Smith & Wesson Heavy Barrel revolver (left) and G-Lock  $9 \times 19$  mm pistol (right)



(b) .7.65 mm Walther Semi-auto pistol (left) and Bushmaster (SMG) Carbon-15. Cal 9 mm (right)



(c) M16A rifle (left) and Carbine 15-Cal.223 (right)



(d) M70 rifle Winchester (right)

**Figure 2.1:** (a) (b) (c) (d) Firearms used in the previous research study by Syed-MohdDaud (2012).

## 2.3 The ammunitions

Eight types of ammunition that were tested in the study by Syed-MohdDaud (2012). The ammunitions were also provided by Logistic (Firearm) Department, Bukit Aman, Kuala Lumpur and Firearms Unit Police Headquarters, Kelantan. The image details of the ammunition are presented in Figures 2.2 as conducted by Syed-MohdDaud (2012).



(a) SME 0.38 in. Special calibre (left) and 7.65 mm FMJ calibre (right)



(b) 9 mm SME FMJ (left) and 9 mm Luger Flat nose (right)



(c) 9 mm Luger Hollow point (left) and 5.56 mm FMJ calibre (right)



(d) 7.62 mm FMJ M70 rifle Winchester



The detailed description of the firearms and ammunitions are reproduced from previous study and presented in Table 2.1. The table describes the firearm serial number, type of bullet, bullet weight, diameter of the bullet and velocity range as the firearms ammunitions data collected and used in study by Syed-MohdDaud (2012).

| Firearm,<br>Serial number                                   | Ammunition<br>description | Type of<br>bullet     | Bullet weight |        | Diameter<br>of bullet<br>(mm) | Bullet<br>length<br>(mm) | Velocity<br>range<br>(m/s) |
|-------------------------------------------------------------|---------------------------|-----------------------|---------------|--------|-------------------------------|--------------------------|----------------------------|
|                                                             |                           |                       | *gr           | *g     |                               |                          |                            |
| 0.38 Smith &<br>Wesson Heavy<br>Barrel revolver<br>J 477682 | SME 0.38 in.<br>Special   | Lead<br>round<br>nose | 158           | 10.2   | 9.1                           | 18.5                     | 200 - 250                  |
| 7.65 mm Walther<br>Semi- auto pistol<br>315314              | 7.65 mm<br>FMJ            | FMJ**                 | 75            | 4.892  | 7.65                          | 12.5                     | 300 - 350                  |
| G-Lock<br>9 X 19 mm pistol<br>EAH 523<br>and                | 9 mm SME                  | FMJ**                 | 115           | 7.5    | 9                             | 15                       | 350 - 400                  |
|                                                             | 9 mm Luger                | FMJ**                 | 115           | 7.5    | 9                             | 15                       | 350 - 400                  |
| Bushmaster SMG<br>Carbon-                                   | 9 mm Luger                | Flat<br>nose          | 123           | 7.97   | 9                             | 15                       | 350 - 450                  |
| 15.Cal 9 mm<br>HO 3404                                      | 9 mm Luger                | Hollow<br>point       | 147           | 9.525  | 9                             | 16.5                     | 250 - 400                  |
| M16A rifle<br>9287710                                       | 5.56 mm                   | FMJ**                 | 55.23         | 3.5789 | 5.56                          | 19                       | 1000 -1030                 |
| Carbine 15-<br>Cal.223<br>00267                             | 5.56 mm                   | FMJ**                 | 55.23         | 3.5789 | 5.56                          | 19                       | 700 - 770                  |
| M70 rifle<br>Winchester<br>G1618087                         | 7.62 mm                   | FMJ**                 | 146           | 9.46   | 7.62                          | 28.43                    | 800 - 850                  |

| <b>Table 2.1:</b> | Description | of firearms | and | ammunitions | used | in the | study | by | Syed-MohdDau | d |
|-------------------|-------------|-------------|-----|-------------|------|--------|-------|----|--------------|---|
|                   | (2012)      |             |     |             |      |        |       |    |              |   |

\*15.432 gr (grain) = 1 g

\*\* FMJ = Fully Metal Jacketed

Table 2.2 shows the bullet deformation data and velocity of nine type of bullet striking into two different glass panes. Bullet deformations of all calibers were similar, except G-Lock 9 x 19 mm Pistol 9 mm hollow point pistol (9mm\_hollpt\_pis) firearm id EAH 523 and M16A 5.56 rifle firearm id 9287710 (5.56\_rif) had a huge deformation which shows a deformation of the former 15.82% and the latter had a deformation of 34.84% respectively.

**Table 2.2**: Bullets deformation data and the striking and remaining velocity, which were shot on two type of glasses (Syed-MohdDaud, 2012)

| bullet           | glass | striking<br>velocity<br>(m/s) | remaining<br>velocity<br>(m/s) | Original<br>bullet length<br>(mm) | bullet length<br>after<br>penetration<br>(mm) | deformation<br>(%) |
|------------------|-------|-------------------------------|--------------------------------|-----------------------------------|-----------------------------------------------|--------------------|
| 0.38_rev         | G1    | 220                           | 177                            | 18.59                             | 12.55                                         | 32.49              |
| 0.38_rev         | G2    | 237                           | 198                            | 18.59                             | 12.57                                         | 32.38              |
| 7.65_fmj         | G1    | 257                           | 189                            | 12.66                             | 10.13                                         | 19.98              |
| 7.65_fmj         | G2    | 259                           | 189                            | 12.66                             | 9.87                                          | 22.04              |
| 9mm_pis          | G1    | 361                           | 280                            | 15.06                             | 11.75                                         | 21.98              |
| 9mm_pis          | G2    | 362                           | 286                            | 15.06                             | 11.87                                         | 21.18              |
| 9mm_flatnose_pis | G1    | 355                           | 290                            | 15.14                             | 8.87                                          | 41.41              |
| 9mm_flatnose_pis | G2    | 351                           | 286                            | 15.14                             | 8.81                                          | 41.81              |
| 9mm_hollpt_pis   | G1    | 280                           | 277                            | 15.14                             | 13.94                                         | 15.82              |
| 9mm_hollpt_pis   | G2    | 277                           | 224                            | 15.14                             | 10.79                                         | 34.84              |
| 9mm_hollpt_smg   | G1    | 323                           | 269                            | 15.14                             | 10.65                                         | 29.66              |
| 9mm_hollpt_smg   | G2    | 318                           | 265                            | 15.14                             | 10.61                                         | 29.92              |
| 5.56_rif         | G1    | 1023                          | 945                            | 18.73                             | 6.61                                          | 64.71              |
| 5.56_rif         | G2    | 1016                          | 938                            | 18.73                             | 9.26                                          | 50.56              |
| 5.56_car         | G1    | 715                           | 641                            | 18.73                             | 9.84                                          | 47.46              |
| 5.56_car         | G2    | 714                           | 640                            | 18.73                             | 9.63                                          | 48.59              |
| 7.62_M70         | G1    | 821                           | 768                            | 28.43                             | 20.71                                         | 27.15              |
| 7.62_M70         | G2    | 826                           | 769                            | 28.43                             | 20.88                                         | 26.56              |

- 1. rev: revolver
- 2. fmj: fully metal jacketed
- 3. pis: pistol
- 4. flatnose\_pis: flatnose pistol
- 5. hollpt\_pis: hollow point pistol
- 6. hollpt\_smg: hollow point submachine gun
- 7. rif: rifle
- 8. car: carbine
- 9. G1: glass 1
- 10. G2: glass 2

Table 2.3 illustrates the ballistic data of broken glass panes caused by two types of firearms and bullets, Carbine 15-Cal.223 5.56 mm calibre (5.56\_car) and 0.38 Smith & Wesson Heavy Barrel revolver SME 0.38 in. special calibre fired on the 2 mm, 3 mm, 5 mm and 10 mm glass.

| bullet   | glass<br>thickness | striking<br>velocity | striking<br>MV | striking<br>energy | remaining<br>velocity | remaining<br>MV | remaining<br>energy | loss of<br>velocity | Loss<br>of  | loss of<br>energy | original<br>bullet | bullet after penetration | deformation<br>(%)  |
|----------|--------------------|----------------------|----------------|--------------------|-----------------------|-----------------|---------------------|---------------------|-------------|-------------------|--------------------|--------------------------|---------------------|
|          | (mm)               | (m/s)                | (m/s)          | ( <b>J</b> )       | (m/s)                 | (m/s)           | ( <b>J</b> )        | (m/s)               | MV<br>(m/s) | ( <b>J</b> )      | length<br>(mm)     | (mm)                     |                     |
| 5.56_car | 2 mm               | 737                  | 2.638          | 971.97             | 710                   | 2.541           | 902.06              | 27                  | 0.097       | 69.91             | 18.73              | 16.11                    | 14                  |
| 5.56_car | 3 mm               | 751                  | 2.688          | 100925             | 703                   | 2.516           | 884.36              | 48                  | 0.097       | 69.91             | 18.73              | 13.15                    | 29.8                |
| 5.56_car | 5 mm               | 706                  | 2.527          | 891.93             | 632                   | 2.262           | 714.75              | 74                  | 0.265       | 177.18            | 18.73              | 9.63                     | 48.6                |
| 5.56_car | 8 mm               | 745                  | 2.666          | 993.19             | 594                   | 2.126           | 631.38              | 151                 | 0.54        | 361.81            | 18.73              | Bullet<br>fragments      | Bullet<br>fragments |
| 5.56_car | 10 mm              | 772                  | 2.763          | 1066.48            | 601                   | 2.151           | 646.35              | 171                 | 0.612       | 420.13            | 18.73              | Bullet<br>fragments      | Bullet<br>fragments |
| 0.38_rev | 2 mm               | 239                  | 2.438          | 291.32             | 226                   | 2.305           | 260.49              | 13                  | 0.133       | 30.83             | 18.59              | 16.97                    | 8.71                |
| 0.38_rev | 3 mm               | 230                  | 2.346          | 269.79             | 209                   | 2.132           | 222.77              | 21                  | 0.214       | 47.02             | 18.59              | 15.22                    | 18.13               |
| 0.38_rev | 5 mm               | 237                  | 2.417          | 286.46             | 194                   | 1.979           | 191.94              | 43                  | 0.438       | 94.52             | 18.59              | 12.62                    | 32.11               |
| 0.38_rev | 8 mm               | 233                  | 2.377          | 276.87             | 130                   | 1.326           | 86.19               | 103                 | 1.051       | 190.68            | 18.59              | 5.74                     | 69.12               |
| 0.38_rev | 10 mm              | 235                  | 2.397          | 281.65             | 88                    | 0.898           | 39.49               | 147                 | 1.499       | 242.16            | 18.59              | Bullet<br>fragments      | Bullet<br>fragments |

**Table 2.3**: Striking, remaining and loss of velocity, momentum and kinetic energy loss for all glass thickness (Syed-MohdDaud, 2012)

1. MV: momentum

Several components; i) impact test stand, ii) firearm rest, iii) bullet velocity measurement, iv) target glass stand and v) bullet catch were used in order to have the best results that are addressed in this study and they were firearms and ammunitions. Table 2.4 describes the types of firearms and ammunitions, as well as the bullet type, weight, diameter and length. This table shows nine types of firearms and nine types of ammunition that were used in the glass shooting experiments.

| firearm<br>serial<br>number | J<br>477682                                              | 315314                                           | EAH<br>523                          | EAH<br>523                          | EAH<br>523                           | HO 3404                                        | 9287710                             | 00267                               | G1618087                            |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| bullet                      | 0.38_rev                                                 | 7.65<br>fmj                                      | 9mm<br>pis                          | 9mm<br>flatnose<br>pis              | 9mm<br>hollpt<br>pis                 | 9mm hollpt<br>smg                              | 5.56 rif                            | 5.56 car                            | 7.62 M70                            |
| firearm<br>types            | 0.38<br>Smith &<br>Wesson<br>Heavy<br>Barrel<br>revolver | 7.65<br>mm<br>Walther<br>Semi-<br>auto<br>pistol | G-Lock<br>9 X 19<br>mm<br>pistol    | G-Lock<br>9 X 19<br>mm<br>pistol    | G-<br>Lock<br>9 X 19<br>mm<br>pistol | Bushmaster<br>SMG<br>Carbon-<br>15.Cal 9<br>mm | M16A<br>rifle                       | Carbine<br>15-<br>Cal.223           | M70 rifle<br>Winchester             |
| ammunitions                 | SME<br>0.38 in.<br>Special                               | 7.65<br>mm<br>FMJ                                | 9 mm<br>SME                         | 9 mm<br>Luger                       | 9 mm<br>Luger                        | 9 mm<br>Luger                                  | 5.56<br>mm                          | 5.56<br>mm                          | 7.62 mm                             |
| bullet types                | Lead<br>round<br>nose                                    | Fully<br>metal<br>jacketed<br>(FMJ)              | Fully<br>metal<br>jacketed<br>(FMJ) | Fully<br>metal<br>jacketed<br>(FMJ) | Flat<br>nose                         | Hollow<br>point                                | Fully<br>metal<br>jacketed<br>(FMJ) | Fully<br>metal<br>jacketed<br>(FMJ) | Fully<br>metal<br>jacketed<br>(FMJ) |
| bullet weight<br>(g)        | 10.2                                                     | 4.892                                            | 7.5                                 | 7.5                                 | 7.97                                 | 9.525                                          | 3.5789                              | 3.5789                              | 9.46                                |
| bullet<br>diameter<br>(mm)  | 9.1                                                      | 7.65                                             | 9                                   | 9                                   | 9                                    | 9                                              | 5.56                                | 5.56                                | 7.62                                |
| bullet length<br>(mm)       | 18.5                                                     | 12.5                                             | 15                                  | 15                                  | 15                                   | 16.5                                           | 19                                  | 19                                  | 28.43                               |

**Table 2.4**: Description of firearms and ammunitions used in the study done by Syed-MohdDaud (2012)

Table 2.5 exhibits the summary of ballistic data with 7 samples of shots on the glass panes. The ballistic data consists of the striking velocity, remaining velocity, striking and remaining momentum, initial energy and remaining energy for broken glass panes caused by the bullets fired from several types of firearms.

| Ballistic data  | velocity  | shot       | striking | striking       | striking     | remaining      | remaining | remaining  | loss of        | Loss of | loss of      |
|-----------------|-----------|------------|----------|----------------|--------------|----------------|-----------|------------|----------------|---------|--------------|
|                 | range     |            | velocity | MV             | energy       | velocity       | MV        | energy     | velocity       | MV      | energy       |
|                 |           |            | (m/s)    | ( <b>m</b> /s) | ( <b>J</b> ) | ( <b>m</b> /s) | (m/s)     | <b>(J)</b> | ( <b>m</b> /s) | (m/s)   | ( <b>J</b> ) |
| 9 mm hollpt pis | 350-450   | S4         | 282      | 2.686          | 378.73       | 230            | 2.162     | 251.94     | 52             | 0.495   | 126.79       |
| 9 mm hollpt pis | 350-450   | S5         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 9 mm hollpt pis | 350-450   | S6         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 9 mm hollpt pis | 350-450   | <b>S</b> 7 | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 9 mm hollpt smg | 250-400   | <b>S</b> 1 | 316      | 3.01           | 475.56       | 266            | 2.534     | 336.98     | 50             | 0.476   | 138.58       |
| 9 mm hollpt smg | 250-400   | S2         | 318      | 3.029          | 481.6        | 265            | 2.524     | 334.45     | 53             | 0.504   | 147.15       |
| 9 mm hollpt smg | 250-400   | <b>S</b> 3 | 323      | 3.077          | 496.87       | 269            | 2.524     | 344.63     | 54             | 0.515   | 152.25       |
| 9 mm hollpt smg | 350-450   | S3         | 280      | 2.667          | 373.38       | 227            | 2.162     | 245.41     | 53             | 0.505   | 127.97       |
| 9 mm hollpt smg | 250-400   | S4         | 328      | 3.124          | 512.37       | 277            | 2.638     | 365.43     | 51             | 0.486   | 146.95       |
| 9 mm hollpt smg | 250-400   | S5         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 9 mm hollpt smg | 250-400   | S6         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 9 mm hollpt smg | 250-400   | <b>S</b> 7 | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 5.56 rif        | 1000-1030 | <b>S</b> 1 | 1013     | 3.625          | 1836.28      | 936            | 3.35      | 1567.73    | 77             | 0.275   | 268.55       |
| 5.56 rif        | 1000-1030 | S2         | 1018     | 3.643          | 1854.45      | 934            | 3.343     | 1561.04    | 84             | 0.3     | 293.41       |
| 5.56 rif        | 1000-1030 | <b>S</b> 3 | 1021     | 3.654          | 1865.4       | 942            | 3.371     | 1587.89    | 79             | 0.283   | 277.51       |
| 5.56 rif        | 1000-1030 | S4         | 1023     | 3.661          | 1872.71      | 945            | 3.382     | 1598.02    | 78             | 0.279   | 274.69       |
| 5.56 rif        | 1000-1030 | S5         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 5.56 rif        | 1000-1030 | S6         | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |
| 5.56 rif        | 1000-1030 | <b>S</b> 7 | NULL     | NULL           | NULL         | NULL           | NULL      | NULL       | NULL           | NULL    | NULL         |

**Table 2.5**: Summary of ballistic data for samples of shots on glass panes done by Syed-MohdDaud (2012)

## Table 2.5 (Continued)

| Ballistic data | velocity | shot       | striking | striking | striking   | remaining | remaining | remaining  | loss of  | Loss of | loss of      |
|----------------|----------|------------|----------|----------|------------|-----------|-----------|------------|----------|---------|--------------|
|                | range    |            | velocity | MV (m/s) | energy (J) | velocity  | MV (m/s)  | energy (J) | velocity | MV      | energy       |
|                |          |            | (m/s)    |          |            | (m/s)     |           |            | (m/s)    | (m/s)   | ( <b>J</b> ) |
| 5.56 car       | 700-770  | <b>S</b> 1 | 701      | 2.509    | 879.34     | 622       | 2.226     | 692.31     | 79       | 0.283   | 187.03       |
| 5.56 car       | 700-770  | S2         | 703      | 2.516    | 884.36     | 634       | 2.269     | 719.28     | 69       | 0.247   | 165.08       |
| 5.56 car       | 700-770  | S3         | 706      | 2.527    | 891.93     | 632       | 2.262     | 714.75     | 74       | 0.265   | 177.18       |
| 5.56 car       | 700-770  | S4         | 714      | 2.555    | 912.25     | 640       | 2.290     | 732.96     | 74       | 0.265   | 179.29       |
| 5.56 car       | 700-770  | S5         | 715      | 2.559    | 914.81     | 641       | 2.294     | 735.25     | 74       | 0.265   | 179.56       |
| 5.56 car       | 700-770  | S6         | 720      | 2.577    | 927.65     | 628       | 2.248     | 705.73     | 92       | 0.329   | 221.92       |
| 5.56 car       | 700-770  | <b>S</b> 7 | 723      | 2.588    | 935.4      | 658       | 2.355     | 774.77     | 65       | 0.233   | 160.63       |
| 7.62 M70       | 800-850  | S1         | 807      | 7.634    | 3080.41    | 755       | 7.142     | 2696.22    | 52       | 0.492   | 384.19       |
| 7.62 M70       | 800-850  | S2         | 819      | 7.748    | 3172.7     | 771       | 7.294     | 2811.71    | 48       | 0.454   | 360.99       |
| 7.62 M70       | 800-850  | <b>S</b> 3 | 821      | 7.767    | 3188.21    | 768       | 7.265     | 2789.87    | 53       | 0.502   | 398.34       |
| 7.62 M70       | 800-850  | S4         | 831      | 7.861    | 3266.35    | 778       | 7.360     | 2862.99    | 53       | 0.501   | 403.36       |

#### 2.4 The glass characteristics

The composition in soda lime glass panes will produce fracture patterns after the penetration of bullet. The fracture pattern shows the characteristics of impact, direction of force, sequence of firing and the type of bullet that causes the fractures. Table 2.6 shows the compasition of general properties of soda lime glass (Hotar & Novotny, 2013). Generally, the properties of soda lime glass composition contained SiO<sub>2</sub>: 70- 73%, Alkaline material, R<sub>2</sub>O: 13- 15%, CaO: 7- 12%, MgO: 1.0- 4.5%, Al<sub>2</sub>O<sub>3</sub>: 1.0- 1.8% and Fe<sub>2</sub>O<sub>3</sub>: 0.08- 0.14%.

#### **Table 2.6**: Composition and general properties of soda lime glass

| Composition                                  | General Properties                                               |
|----------------------------------------------|------------------------------------------------------------------|
| SiO <sub>2</sub> : 70- 73%                   | Refractive index: 1.52                                           |
| Alkaline material, R <sub>2</sub> O: 13- 15% | Coefficient of linear expansion: 8.5 x 10 <sup>-6</sup> cm/cm/°C |
| CaO: 7-12%                                   | Hardness: 6.5°                                                   |
| MgO: 1.0-4.5%                                | Compressive strength: 6000-12000 kg/cm <sup>2</sup>              |
| Al <sub>2</sub> O <sub>3</sub> : 1.0-1.8%    | Young modulus: 730,000 kg/cm <sup>2</sup>                        |
| Fe <sub>2</sub> O <sub>3</sub> : 0.08-0.14%  | Poisson's ratio: 0.23                                            |

The study of the fracture pattern characteristics done by Syed-MohdDaud (2012) involved low velocity impact using lead ball impact on surface of glass. Some tests were also performed with glass panes of varying thicknesses (2, 3, 5, 8, 10 and 12 mm) with dimension of 300 width x 300 height x 5 mm<sup>3</sup> thickness and 450 x 450 x 5

 $mm^3$ . Glass fracture patterns on soda lime window glass pane Figure 2.3 with the size of 200 x 200 mm shown the velocity impact.



Figure 2.3: Glass fracture pattern on soda lime window glass pane from the study by Syed-MohdDaud (2012)

The composition in soda lime glass panes will produce the fracture pattern after the penetration of the bullet showing the characteristics of impact, direction of force, sequence of firing and the type of bullet that causes the fractures.

In the study done Syed-MohdDaud (2012), soda lime silica glass was shot by 7 types of firearms and 7 types of bullets to produce the fracture patterns with different types of bullets in different types of glass panels. The fracture pattern on the surface of the soda lime silica show the characteristics of the bullets. Figure 2.4 shows various fracture patterns characteristics of the soda lime silica glass.



(a) SME 00.38 in. Special (b) 5.56 mm rifle (c) 5.56 mm Carbine 15- Cal.223



(d) 7.62 mm M70 rifle Winchester (e) 7.65 mm FMJ Walther Semi- auto pistol (f) 9 mm Flat Nose G-Lock 9 × 19 mm pistol



(g) 9 mm Hollow point G-Lock 9  $\times$  19 mm pistol (h) 9 mm Bushmaster SMG Carbon- 15. Cal (i) 9 mm G-Lock 9  $\times$  19 mm pistol

Figure 2.4: various fracture pattern characteristics on soda lime window glass panes caused by bullet impact done by Syed-MohdDaud (2012)

The result of the bullet impact on soda lime window glass fracture caused by the bullets were shown in the Table 2.8 that describes the characteristic patterns of the cross sectional, radial crack and deflected radial crack and shooting range on the glass pane induced by the bullet.

Table 2.9 describes the characteristics of the glass fractures that was shot by firearms; i) Diameter hole, ii) Diameter crater, iii) Crater area, iv) Cone angle, v) Segment number, vi) Radial crack long, vii) Radial crack short, viii) Radial crack short and ix) Bifurcated crack.

| bullet   | Firearm,<br>Serial<br>number | cross<br>sectional                                                                            | radial<br>crack | deflected<br>radial<br>crack | velocity<br>range<br>(m/s) | characteristic range                                                                                                                                                                                                                                                    |
|----------|------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 mm pis | EAH 523                      | More<br>number of<br>mirror<br>regions<br>present                                             | Long and fine   | Long and fine                | 300 - 360                  | <ul> <li>Only a few of radial cracks were extending to the frame</li> <li>Very few or no deflected cracks were present</li> <li>Patterns are simple</li> </ul>                                                                                                          |
| 7.65 fmj | 315314                       | More mirror<br>regions.<br>But, more<br>hackles<br>were present<br>at the end of<br>the crack | Long and fine   | Long and fine                | 300 - 350                  | <ul> <li>Produced neat and clean bullet hole</li> <li>Less number of radial, deflected and bifurcated radial cracks were produced</li> <li>Deflected cracks were present close to impact point</li> <li>Bifurcated cracks were formed away from impact point</li> </ul> |
| 0.38 rev | J 477682                     | More mirror<br>regions                                                                        | Long and coarse | Long and<br>coarse           | 200 - 250                  | <ul> <li>Produced largest diameter of hole, crater and cone angle</li> <li>Radial cracks were smooth and straight</li> <li>Deflected and bifurcated cracks were present away from the impact point</li> </ul>                                                           |

**Table 2.7**: Description of glass fracture characteristics (Syed-MohdDaud, 2012)

## Table 2.7(Continued)

| 9 mm smg          | HO 3404 | More<br>hackles<br>regions                                                          | Long and<br>coarse | Long and<br>coarse | 370 - 400 |   | Produced greater crater diameter, and<br>number of segments<br>An opaque region was present at bullet holes<br>Many short and fine radial cracks were<br>present near to impact point<br>Tree branching was present<br>Independent concentric cracks were present<br>close to the crater area<br>A large number of bifurcated and deflected<br>cracks were formed |
|-------------------|---------|-------------------------------------------------------------------------------------|--------------------|--------------------|-----------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 mm flatnose pis | EAH 523 | Anomalous,<br>where very<br>small<br>number of<br>mirror<br>regions<br>were present | Long and fine      | Long and fine      | 350 - 400 | - | Produced clean and neat bullet holes<br>Thick opaque region was present on crater<br>Deflected cracks were formed from tree<br>branching of radial cracks at the crater area<br>Deflected cracks were present circularly and very<br>close to the impact point and intact with the glass<br>Only a few radial cracks extended to the frame                        |
| 9 mm flatnose smg | EAH 523 | Anomalous,<br>where very<br>small<br>number of<br>mirror<br>regions<br>were present | Long and fine      | Long and fine      | 400 - 430 | - | Produced clean and neat bullet hole<br>Thick opaque region was present on the crater<br>Deflected cracks were formed from tree<br>branching of radial cracks at the crater area<br>Deflected cracks presented circularly and very<br>close to the impact point and intact with the glass<br>Large bifurcations were present away from<br>impact area              |

## Table 2.7(Continued)

| 9 mm hollpt pis | HO 3404 | More<br>number of<br>mirror<br>regions<br>present | Long and fine    | Long and fine     | 250 - 300   | <ul> <li>Produced large sized crater, and radial segments</li> <li>Deflected and bifurcated cracks were present near to impact area</li> <li>Tree branching was present near the crater area but did not deflect</li> <li>Radial cracks were less jagged</li> </ul>                                                                                                                                                                                                                                                             |
|-----------------|---------|---------------------------------------------------|------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 mm hollpt smg | HO 3404 | More<br>number of<br>mirror<br>regions<br>present | Long and fine    | Long and fine     | 300 - 350   | <ul> <li>Produced large sized crater, and radial segments</li> <li>Deflected and bifurcated cracks were present<br/>near to impact area</li> <li>Tree branching was present near the crater area<br/>but did not deflect</li> <li>Radial cracks were less jagged</li> </ul>                                                                                                                                                                                                                                                     |
| 5.56 rif        | 9287710 | More hackle<br>regions<br>rather than<br>mirrors  | Long and<br>fine | Long and<br>thick | 1000 - 1030 | <ul> <li>An opaque region was present at bullet holes</li> <li>Clean and neat bullet holes were formed</li> <li>Many short and fine radial cracks were present<br/>near to impact point</li> <li>Large number of radial segments was present</li> <li>Deflected and bifurcated radial cracks were<br/>present dominantly</li> <li>Formed many wing cracks near to the crater</li> <li>Independent concentric cracks were present close<br/>to the crater area</li> <li>Small pockets of deflected cracks were formed</li> </ul> |