MUTATIONAL SCREENING OF EXON 1 OF *SMAD7* IN MALAY PATIENTS WITH VENTRICULAR SEPTAL DEFECT

By

DR HASHIMA HASHIM

Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Pathology (Medical Genetics)

UNIVERSITI SAINS MALAYSIA

MUTATIONAL SCREENING OF EXON 1 OF *SMAD7* IN MALAY PATIENTS WITH VENTRICULAR SEPTAL DEFECT

Dr Hashima Hashim

MPath Medical Genetics

Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

Introduction: Congenital heart disease (CHD) affects approximately 8 in every 1000 live births with ventricular septal defect (VSD) being the most common phenotype. VSD is thought to arise from genetics and environmental factors, however most of the causes remain unknown. It was hypothesized that *SMAD7* gene could influence the risk of VSD. *SMAD7* is a potent antagonist of TGF- β signalling pathways and has been found to be involved in embryonic cardiovascular development and function in mouse models. However, its role in the pathogenesis of VSD in human has yet to be fully understood. Therefore, *SMAD7* gene was examined in for its susceptibility to VSD in this study.

Objectives: The aims of this study were to screen and identify the genetic variants in exon 1 of *SMAD7* gene and to determine the association of the genetic variants with VSD in Malay population.

Patients and Methods: Peripheral blood samples were collected from 30 nonsyndromic Malay patients with a clinical diagnosis of VSD. From these samples, genomic DNAs were extracted before subjected to PCR amplifications using 2 sets of designed primers encompassing the exon 1 of *SMAD7*. Subsequently, re-sequencing was conducted to identify and characterize the genetic variants in *SMAD7* gene. Observed genetic variants were then genotyped in 30 healthy controls using the re-sequencing technique.

Results: A total of 2 genetic variants were identified in both cases and controls, comprising one common upstream gene sequence, rs7236774 and one rare synonymous sequence, rs368427729. Further analysis on these two genetic variants did not show any statistically significance association with the risk of developing VSD.

Conclusion: This case-control study has indicated that the exon 1 of *SMAD7* was not associated with VSD in Malay population. However, these findings could have been limited by small sample size. Therefore, further study in a larger cohort is warranted to yield a concrete evidence of this association.

Supervisor:Dr Tan Huay LinCo-Supervisor:Associate Professor Colonel (Retired) Dr Wan Pauzi Wan Ibrahim

ACKNOWLEDGEMENTS

First and foremost, I offer my sincerest gratitude to my supervisor, Dr Tan Huay Lin, who has supported me throughout my study with her patience and knowledge. Without her continuous supervision, encouragement and effort; this dissertation project would not have been completed or written. I would like to thank Associate Professor Colonel (Retired) Dr Wan Pauzi Wan Ibrahim, Associate Professor Dr Abdul Rahim Wong Abdullah and Dr Mohd Rizal Mohd Zain for providing expert opinions and guidance. I also thank Universiti Sains Malaysia for funding this study through Short Term Grant (304/PPSP/61312077).

I am grateful to Sathiya Maran and Siti Aisyah Faten for guiding and helping me from the very beginning of this study till the end. I would also like to thank all lecturers and friends in the Human Genome Centre for their help, support and understanding, which has allowed me to undertake this research alongside my other commitments.

My deepest gratitude is dedicated to my family for their endless love, encouragement, support and I thank them for always being there for me. Most important of all, I thank Allah S.W.T. for giving me the strength to complete my study. Alhamdulillah, all praise be to Allah, the Lord of the World.

TABLE OF CONTENTS

CONTENTS		PAGE	
Title			i
Acknowledge	ments		ii
Table of contents			iii
List of figures			ix
List of tables			xi
List symbols a	and of abbreviations		xiii
Abstrak			xvi
Abstract			xviii
Chapter 1	Introduction		1
1.1	Introduction and overview		1
1.2	Cardiogenesis		3

1.2.1 Primordial heart tube 3

	1.2.2	Partitioning of primo	rdial neart and formation of	
		heart chambers		4
	1.2.3	Partitioning of the bu	llous cordis and truncus arteriosus	5
	1.2.4	Development of hear	t valves	5
1.3	Conge	enital Heart Disease (C	HD)	7
	1.3.1	Epidemiology of CH	D	7
		1.3.1 (a) Epide	miology of CHD in Malaysia	8
	1.3.2	Classification of CHI	D	9
	1.3.3	Aetiology of CHD		12
		1.3.3 (a) Enviro	onmental factors	12
		1.3.3 (b) Genet	ic factors	15
		1.3.3 (b) (i)	Chromosomal abnormality	
			and CHD	16
		1.3.3.(b) (ii)	Single gene mutation and	
			CHD	18
1.4	Ventri	icular septal defect (VS	SD) and SMAD7 gene	21
	1.4.1	VSD		21
	1.4.2	The SMADs		26

1.2.2 Partitioning of primordial heart and formation of

	1.4.3 SMAD7 gene	29
	1.4.4 Functions of <i>SMAD7</i> in heart development	30
	1.4.5 SMAD7 and VSD	31
1.5	Rationale of the Study	32
1.6	Research hypothesis	33
1.7	Research objectives	34
	1.7.1 General objective	34
	1.7.2 Specific objectives	34

Chapter 2	Research methodology		35	
2.1	Study	design and stuc	ly subject	35
	2.1.1	Sample size		36
	2.1.2	Criteria of sar	nple selection	38
		2.1.2 (a)	Inclusion criteria	38
		2.1.2 (b)	Exclusion criteria	38
2.2	Sample	e collection pro	ocedures	39
	2.2.1	Echocardiogra	am	39
	2.2.2	Collection of	peripheral blood samples	39
2.3	Genon	nic DNA extrac	ction	40

2.4	DNA	concentration and purity determination	42
2.5	Mutat	ional screening of exon 1 of SMAD7 gene	43
	2.5.1	Sequencing primers	43
	2.5.2	Polymerase Chain Reaction (PCR)	46
	2.5.3	Gel electrophoresis	51
	2.5.4	PCR purification	52
	2.5.5	DNA sequencing	52
	2.5.6	Sequencing analysis	53
2.6	Data a	nalysis	54

Chapter 3	Results	55
3.1	Recruitment of study subjects	55
	3.1.1 Sociodemographic data	56
	3.1.2 Echocardiogram	58
3.2	Concentration and integrity of genomic DNA (gDNA)	60
	on agarose gel electrophoresis	
3.3	PCR	62
	3.3.1 Optimization	62
	3.3.2 Amplification of exon 1 of SMAD7 gene	66

3.4	Direct	sequencing		69
3.5	Statist	ical analysis		77
	3.5.1	Allele freque	encies, genotype frequencies	77
		and odds rati	o of <i>SMAD7</i> rs7236774	
		polymorphis	m among VSD cases and controls	
		3.5.1 (a)	Allele frequencies for rs7236774	77
		3.5.1 (b)	Genotype frequencies and odds	78
			ratio for rs7236774	
	3.5.2	Allele freque	encies, genotype frequencies	81
		and odds rati	o of <i>SMAD7</i> rs368427729	
		polymorphis	m among VSD cases and controls	
		3.5.2 (a)	Allele frequencies for rs368427729	81
		3.5.2 (b)	Genotype frequency and odds	81
			ratio for rs368427729	
	3.5.3	Haplotype ar	alysis of rs7236774 and	84
		rs368427729	polymorphisms with VSD	

Chapter 4	Discussion	88
4.1	Overview	88

4.2	Exon	1 of <i>SMAD7</i> gene and VSD	91
4.3	Streng	th and limitations of this work	97
4.4	Future	e prospects and investigations	99
	4.4.1	Mutation screening of promoter, intronic	99
		and downstream regions of SMAD7 gene	
	4.4.2	Sequencing SMAD7 gene in larger sample	99
	4.4.3	Genome-wide association studies	100
	4.4.4	Whole exome sequencing	100

Chapter 5	Conclusion	101
References		103

112

LIST OF FIGURES

FIGURES

PAGE

Figure 1.1	Cardiovascular developments	6
Figure 1.2	Positions of different ventricular septal defect	22
Figure 1.3	SMAD protein and their structural elements	28
Figure 2.1	The structure of SMAD7 and the location of the primers	44
Figure 3.1:	Types of defects in VSD cases	59
Figure 3.2	Electrophoresis of genomic DNA on 2% gel.	61
Figure 3.3	Optimization PCR of SMAD7_1i for annealing temperature	63
	(gradient temperature from 50°C to 75°C)	
Figure 3.4	Optimization PCR of SMAD7_1i on 1.5% agarose gel (649	64
	bp)	
Figure 3.5	Optimization of PCR of SMAD7_1ii on 1.5% agarose gel	65
	(701bp)	
Figure 3.6	Electrophoresis of PCR amplification of SMAD7_1i on	67
	1.5% agarose gel (649 bp)	

Figure 3.7	Electrophoresis of PCR amplification of SMAD7_1ii on	68
	1.5% agarose gel (701 bp)	
Figure 3.8	Sequences of exon 1 of <i>SMAD7</i> gene according to their specific primers	70
Figure 3.9	The example of sequence variation of rs7236774 (G>C)	73
	polymorphism	
Figure 3.10	The example of sequence variation of rs368427729 (G>A)	74
	polymorphism	
Figure 3.11	Sequences of other variations in exon 1 of SMAD7	75

LIST OF TABLES

TABLES		PAGE
Table 1.1	Classification of CHD	10
Table 1.2	ICD-10 classification of CHD	11
Table 1.3	Environmental factors and associated CHD	14
Table 1.4	Chromosomal abnormalities and CHD	17
Table 1.5	Single gene defects and syndromic CHD	19
Table 1.6	Single gene defects and non-syndromic CHD	20
Table 1.7	Classification of VSD	23
Table 2.1	The sequences of the primers	45
Table 2.2	PCR reagents	47
Table 2.3	PCR reaction setup for SMAD7_1i	48
Table 2.4	PCR reaction setup for SMAD7_1ii	49
Table 2.5	Thermocycling conditions for exon 1 of SMAD7	50
Table 3.1	Sociodemographic of respondents	57
Table 3.2	Distribution of cases and controls according to SNPs	71

Table 3.3	Allele frequencies for rs7236774	79
Table 3.4	Genotype frequencies and odds ratio of SMAD7 rs7236774	80
	among VSD cases and controls	
Table 3.5	Allele frequencies for rs368427729	82
Table 3.6	Genotype frequency and odds ratio of SMAD7 rs368427729	83
	among VSD cases and controls	
Table 3.7	Haplotype analysis of rs7236774 and rs368427729	85
	polymorphisms with VSD	
Table 3.8	Comparison of rs7236774 and rs368427729 allele	87
	frequencies among different populations	

LIST OF SYMBOLS AND ABBREVIATIONS

μl	Microlitre	
°C	Degree Celcius	
A ₂₆₀ / A ₂₈₀	Ratio of 260 absorbance over 280 absorbance	
BLASTn	Standard Nucleotide Basic Local Alignment Search Tool	
BMP	Bone Morphogenetic Protein	
bp	Base pairs	
CHD	Congenital Heart Defect/Disease	
CI	Confidence Interval	
CLT	Central Limit Theorem	
ddH ₂ O	Deionized distilled water	
DNA	DeoxyriboNucleic Acid	
dNTPs	DiNucleotide TriPhosphate	
EDTA	EthyleneDiamineTetraAcetic Acid	
GWAS	Genome Wide Association Studies	

- HWE Hardy-Weinberg Equilibrium
- ICD-10 International Statistical Classification of Diseases and Related Health Problems, 10th Revision
- MADH Mothers Against Decapentaplegic, Drosophila, Homolog
- MAF Minor Allele Frequency
- MgCl₂ Magnesium Chloride
- MH1 Mad Homology 1
- MH2 Mad Homology 2
- ml Millilitre
- mM Milimolar
- mRNA Messenger Ribonucleic Acid
- NA Not Applicable/ Not Available
- NCBI National Centre for Biotechnology Information
- ng/µl Nanogram per microlitre
- nm Nanometer
- OR Odds Ratio
- PCR Polymerase Chain Reaction
- rpm Round per minute
- SD Standard Deviation

SMAD	Small Mother Against Decapentaplegic
SNP	Single Nucleotide Polymorphism
SPSS	Statistical Package for Social Sciences
SSXS	Ser-Ser-X-Ser motifs
Taq	Thermophilus aquaticus
TBE	Tris Boric EDTA
TGF-β	Transforming Growth Factor-β
Tm	Melting Temperature
UV	Ultraviolet
V	Voltage
VSD	Ventricular Septal Defect

ABSTRAK

SARINGAN MUTASI EXON 1 GEN *SMAD7* DALAM KALANGAN PESAKIT MELAYU DENGAN KECACATAN SEPTAL VENTRIKEL

Penyakit jantung kongenital (CHD) menyerang kira-kira 8 orang dalam setiap 1000 kelahiran hidup dengan kecacatan septal ventrikel (VSD) sebagai fenotip yang paling kerap berlaku. Faktor-faktor genetik dan persekitaran dianggap sebagai punca terjadinya penyakit VSD, namun sebahagian besar daripada punca-puncanya masih belum diketahui. Hipotesis mengatakan bahawa gen *SMAD7* boleh mempengaruhi risiko berlakunya penyakit VSD. *SMAD7* adalah antagonis kepada laluan isyarat TGF-β dan ia juga dilaporkan terlibat dalam proses pembentukan kardiovaskular embrio dalam model tetikus. Walau bagaimanapun, peranannya dalam patogenesis penyakit VSD dalam manusia masih belum difahami secara jelas. Oleh itu, kajian ini dijalankan bagi menguji kecenderungan gen *SMAD7* terhadap penyakit VSD.

Satu kajian kes-kawalan telah dijalankan bagi mengenalpasti hubung kait antara *SMAD7* dengan penyakit VSD dalam kalangan penduduk Melayu. Exon 1 daripada *SMAD7* yang mengekod domain fungsian MH1 telah disusun semula melibatkan 30

pesakit VSD bukan sindromik dan 30 individu kawalan. Satu jujukan di bahagian pangkal gen yang biasa berlaku, iaitu rs7236774 dan satu urutan sinonim yang jarang berlaku, iaitu rs368427729 telah dikenal pasti di dalam kedua-dua kumpulan kes dan kawalan. Analisis lanjut mendapati, kedua-dua variasi tidak menunjukkan mana-mana hubungkait statistik yang signifikan dengan risiko mendapat VSD.

Kesimpulannya, kajian ini telah menunjukkan bahawa exon 1 daripada gen *SMAD7* tidak mempunyai kaitan dengan VSD dalam populasi Melayu. Walau bagaimanapun, hasil kajian ini mungkin dipengaruhi oleh saiz sampel yang kecil. Justeru, kajian lanjut dalam saiz sampel yang lebih besar adalah amat perlu untuk mengkaji hubungan gen dengan penyakit ini bagi mendapatkan bukti yang lebih kukuh.

ABSTRACT

MUTATIONAL SCREENING OF EXON 1 OF *SMAD7* IN MALAY PATIENTS WITH VENTRICULAR SEPTAL DEFECT

Congenital heart disease (CHD) affects approximately 8 in every 1000 live births with ventricular septal defect (VSD) being the most common phenotype. VSD is thought to arise from genetics and environmental factors, however most of the causes remain unknown. It was hypothesized that *SMAD7* gene could influence the risk of VSD. *SMAD7* is a potent antagonist of TGF- β signalling pathways and has been found to be involved in embryonic cardiovascular development in mouse models. However, its role in the pathogenesis of VSD in human has yet to be fully understood. Therefore, *SMAD7* gene was examined in for its susceptibility to VSD in this study.

A case-control study was conducted to examine whether *SMAD7* is associated with VSD in Malay population. Exon 1 of *SMAD7* which encodes the functional MH1 domain was re-sequenced in 30 non-syndromic VSD patients and 30 control individuals. One common upstream gene sequence, rs7236774 and one rare synonymous sequence, rs368427729 were observed in both cases and controls. Further

analysis on these two variations did not show any statistically significance association with the risk of developing VSD.

In conclusion, this study has indicated that the exon 1 of *SMAD7* was not associated with VSD in Malay population. However, these findings could have been limited by small sample size. Therefore, further study in a larger cohort is warranted to yield a concrete evidence of this association.

CHAPTER 1

INTRODUCTION

1.1 Introduction and overview

"The heart is the youngest, most diverse, most fluid, most changeable, most versatile part of creation"

Johann Wolfgang Von Goethe (Williams, 1998)

The heart is the first functional organ to form during embryogenesis in order to provide adequate nutrients and oxygen to the growing organ systems in a developing foetus. In relation to other organs; the heart is unique because it can perform its function throughout development. As early as 3 weeks of gestation, the heart is already functional although it is far from fully developed (Moore and Persaud, 1998). Several major processes such as heart tube formation, looping of the heart, chamber formation, valve development and coronary vasculogenesis are necessary for the development of heart in its mature form. The whole process involves a precisely orchestrated series of molecular and morphogenetic events and it takes about 11 weeks for it to be fully formed (Iaizzo, 2009). Any subtle changes of this process can lead to serious consequences in the form of congenital heart disease (CHD).

CHD is one of the leading causes of childhood mortality and morbidity worldwide (Richards and Garg, 2010). Despite advances in the patient management, understanding of the aetiopathogenesis of CHD remains incomplete. Advances have been made in understanding the molecular basis of CHD, including the identification of signalling molecules, transcriptional regulators and structural genes. Animal models have significantly aided in identifying the molecular mechanisms of CHD, however more human-based research is needed to better understand the pathogenesis of human CHD. Understanding the molecular aspects of heart development will help to identify the risk of having CHD with screening tests, improve clinical diagnosis with diagnostic tests, provide accurate genetic counselling and identify potential therapeutic interventions.

1.2 Cardiogenesis

The cardiovascular system is the first functional major system in the embryo. The primordial heart and vascular system develop in the cardiogenic region of the mesoderm from week 3 of gestation (**Figure 1.1**).

1.2.1 Primordial heart tube

Beginning at day 13 of human development, a primitive streak starts to develop. Three primary germ layers; ectoderm, mesoderm and endoderm are formed around day 15 of gestation. The primordium of the heart is mainly derived from the splanchnic mesoderm which appears around day 18 of embryonic development. Primitive streak cells migrate to an anterior and lateral position and then fuse to form a cardiac crescent. Lateral folding of the embryo causes the cells of the crescent to coalesce along the ventral midline to form a single primitive heart tube. As the folding process continues, the heart tube comes to lie ventrally to the foregut. The heart tube continues to develop to form five distinct regions; truncus arteriosus, bulbous cordis, primitive ventricle, primitive atrium and sinus venosus. This is followed by the heart looping process whereby the quick development of bulbous cordis and ventricle are causing the heart tube to bend upon itself and to form a U-shaped bulboventricular loop. As a result, the atrium and sinus venosus end up lying dorsal to the truncus arteriosus, bulbous cordis and ventricle. The whole process completes by day 28 of embryonic development (Moore and Persaud, 1998).

1.2.2 Partitioning of primordial heart and formation of heart chambers

This process involves formation of the atrioventricular (AV) canal, primordial atrium and primordial ventricle; which occur concurrently from the end of the fourth week till late fifth week.

At the end of the fourth week, two endocardial cushions appear from the dorsal and ventral walls of AV canal. These endocardial cushions fuse and form right and left AV canals, partially separating the atrium from the ventricle.

Septum primum appears at the end of the fourth week and grows towards the fusing endocardial cushions, thereby partially dividing the primordial atrium into right and left atria. Foramen primum resulted from this process, which is located at the area between the endocardial cushion and the free edge of the septum primum. The extensions of the endocardial cushions grow along the margin of the septum primum and eventually close the ostium primum. Coalescence of these perforations results in formation of the septum secundum. This septum grows towards the endocardial cushion, gradually overlapping the septum primum causing the formation of the foramen ovale. The foramen ovale will only close after birth, resulting in a complete partition of the atria.

A muscular interventricular (IV) septum is also developed at the end of fourth week, located in the floor of ventricle near its apex. While growing, a gap is formed between the IV septum and the endocardial cushion, called the IV foramen. The IV foramen usually closes by the end of the seventh week as a result of fusion of bulbar ridges and the endocardial cushion. This fusion also results in the formation of the membranous part of the IV septum. The whole process causes the division of the primordial ventricle into right and left ventricles, which is completed by the end of week 7 (Moore and Persaud, 1998).

1.2.3 Partitioning of the bulbous cordis and truncus arteriosus

Early in the fifth week of development, ridges develop in the truncus arteriosus and are continuous with the bulbar ridges. Both bulbar and truncal ridges undergo 180 degree spiralling motion before fusing, resulting in the formation of a spiral aorticopulmonary septum. This septum eventually creates the aorta and the pulmonary trunk. The whole process completes by the end of week 7 (Moore and Persaud, 1998).

1.2.4 Development of heart valves

Semilunar valves begin to form at late fifth to early sixth week of development, just before the partitioning of truncus arteriosus completes. The semilunar valves develop from three swellings of subendocardial tissue located around the openings of the aorta and pulmonary trunk. These swellings eventually reshape to form three thin-walled cusps. The atrioventricular valves also formed in the similar manner as aforementioned. These valves develop from swellings of the tissue around the AV canals (Moore and Persaud, 1998).

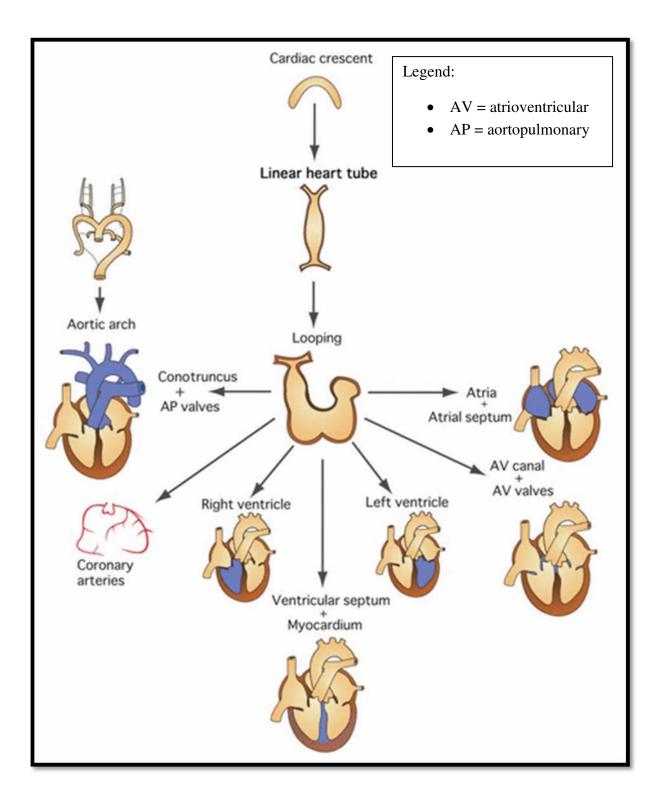


Figure 1.1 Cardiovascular developments

Adapted from Yamagishi et al. (2009)

1.3 Congenital Heart Disease (CHD)

Congenital (*con*, together; *genitus*, born) heart disease is defined as a gross structural abnormality of the heart or intrathoracic great vessels that is actually or potentially of functional significance (Mitchell *et al.*, 1971).

1.3.1 Epidemiology of CHD

CHD is the most frequently occurring birth defect, comprising approximately 40% of all congenital defects (Romano-Zelekha *et al.*, 2001). It is the leading non-infectious cause of worldwide neonatal and infants mortality. The reported birth prevalence of CHD is approximately 8 in 1000 live births worldwide (Bernier *et al.*, 2010). Geographical distributions influence the birth prevalence of CHD. Compared to other continents, Asia is reported to show the highest CHD birth prevalence with 9.3 per 1000 live births, followed by Europe with 8.2 per 1000 live births. Africa shows the lowest birth prevalence of CHD, with only 1.9 per 1000 live births (van der Linde *et al.*, 2011).

The estimated frequency of severe heart defects in live born infants is 0.6% (Hoffman and Kaplan, 2002; Pradat *et al.*, 2003); however, the incidence is higher if less serious and mild defects are included which account for nearly 0.9% of live born infants (Hoffman and Kaplan, 2002; Tutar *et al.*, 2005). For instance, the incidence of bicuspid arterial valve (BAV), which often goes undetected until late middle age; is nearly 2% (Tutar *et al.*, 2005). To top it all, the percentage would be even higher if the proportion of pregnancies which do not continue to term were included, as there is a 10-fold higher rate of CHD in foetuses compared to live born infants (Salvador *et al.*, 2005).

According to Hoffman and Kaplan (2002), the estimated rate of severe cardiovascular malformations has not differed much from one study to the other over the last 50 years. However, there is an apparent increase in the frequency over the last two decades, attributed largely by the increased use of echocardiography (Hoffman and Kaplan, 2002; Bosi *et al.*, 2003). The higher prevalence may be caused by changes in diagnostic techniques and screening modalities rather than a true increase (van der Linde *et al.*, 2011). Prior to the echocardiography era, diagnosis of CHD was dependent on physical examination, conventional x-rays, surgical findings, death certificates and autopsy findings. Medical advancement and evolution not only improved diagnostic approach, but also played a role in the outcome and survival of patients with CHD. Before the introduction of cardiac surgery in 1939, fewer than 25% of infants born with complex CHD survive past their first year of life. However, nowadays more than 90% of such infants can survive into adulthood (Warnes, 2005).

1.3.1 (a) Epidemiology of CHD in Malaysia

To date, there are only limited studies in Malaysia describing the epidemiology, clinical presentation and outcome of CHD; despite the significant role of CHD in causing mortality. According to the Ministry of Health, there are no local data on the incidence of congenital heart defects in Malaysia. Based on the international, particularly Asian prevalence of 8 - 9.3 in 1000 live births, with a birth rate of approximately 500,000 per annum in Malaysia; it is estimated that about 4,000 to 4650 infants will be born with congenital heart defects every year. About one third of these patients have simple lesions and will not require any intervention while another two thirds will require cardiac intervention or surgery.

1.3.2 Classification of CHD

There are several ways to classify CHD, typically by using a physiological or anatomical approach. The physiological approach divides CHD into either cyanotic or acyanotic lesions. Cyanosis occurs when there is more than 5 g/dl of deoxygenated venous blood. Blood is often shunted to the left heart (right-to-left shunt), systemically reducing arterial O_2 saturation. One of the most frequent cyanotic heart diseases is Tetralogy of Fallot. In the case of acyanotic heart lesion, oxygenated blood from the left heart shunts to the right, creating the left-to-right shunt. Ventricular septal defect, atrial septal defect and patent ductus arteriosus fall into this category. The anatomical approach divides CHD into either simple or complex diseases. One of the preferred methods of classifying CHD is by combining both anatomical and physiological approach, as shown in **Table 1.1**.

Apart from the aforementioned methods, another preferred method is by classifying CHD based on ICD classification, as shown in **Table 1.2**. ICD, an acronym for International Classification of Diseases, is a set of codes used by healthcare personnel to indicate diagnosis for all patients encounters; based World Health Organization (WHO). In ICD-10 (International Statistical Classification of Diseases and Related Health Problems, 10th Revision), CHD is grouped as 'Congenital malformations, deformations and chromosomal abnormalities' in chapter XVII, Q20-Q24.

Table 1.1Classification of CHD, Adapted from Wu and Child (2004)

Types of CHD		
Left to right shunt		
Atrial septal defect (ASD)		
Ventricular septal defect (VSD)		
Atrioventricular septal defect (AVSD)		
Patent ductus arteriosus (PDA)		
Partial anomalous pulmonary venous drainage		
Outflow obstruction		
Bicuspid aortic valve		
Coarctation of the aorta		
Pulmonary stenosis		
Hypoplastic left heart syndrome		
Cyanosis and decreased pulmonary blood flow		
Tetralogy of Fallot		
Tricuspid atresia		
Pulmonary atresia		
Hypoplasia of right ventricle		
Ebstein's anomaly		
Cyanosis and increased pulmonary blood flow		
Transposition of great arteries		
Double outlet ventricle		
Double inlet ventricle		
Truncus arteriosus		
Total anomalous pulmonary venous drainage		
Cyanosis and increased pulmonary vascular resistance		
VSD with Eisenmenger syndrome		
ASD with Eisenmenger syndrome		
PDA with Eisenmenger syndrome		

Anomalies of major blood vessels

Congenitally corrected transposition of the great arteries

Coronary artery anomalies

 Table 1.2
 ICD-10 classification of CHD (Source: WHO)

Code	Description
Q20	Congenital malformations of cardiac chambers and connections
C	Common arterial trunk: Persistent truncus arteriosus
	Double outlet right ventricle: Taussig-Bing syndrome
	Double outlet left ventricle
	Discordant ventriculoarterial connection: Transposition of great vessels
	Double inlet ventricle
	Discordant atrioventricular connection: Corrected transposition
	Isomerism of atrial appendages
Q21	Congenital malformations of cardiac septa
-	Ventricular septal defect
	Atrial septal defect
	Atrioventricular septal defect
	Tetralogy of Fallot
	Aortopulmonary septal defect
	Other congenital malformation of of cardia septa: Eisenmenger's syndrome
Q22	Congenital malformations of pulmonary and tricuspid valves
	Pulmonary valve atresia
	Congenital pulmonary valve stenosis
	Congenital pulmonary valve insufficiency
	Other congenital malformations of pulmonary valve
	Congenital tricuspid stenosis: Tricuspid atresia
	Ebstein's anomaly
	Hypoplastic right heart syndrome
	Other congenital malformations of tricuspid valve
	Congenital malformation of tricuspid valve, unspecified
Q23	Congenital malformations of aortic and mitral valves
	Congenital stenosis of aortic valve
	Congenital insufficiency of aortic valve
	Congenital mitral stenosis
	Congenital mitral insufficiency
	Hypoplastic left heart syndrome
	Other congenital malformations of aortic and mitral valves
	Congenital malformation of aortic and mitral valves, unspecified
Q24	Other congenital malformations of heart
	Dextrocardia, Laevocardia
	Cor triatriatum
	Pulmonary infundibular stenosis
	Congenital subaortic stenosis
	Malformation of coronary vessels
	Congenital heart block
	Other specified congenital malformations of heart
	Congenital malformation of heart, unspecified

1.3.3 Aetiology of CHD

CHD is thought to be resulting from multiple factors that cause disruptions at various points along the cardiac developmental pathway. Some genetic defects and certain environmental factors have been identified contributing to the abnormal formation of the heart. While genetic and environmental causes of CHD are well recognized, the majority of the causes of CHD remain unknown. Evidence from familial aggregation studies, chromosomal studies and animal studies indicate that CHD is caused by 'multifactorial inheritance', which is due to a combination of both genetic and environmental factors, where the environmental factor interacts with a genetic predisposition in an individual (Nora, 1968; Gelb, 2004; Garg, 2006). It is estimated that more than 85% of CHDs result from a complex interaction between foetal – maternal exposures and genetic susceptibilities (Botto and Correa, 2003). Even in families with multiple affected individuals, environmental factors may be needed for the development of CHD.

1.3.3 (a) Environmental factors

Environmental factors of CHD are broadly meant to include all factors external to the genetic architecture of the mother and the developing foetuses. Potential environmental agents include infections, chemical and pharmacological exposures, physical factors as well as maternal nutrition. Human exposure to environmental agents during the three months before pregnancy and weeks 2 through 7 of gestation are most likely to result in cardiac structural abnormalities, therefore; this segment is focused on factors that influence cardiac development during this period (Jenkins *et al.*, 2007). **Table 1.3** summarized the potential environmental factors associated with CHD.

These factors may exert effect directly on the foetus or indirectly via the mother. However, the exact mechanisms by which these environmental agents disrupt embryogenesis and cause defects still remain to be elucidated. Depending on the maternal or foetal genotype, environmental exposure may differently affect the heart development; for example, exposure to the different level of the environmental factor might result in different phenotype. Furthermore, it is likely that some genetic polymorphisms are more environmentally sensitive resulting phenotypic heterogeneity (Wyszynski *et al.*, 2010).

Table 1.3 Environmental factors and associated CHD

Factors	Associated defects	
Maternal Illness		
Pregestational diabetes	Conotruncal defects	
	Laterality and looping	
	Transposition of the great arteries	
	Septal defects	
	Hypoplastic left heart syndrome	
	Outflow tract defects	
	Patent ductus arteriosus	
Phenylketonuria	Tetralogy of Fallot	
	Coarctation of the aorta	
Febrile illness	Conotruncal defects	
	Right-sided obstructive defects	
	Tricuspid atresia	
	Left-sided obstructive defects	
	Coarctation of the aorta	
	Ventricular septal defect	
Maternal Infections		
Influenzae	Transposition of the great arteries	
	Right-sided obstructive defects	
	Left-sided obstructive defects	
	Coarctation of the aorta	
	Ventricular septal defect	
Rubella	Patent ductus arteriosus	
	Peripheral pulmonary artery stenosis	
	Atrial septal defect	
	Ventricular septal defect	
Maternal therapeutic drug expos		
Indomethacin tocolysis	Patent ductus arteriosus	
Ibuprofen	Transposition of the great arteries	
	Ventricular septal defect	
	Bicuspid aortic valve	
Anticonvulsants	Any defects	
Thalidomide	Any defects	
Maternal non-therapeutic drug e	•	
Vitamin A	Outflow tract defects	
	Cranial neural crest defects (cardiac and	
	noncardiac)	
Deemostional damage (Martin	Pulmonic stenosis	
Recreational drugs (Marijuana		
and cocaine)	Ventricular septal defect	
	Pulmonary stenosis	
Othors	Ebstein's anomaly	
Others Organia colventa	Any defects	
Organic solvents	Any defects	

Adapted from Jenkins et al. (2007) and Mahler and Butcher (2011)

1.3.3 (b) Genetic factors

CHD may occur as an isolated defect (non-syndromic) or be associated with other birth defects and dysmorphism (syndromic). Isolated defects are the most prevalent form of CHD. While most CHD patients do not have other defects, studies have shown that it can occur in the setting of other multiple congenital anomalies, developmental abnormalities or growth abnormalities and be a part of a syndrome (Bernstein, 2004; Pierpont *et al.*, 2007). The pathogenesis of and risk factors for CHD in a syndromic child are likely to be different from those in a child without accompanying syndrome. A number of studies have considered infants with a syndrome to be a highly susceptible population, providing insight into the risk factors of heart defects (Kerstann *et al.*, 2004).

Genetic factors of CHD can be classified according to the underlying genetic mechanism. Syndromic CHD can be due to chromosomal, single gene or unknown causes (Fahed and Nemer, 2012), whereas non-syndromic CHD is more likely to be caused by single gene mutation, genomic imbalances and complex inheritance (Wyszynski *et al.*, 2010). Approximately 20% of CHD is associated with a chromosomal abnormality, a congenital syndrome or a single gene mutation with Mendelian inheritance pattern (Pierpont *et al.*, 2007; Warnes *et al.*, 2008). However, for the other 80% of non-syndromic and sporadic CHD cases, the underlying genetic mechanisms are still poorly understood.

15

1.3.3 (b) (i) Chromosomal abnormality and CHD

CHD of chromosome abnormality can either be due to chromosome dosage disorders, large chromosomal deletions or small micro-deletions (Fahed and Nemer, 2012). A recent population study by Hartman *et al.* (2011) has identified chromosome abnormalities in 12.3% of infants with CHD. The most likely chromosome abnormality-associated CHDs are interrupted aortic arch (69.2%), atrioventricular septal defect (67.2%) and double-outlet right ventricle (33.3%). (Hartman *et al.*, 2011).

Approximately 30% of children with a chromosomal abnormality have CHD (Pierpont *et al.*, 2007). The most common chromosomal abnormalities are trisomy 21, trisomy 18, 22q11.2 deletion and trisomy 13. **Table 1.4** listed some chromosomal abnormalities with the corresponding CHD.

Table 1.4Chromosomal abnormalities and CHD

Adapted from (Richards and Garg, 2010)

Diseases of chromosomal abnormalities	Types of CHD	
Trisomy 21 (Down Syndrome)	Atrial septal defect Ventricular septal defect Atrioventricular septal defect Tetralogy of Fallot	
Trisomy 18 (Edward Syndrome)	Atrial septal defect Ventricular septal defect Patent ductus arteriosus Tetralogy of Fallot Double outlet right ventricle Coarctation of aorta Bicuspid aortic valve	
Trisomy 13 (Patau Syndrome)	Atrial septal defect Ventricular septal defect Patent ductus arteriosus Hypoplastic left heart syndrome	
Monosomy X (Turner Syndrome)	Coarctation of aorta Bicuspid aortic valve Aortic stenosis Hypoplastic left heart syndrome	
47, XXY (Klinefelter Syndrome)	Patent ductus arteriosus Atrial septal defect Mitral valve prolapsed	
22q11.2 deletion (DiGeorge Syndrome)	Interrupted aortic arch type B Aortic arch anomalies Truncus arteriosus Tetralogy of Fallot	
7q11.23 deletion (Wlliams-Beuren Syndrome)	Supravalvular aortic stenosis Peripheral pulmonic stenosis	

1.3.3.(b) (ii) Single gene mutation and CHD

The majority of CHD cases is thought to occur due to a gene mutation; suggested by early observation of Mendelian inheritance in familial CHD and the involvement of micro and macro deletions in chromosomal regions resulting in CHD with other manifestation. Advancement in gene sequencing and other techniques have helped to identify molecular genetic causes of CHD. Many genes have been found to be involved in the complex process of heart development in animal models, however few have shown an association with CHD in humans.

Some of the identified genes are associated with non-syndromic CHD and others with syndromic CHD (Wessels and Willems, 2010; Fahed and Nemer, 2012). In syndromic and non-syndromic cases, CHD can occur due to mutations in more than one gene (genetic heterogeneity) and mutations in a single gene can result in variable CHDs (phenotypic heterogeneity). These genes encode for agents of the heart developmental programme involving numerous pathways with cross communications, ligand-receptor interactions, complex signal transductions, and a network of transcription factors that regulate the expression of cardiac specific genes. Any disruption of these genes will result in cardiac defects. **Table 1.5** and **Table 1.6** show the association of single gene defects with syndromic and non-syndromic CHD respectively. Of all genes identified, three categories of genes comprise the majority of the known genetic causes of CHD. Those groups are GATA transcription factors (*GATA4, GATA5*, and *GATA6*), Homebox transcription factors (*NKX2-5* and *NKX2-6*), and T-box transcription factors (*TBX1, TBX5*, and *TBX20*) (Fahed and Nemer, 2012). Genes from these categories interact to regulate the expression of downstream genes involved in heart development.

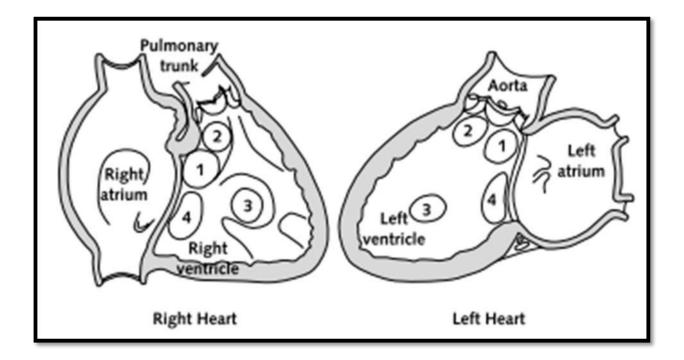
Table 1.5Single gene defects and syndromic CHD

Syndromes	Types of CHD	Causal gene(s)
Noonan syndrome	Pulmonic valvular stenosis	PTPN11
	Atrioventricular septal defect	KRAS
	Hypertrophic cardiomyopathy	RAF1
	Coarctation of aorta	SOS1
	Tetralogy of Fallot	
Alagille syndrome	Pulmonic valvular stenosis	JAG1
	Tetralogy of Fallot	NOTCH2
	Atrial septal defect	
	Peripheral pulmonary stenosis	
Holt-Oram	All septal defects	TBX5
syndrome	Progressive atrioventricular conduction	
	system disease	
Char syndrome	Patent ductus arteriosus	TFAP2b
CHARGE	Atrial septal defect	CHD7
syndrome	Ventricular septal defect	SEMA3E
	Atrioventricular canal defects	
	Tetralogy of Fallot	
	Coarctation of aorta	
	Patent ductus arteriosus	

Adapted from Pierpont et al. (2007) and Richards and Garg (2010)

Table 1.6 Single gene defects and non-syndromic CHD

Causal gene(s)	Types of CHD	
NKX2.5 Atrial septal defect		
	Atrioventricular conduction delay	
	Tetralogy of Fallot	
	Tricuspid valve abnormalities	
GATA4	Atrial septal defect	
	Ventricular septal defect	
МҮН6	Atrial septal defect	
	Hypertrophic cardiomyopathy	
BMPR2	Cardiac septation defects associated with pulmonary	
	hypertension	
CRELD1, ALK2	Endocardial cushion defects	
NOTCH1	Bicuspid aortic valve	
	Early valve calcification	
PROSIT-240	Transposition of the great arteries	


Adapted from Garg (2006) and Fahed and Nemer (2012)

1.4 Ventricular septal defect (VSD) and SMAD7 gene

1.4.1 VSD

VSD is the most common congenital heart defect at birth (Hoffman and Kaplan, 2002) accounting for 25% of all congenital heart defects and occurring in approximately 3.0 to 3.5 infants per 1000 live births (Warnes *et al.*, 2008). Previous studies have reported that there is a high incidence of spontaneous closure of small VSDs, therefore the incidence is much less in older infants and in adults (Du *et al.*, 1998).

VSD is classified in regards to the anatomic landmarks of the ventricular septum. The ventricular septum is a curvilinear, three-dimensional partition that divides the heart into five components: membranous, infundibular (or subarterial), inlet, muscular (or trabecular) and the atrioventricular septum (**Figure 1.2**). Incomplete fusion or deficit growth of any of these components will lead to VSD. Based on the Congenital Heart Surgery Nomenclature and Database Project (Jacobs *et al.*, 2000), VSD is classified into multiple, type 1, type 2, type 3, type 4, Gerbode type and secondary VSD; as shown as in **Table 1.7**.

Figure 1.2Positions of different ventricular septal defect

Adapted from Ammash and Warnes (2001)

Legends:

- 1 membranous
- 2 subarterial or supracristal
- 3 muscular or trabecular
- 4 inlet or canal

Table 1.7Classification of VSD, based on the Congenital Heart SurgeryNomenclature and Database Project (Jacobs et al., 2000)

VSD subtypes	Synonyms
Type 1	Conclusion to Lafort
Type 1	Conal septal defect
	Subarterial
	Supracristal
	Subpulmonary
	Infundibular
Type 2	Perimembranous
	Paramembranous
	Conoventricular
Type 3	Inlet
	Atrioventricular canal type
Type 4	Muscular
Type 4	wiusculai
Gerbode type	Atrioventricular

Of all subtypes of VSD, membranous type is the most commonly seen defect, account for 80% of the cases. It is located inferior to the aortic valve and bordering the septal leaflet of the tricuspid valve. It can extend into the adjacent muscular septum, termed perimembranous VSD; which often associated with aneurysm of the septal leaflet of the triscuspid valve and aortic regurgitation (Warnes, 2009).

Infundibular VSD, which account for 5-8% of isolated VSDs in the United States but 30% in Southeast Asia; is a defect that lies beneath the pulmonic valve and communicates with the right ventricle outflow tract above the supraventricular crest. It is associated with aortic regurgitation secondary to the prolapse of the right aortic cusp. Aortic regurgitation can help to reduce the size of the defect but no spontaneous closure is reported (Warnes, 2009).

Inlet VSD lies beneath both atrioventricular valve and extends to the septal leaflet of the tricuspid valve. Although it is in close proximity with the atrioventricular valves, they are not associated with defects of the mitral or tricuspid regurgitation. About 8-10% of VSDs are of this type. Inlet VSD is often seen in Down syndrome patients (Warnes, 2009).

Muscular VSD is entirely bounded by the muscular septum and represents 5-20% of all defects. The defect can either be small or large, single or multiple. The term Swiss-cheese septum has been used to describe multiple muscular VSDs (Warnes, 2009).