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ABSTRACT 

 

Introduction 

Functional outcome following surgical repair in brachial plexus avulsion injury 

remains poor.  Spinal motorneuron death after brachial plexus avulsion injury has 

been identified as the neurobiological barrier to functional restitution.  Post injury 

oxidative stress reaction, for example, up-regulation of neuronal nitric oxide synthase 

(nNOS), not only cause direct damage to the motoneurons, but lead to mitochondrial 

dysfunction as well, especially the cytochrome c oxidase (CcO) activity, which serve 

as the main energy generator for neuronal normal activities.  Furthermore, the 

impaired retrograde axonal transport of neurotrophic factors (which are vital for 

motoneurons survival) secondary to neurofibrogenesis and mitochondrial 

dysfunction has retarded the neuronal regeneration process.  Taxol, a diterpene 

alkaloid, has the effect in slowing the neurofibrogenesis by microtubule stabilization 

and facilitate axonal regeneration in rats.  This study was designed to evaluate the 

neuroprotective effect of intrathecally infused Taxol in the prevention of motoneuron 

death and mitochondrial dysfunction following brachial plexus avulsion injury.  

 

Material and Method 

Sprague-Dawley rats were divided into Treatment and Control groups (each group 

N=32).  Brachial root avulsion injury was induced in each rat.  The Treatment group 

received 5 days intrathecal infusion of Taxol (256ng/day) via a micro infusion pump, 

whereas the Control group received normal saline.  Cervical cord was harvested at 

survival interval of 1 week, 2 weeks, 4 weeks and 6 weeks (n=8 in each subgroup).  

Number of surviving motoneurons and nNOS-positive motoneurons at injured 
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ventral horn were determined with NADPH-d histochemistry with neutral red 

counterstaining.  Mitochondrial function at the injured ventral horn was measured 

with CcO histochemistry and densitometer.  Independent t-test was applied to detect 

differences between the study groups at specific survival interval.  

 

Results  

Compared to Control group, the Taxol treated group showed significant reduction in 

the nNOS expression at 2 weeks, 4 weeks, and 6 weeks, and significantly improved 

mitochondrial functions at 4 weeks and 6 weeks.  The motoneurons survival rate was 

significantly increased at 2 weeks, 4 weeks, and 6 weeks in Taxol treated rats.  

 

Conclusions 

Taxol has the neuroprotective effect to prevent spinal motoneuron degenaration 

following brachial plexus avulsion injury by inhibiting nNOS expression and 

preventing mitochondrial dysfunction.   
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ABSTRAK 

 

Pengenalan 

Pemulihan fungsi berikutan pembedahan perbaikan untuk kecederaan avulsi brachial 

plexus masih kurang memuaskan.  Kematian pada motoneuron saraf tunjang selepas 

kecederaan avulsi brachial plexus telah dikenalpasti sebagai halangan utama dalam 

pemulihan fungsi.  Reaksi tekanan oksidatif selepas kecederaan, sebagai contoh, 

kenaikan regulasi neuronal nitric oxide synthase (nNOS), bukan sahaja telah 

merosakkan motoneuron, malah ia juga menyebabkan ketidakfungsian mitokondria, 

terutama sekali aktiviti cytochrome c oxidase (CcO), yang merupakan penghasil 

tenaga utama untuk aktiviti-aktiviti normal neuron.  Selain itu, kegagalan 

pengangkutan axonal songsang untuk faktor-faktor neutrofik (yang amat penting 

untuk kehidupan motoneuron) akibat daripada neurofibrogenesis dan ketidakfungsian 

mitokondria telah membantutkan proses regenerasi neuron.  Taxol, sejenis alkaloid  

diterpene, telah didapati mempunyai kesan untuk melambatkan neurofibrogenesis 

melalui penstabilan mikrotubul dan mendorong regenerasi axon.  Kajian ini telah 

dirancang untuk menentukan kesan pelindung-saraf Taxol secara infusi intrathecal 

dalam membendungi kematian motoneuron dan ketidakfungsian mitokondria selepas 

kecederaan avulsi brachial plexus.    

 

Bahan dan Kaedah 

Tikus Sprague-Dawley telah dibahagikan kepada dua kumpulan utama, Rawatan dan 

Kontrol (setiap kumpulan utama N=32).  Kecederaan avulsi pada akar saraf brachial 

telah ddilaksanakan ke atas setiap tikus.  Kumpulan Rawatan telah menerima infusi 

Taxol secara intrathecal selama 5 hari (256ng/hari) melalui pump infusi mikro, 
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sedangkan kumpulan Kontrol telah menerima saline biasa.  Saraf tunjang cervikal 

telah dikeluarkan pada 1, 2, 4 dan 6 minggu selepas kecederaan (setiap kumpulan 

kecil n=8).  Bilangan motoneuron hidup dan motoneuron nNOS-positif pada ventral 

horn yang cedera telah ditentukan dengan histokimia NADPH-d dan penwarnaan 

neutral red.  Fungsi mitokondria pada ventral horn yang cedera telah ditentukan 

dengan histokimia CcO dan densitometer.  Independent t-test telah digunakan untuk 

mengesan perbezaan di antara kumpulan-kumpulan kajian pada jangkamasa tertentu 

selepas kecederaan.  

 

Keputusan  

Berbanding dengan kumpulan Kontrol, kumpulan Rawatan telah menunjukkan 

penurunan signifikan dalam ekspresi nNOS 2 pada minggu 2, 4, dan 6 selepas 

kecederaan, serta kenaikan signifikan fungsi mitokondria pada minggu 4 dan 6 

selepas kecederaan.  Kadar kehidupan motoneuron juga meningkat secara signifikan 

pada minggu 2, 4, dan 6 selepas kecederaan untuk tikus-tikus yang menerima 

rawatan Taxol.  

 

Kesimpulan 

Taxol didapati mempunyai kesan pelindung-saraf untuk membendung degenerasi 

motoneuron saraf tunjang berikutan kecederaan avulsi brachial plexus secara 

perencatan ekspresi nNOS dan mengelakkan ketidakfungsian mitokondria. 
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CHAPTER 1:  INTRODUCTION 

 

Brachial plexus injuries in adults are commonly caused by motor-vehicle accidents 

or self-accidents such as fall from height.  The surgical management of brachial 

plexus injury consists of nerve repair and nerve grafting for extraforaminal nerve 

root or trunk injury, and neurotization or nerve transfer for nerve root avulsion injury 

(Songcharoen, 2008).  However, the outcome of brachial plexus reconstruction and 

the restoration of shoulder and elbow function are often poor in spite of the 

sophistication of the various methods used (Blaauw et al., 2008; Songcharoen, 2008). 

 

The degeneration and death of a major proportion of the innervating neuronal pool is 

likely to be the most fundamental neurobiological barrier to functional restitution 

because survival is an essential prerequisite for regeneration (De Palma et al., 2008).    

Root avulsion of the brachial plexus causes an oxidative stress reaction in the spinal 

cord and induces gradual spinal motoneuron death.  Loss of neurotrophic factors 

support secondary to axonal transport failure also leads to spinal motoneuron death 

as well (Yin et al., 2008).  After brachial root avulsion in rats, about 20% of the 

spinal motoneurons died at 2 weeks after the injury and about 50% of them were lost 

at 4 weeks after the injury (Wang et al., 2010). 

 

Animal studies showed de novo expression of neuronal nitric oxide synthase (nNOS) 

in injured spinal motoneurons.  The time course and density of nNOS expression 

were correlated with the severity of spinal motoneuron death following brachial root 

avulsion injury, in which the oxidant peroxynitrite (ONOO¯) played an important 
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role.  Maximum expression of nNOS in the injured spinal motoneurons was observed 

between 2-3 weeks following avulsion injury (Yang et al., 2008). 

 

After spinal root avulsion injury, the neurotrophic factors (brain-derived 

neurotrophic factor, BDNF, and glial cell-derived neurotrophic factor, GDNF) are 

released from the innervated target site, taken up by the nerve terminal, and 

transported to the cell body via retrograde axonal transport.  These factors are 

important for axonal regeneration and survival of the injured spinal motoneurons 

(Sendtner and Beck, 2009).  However, scarring and fibrosis of the injured nervous 

tissue may impair axonal regeneration and eventually affect the neurotrophic factors 

transportation along the axon (Hellal et al., 2011) and lead to the motoneurons death 

subsequently. 

 

In addition, exposure to nitric oxide (NO) and reactive oxygen species (ROS) 

following post-traumatic inflammatory process would lead to neuronal mitochondrial 

dysfunction, especially the complex IV (cytochrome c oxidase) activity which serves 

as the main source for neuronal energy production (Mahad et al., 2009).  Thus, 

deprivation of both motoneurons energy demands and interference of the 

neurotrophic factors retrograde axonal transport to the cell bodies have reduced the 

survival rate of spinal motoneurons following the brachial plexus avulsion injury. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1  The Anatomy of Brachial Plexus in Rats 

 

Most of the experimental studies on spinal cord and peripheral nerve injuries were 

using rats sample.  Although there was a clear homology with the elements of the 

brachial plexus in the rat and in man, the origin of the different terminal and 

collateral branches were found to be different in these two species (Pais et al., 2010).  

The rat the spinal cord is made up of 34 segments: 8 cervical (named C1 to C8), 13 

thoracic (T1 to T13), 6 lumbar (L1 to L6), 4 sacral (S1 to S4), and 3 coccygeal (Co1 

to Co3).  A brachial plexus morphology study in 30 rats by Angelica-Almeida et al. 

(2013) demonstrated that brachial plexus was composed of branches originating from 

the ventral aspect of C4 to C8 and T1.  In 57% of cases, the ventral aspect of T2 

established an anastomosis with the ventral aspect of T1, thus contributing to the 

formation of the brachial plexus.  This branch from T2, as well as the branch from 

C4 to the brachial plexus, was smaller than the remaining branches that formed the 

roots of the plexus.  The brachial plexus roots emerged between the anterior and 

middle scalene muscles, forming a flattened plexus below the clavicle.  The lateral, 

medial and posterior cords of the plexus were not clearly seen compared to those in 

human.  The median nerve was the thickest terminal branch of the brachial plexus in 

rats, and almost always originated from three different roots.  A branch from the 

second and/or the third intercostal nerve to the medial brachial and medial 

antebrachial cutaneous nerves was found in 87% of cases.  Figure 2.1 shows the 
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schematic diagram of the anatomy of brachial plexus in rat.  Plate 2.1 shows the 

branches of brachial plexus in rat and their association with the major arterial trunks. 

 

 

Figure 2.1:  Schematic diagram of the brachial plexus in rat  

(Source:  Angelica-Almeida et al.,2013) 

1- Axillary nerve; 2- Musculocutaneous nerve; 3- Radial nerve; 4- Median nerve; 5- 

Ulnar nerve; 6- Medial brachial cutaneous nerve; 7- Medial antebrachial cutaneous 

nerve; 8- Dorsal scapular nerve; 9- Suprascapular nerve; 10- Nerve to subclavius 

muscle; 11- Upper subscapular nerve; 12- Lower subscapular nerve; 13- 

Thoracodorsal nerve; 14- Long thoracic nerve; 15- Lateral pectoral nerve; 16- Medial 

pectoral nerve. 
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Plate 2.1:  Brachial plexus and the arterial supply in rat 

(Source:  Angelica-Almeida et al.,2013) 

Ventral aspect of a right forepaw dissection showing several of the terminal and 

collateral branches of the brachial plexus, and their association with several major 

arterial trunks (4X magnification).  1- Axillary nerve; 2- Musculocutaneous nerve; 3- 

Radial nerve; 4- Median nerve; 5- Ulnar nerve; 6- Medial brachial cutaneous nerve; 

8- Dorsal scapular nerve; 9- Suprascapular nerve; 10- Nerve to subclavius muscle; 

11- Upper subscapular nerve; 12- Lower subscapular nerve; 15- Lateral pectoral 

nerve; 16- Medial pectoral nerve; 18- Axillary artery; 19- Brachial artery; 20- 

Acromial arterial trunk. 
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The arterial supply to the BP plexus was seen to derive directly or indirectly from the 

vertebral, axillary, brachial, and median arteries, as well as from arteries arising 

directly from the aortic arch, and from the acromial and cervical arterial trunks.  The 

venous drainage followed a similar path to the homonymous arterial structures, 

draining ultimately in the median, brachial, axillary and cephalic veins 

 

2.2  The Anatomy of Ventral Roots, Dorsal Roots and Spinal Cord-Spinal Nerve 

Junction in Rats 

 

The spinal cord is divided into spinal cord segments.  Each segment gives rise to 

paired spinal nerves.  Ventral and dorsal spinal roots arise as a series of rootlets 

(Plate 2.2).  A spinal ganglion is present distally on each dorsal root.  Each ventral 

root (also named the anterior root, radix anterior, radix ventralis, or radix motoria) is 

attached to the spinal cord by a series of rootles that emerge from the ventrolateral 

sulcus of the spinal cord.  Unlike the dorsal root fibers that are arranged in a neat line 

at their emergence from the spinal cord, ventral root fibers form an elliptical area 

named the anterior root exit zone (AREZ).  The ventral roots predominantly consist 

of efferent somatic motor fibers (thick alpha motor axons and medium-sized gamma 

motor axons derived from nerve cells of the ventral column (Watson et al., 2009).  

Each dorsal root (also known as the posterior root, radix posterior, radis dorsalis or 

radiz sensoria) is attached to the dorsolateral sulcus of the spinal cord by a series of 

rootlets arranged in a line, the dorsal root entry zone (DREZ).  In the experimental 

study using rat model, the avulsion surgery was done by separating both the ventral 

and dorsal roots at the junction between their attachment to the spinal cord, which 

were the AREZ and DREZ (Watson et al., 2009).   
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Plate 2.2:  Dorsal and ventral roots of spinal nerves 

(Source:  Watson et al., 2009) 

This is a dissection showing the ventral surface of the spinal cord and the ventral and 

dorsal rootlets.  Groups of rootlets form the dorsal and ventral roots of each spinal 

nerve.  The dura and arachnoid have been removed to expose the spinal cord.  The 

junction between spinal cord and ventral root (anterior root exit zone, AREZ) is 

labeled **. 

 

 

 

 

 

 

 

 

 

*
* 
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The spinal cord gray matter is made up of neuronal cell bodies, dendrites, axons, and 

glial cells.  The neurons are mostly multipolar, but vary greatly in size.  Microscopic 

analysis of the spinal gray matter reveals ten different cytoarchitecture layers of cells 

from dorsal to ventral, which are the laminae of Rexed.  Lamina IX, located at the 

base of the ventral horn, is the site of the motoneurons of the spinal cord (Plate 2.3).  

The α-motoneurons, whose axons innervate striated muscles, are the largest of all 

cells in the spinal cord and are usually star-shaped.  Amongst these large cells, some 

small γ-motoneurons which innervate contractile elements of the muscle spindles are 

also found (Watson et al., 2009). 

 

 

Plate 2.3:  Histological section across C7 spinal segment in rat 

(Source:  Watson et al., 2009) 

The red circle indicates the location of lamina IX.  The blue circle indicates the 

anterior root exit zone, AREZ. 
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2.3  Brachial Plexus Injury 

 

Brachial plexus injury (BPI) is a severe neurologic injury that causes significant 

functional impairment of the affected upper limb.  The most common cause of BPI is 

road traffic accidents with most of the victims being young males (Shin et al., 2010; 

Songcharoen, 2008).  Other reported traumatic causes include sport injuries, 

accidents at work, penetrating injuries, gunshot wounds, and iatrogenic causes (for 

example, patient malpositioning during surgery).  Another common cause of BPI is 

birth palsy (Shin et al., 2010).  The majority of obstetric BPI involves the upper 

brachial plexus, for example the Erb or Duchenne palsy.  Lower type obstetric BPI 

(Klumpke palsy) is rare.  Tumors, irradiation, and congenital abnormalities such as 

cervical ribs can be nontraumatic causes of brachial plexopathy. 

 

BPI is caused by severe traction force exerted on the upper limb, resulting in 

complete or partial motor paralysis.  An upper brachial plexus lesion involves spinal 

nerves C5 and C6 and leads to paralysis of the shoulder muscles and biceps.  When 

the damage extends to spinal nerve C7, some of the wrist muscles are also impaired.  

A lower brachial plexus lesion involves spinal nerves C8 and T1 leads to paralysis of 

the forearm flexor and the intrinsic muscles of the hand (Cardenas-Mejia et al., 

2008).   

 

 

 

 

 



10 

 

2.3.1  Classification of Brachial Plexus Injury 

 

Adult BPI remains a dilemma to many surgeons, especially when planning to 

reconstruct cases of total root avulsion.  Different degrees and different levels of 

injury require different approaches of reconstruction.  Chuang (2010) classified 

brachial plexus injury into 4 levels as shown in Table 2.3.1. 

 

Table 2.3.1:  Chuang’s classification of brachial plexus injury 

Type of Injury Description 

Level 1 Preganglionic root injury including spinal cord, rootlets, and root 

injuries. 

 

Level 2 Postganglionic spinal nerve injury limiting the lesion to the 

interscalene space and proximal to the suprascapular nerve. 

 

Level 3 Preclavicular and retroclavicular BPI including trunks and 

divisions. 

 

Level 4 Infraclavicular BPI including cords and terminal branches 

proximal to the axillary fossa. 
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2.3.2  Management of Brachial Plexus Injury 

 

Factors that would determine the choices of treatment in BPI include: i) the degree of 

damage, ii) the site of injury, iii) the number of roots involved, iv) the time interval 

between the injury and the surgical procedure, and V) the patient‟s age and 

occupation.  Among these, the degree of damage and the site of injury are the most 

important factors (Doi, 2008).  Management of BPI can be either conservative or 

surgical.  Representative surgical procedures include neurolysis, nerve grafting, 

nerve transfer, and other reconstructive procedures involving the transplantation of 

various structures (Cardenas-Mejia et al., 2008; Doi, 2008).   

 

Preganglionic injuries are usually considered not amenable to repair; consequently, 

the functions of some denervated muscles are restored with nerve transfers.  In nerve 

transfer, the donor nerve is attached to the ruptured distal stump, sacrificing the 

original function of the nerve for more beneficial functions in the upper limb 

(Rankine, 2010).  It is generally agreed that the top priority of nerve repair is 

restoration of biceps muscle function and the second goal is reanimation of shoulder 

function (Chuang, 2010; Doi 2008).  Intercostal nerve is frequently used as the donor 

nerve transferred to the musculocutaneous nerve to regain elbow flexion.  Functional 

recovery of the shoulder is largely achieved with transfer of spinal accessory nerve to 

the suprascapular nerve.  Feng et al. (2010) reported nerve transfer of contralateral 

C7 to lower trunk via a subcutaneous tunnel across the anterior surface of chest and 

neck in 4 patients with total brachial plexus avulsion and the procedure was proved 

to be a safe and feasible.  Compared with the traditional transfer of the contralateral 
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C7 to the median nerve, it might help patients gain better restoration of wrist flexion, 

finger flexion, and hand sensation. 

 

In postganglionic injury with disruption of the nerve fibre, it is repaired with nerve 

grafting.  The damaged segment is excised and nerve autograft is placed between the 

two nerve ends (Chuang, 2010).  If the postganglionic lesion in continuity is non-

degenerative or the fascicles are still intact, spontaneous recovery is usually expected 

with conservative management.  Whereas postganglionic lesion in continuity of 

degenerative type with damaged fascicles, it is treated with nerve grafting.  Patient 

with severe BPI should undergo an appropriate reconstructive procedure before 

denervated muscles become irreversibly atrophy, otherwise the patient will no longer 

a good candidate for primary nerve repair (Rovak and Tung, 2009). 

 

2.3.3  Surgical Outcome in Brachial Plexus Avulsion Injury 

 

Avulsion of brachial roots from the spinal cord is a devastating injury with a bleak 

prognosis.  Patients with preganglionic type of BPI have been reported with poorer 

surgical outcome (Rovak and Tung, 2009; Terzis et al., 2009).  Experimental studies 

with implantation of avulsed ventral roots in rats, cat, and chimpanzee were shown to 

promote motor recovery.  This is because axons from spinal cord motoneurons can 

grow into ventral roots and peripheral nerves (Yang et al., 2008).  However, the 

clinical usefulness of reimplantation in patient with brachial roots avulsion is not 

clear.  The current practice of surgical repair of brachial plexus avulsion by 

reimplantation of avulsed roots via a peripheral nerve graft provides a small degree 

of motor recovery; however, useful hand function is mostly not restored in adult 
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patients.  There is no recovery of sensation, although pain is usually alleviated for the 

reimplanted segments (Rankine, 2010). 

 

2.4 Molecular Pathogenesis of Post Traumatic Spinal Motoneurons 

Degeneration  

 

Much of the spinal tissue degeneration that occurs following spinal cord injury (SCI) 

is due to secondary injury processes that are triggered by the primary mechanical 

trauma.  The events of the secondary injury phase can be divided into early and 

delayed stages (Kuzhandaivvel et al., 2011; Donnelly and Popovich, 2008).  The 

early stage of secondary injury is thought to start with excitotoxic damage due to 

massive release of glutamate together with a pathological cascade comprising nitric 

oxide, free oxygen radicals, and metabolic dysfunction due to ischemia/hypoxia, 

energy store collapse, acidosis, and edema triggered by loss of vascular tone 

autoregulation.  Later, macrophage infiltration and initiation of glial scar occur 

(Hagg and Oudega, 2008; Donnelly and Popovich, 2008).   

 

This early stage of secondary injury starts minutes after primary insult and can lasts 

up to weeks after injury.  Extracellular glutamate levels are known to increase 

transiently within the first 3 hours after SCI, with a likely second wave of glutamate 

release 2 to 3 days after injury, probably due to delayed myelin destruction that 

compromises nearby axon integrity.  The over-stimulation of glutamate receptors has 

been reported to contribute to neuronal and glial cell death after experimental SCI 

(Hagg and Oudega, 2008).     
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The delayed stage of secondary injury starts 2 weeks to 6 months after the insult, 

glial scarring continues together with intraspinal cyst formation.  Even later, 

profound pathological changes affect spinal networks through Wallerian 

degeneration, demyelination, and aberrant plasticity with circuit rewiring leading to 

dysfunction like chronic pain and spasticity (Kuzhandaivel et al., 2011; Donnelly and 

Popovich, 2008). 

 

2.4.1  Nitric Oxide Synthase 

 

Nitric oxide (NO) is a gaseous neurotransmitter in central nervous system (CNS) and 

peripheral nervous system (PNS), and is able to diffuse across the cell membrane.  

NO is involved in several physiological processes including smooth muscle 

relaxation, inflammation, vasodilatation, neurogenesis, synaptic plasticity, long-term 

potentiation, and nociceptive transmission (Freire et al., 2009).  Low levels of NO 

production are important in prevention of cells apoptosis.  However, elevated levels 

secondary to increased NO production result in direct cytotoxicity (De Palma et al., 

2008).  Reaction between this NO and superoxide radicals (O2
-
) will produce a type 

of reactive oxidative species (ROS) called peroxynitrite (PN).  PN has been proposed 

to be a key contributor to post-traumatic oxidative damage, mainly because of its 

highly reactive decomposition products nitrogen dioxide (
·
NO2), hydroxyl radical 

(
·
OH) and carbonate radical (CO3

·−
).  These PN-derived radicals can oxidize proteins 

and nitrate tyrosine residues, induce cell membrane lipid peroxidation, cause single-

strand DNA breaks, and also inhibit mitochondrial respiration (Alvarez and Radi, 

2009). 
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The enzyme nitric oxide synthase (NOS) catalyzes the production of nitric oxide 

from L-arginine and oxygen, and different isoforms of the enzyme exist in different 

tissues.  NO is constitutively produced by neuronal NOS (nNOS) and endothelial 

NOS (eNOS) in a calcium-dependent manner, and is also formed by an inducible 

form of the enzyme (iNOS), which may have detrimental effects on the cell 

(Miclescu and Gordh, 2009).  Neuronal NOS is found in both the CNS and PNS.  

Neuronal NOS has been specifically localized to spinal cord dorsal horn neurons and 

dorsal root ganglia cells, and is upregulated in conditions of inflammatory and 

neurogenic pain (Schmidtko et al., 2009). 

 

Peripheral nerve lesions and spinal cord injury have been shown to induce 

upregulation of all NOS isoforms, as demonstrated by NADPH-diaphorase 

histochemistry.  Such increases in NOS expression result in enhanced expression of 

NO in the nerve microenvironment and induce mitochondrial dysfunction as well as 

neuronal cells death (Yang et al., 2008).   

 

2.4.2  Free Radical-Induced Lipid Peroxidation 

 

Extensive evidence has shown that free radical-induced lipid peroxidation (LP) plays 

a major role in the acute pathophysiology of SCI (Alvarez and Radi, 2009).  LP 

begins with the oxidation of polyunsaturated fatty acids (e.g., arachidonic, linoleic, 

and docosahexaenoic acids) in the cell, or in membrane phospholipids at their allylic 

carbon.  The peroxidized polyunsaturated fatty acids undergo phospholipase-

mediated hydrolysis and consequent disruption of the membrane phospholipid 

architecture, and loss of the function of phospholipid-dependent enzymes, ion 
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channels, and structural proteins.  However, in addition to LP-induced membrane 

damage, the peroxidized fatty acids ultimately give rise to aldehydic breakdown 

products, including 4-hydroxy-2-nonenal (4-HNE) and 2- propenal (acrolein).  These 

aldehydes are highly reactive with cellular proteins via Schiff base and Michael 

addiction reactions with basic (for example, lysine and histidine) and sulfhydryl (for 

example, cysteine) containing amino acids (Stevens and Maier, 2008). These 

reactions have been shown to impair the function of a variety of cellular proteins, 

which could also contribute to post-traumatic secondary injury and the associated 

pathophysiology.  Sources of post-traumatic reactive oxygen species (ROS) that 

result in toxic LP-inducing secondary injury include iron-dependent Fenton 

reactions, which result in hydroxyl radical (·OH) production and peroxynitrite 

(PON)-derived free radicals (·OH, ·NO2, and ·CO3) 

 

2.5  Mitochondrial Oxidative Phosphorylation Activity 

 

The predominant physiological function of mitochondria is the generation of ATP by 

oxidative phosphorylation.  Additional functions include the generation and 

detoxification of reactive oxygen species, involvement in some forms of apoptosis, 

regulation of cytoplasmic and mitochondrial matrix calcium, synthesis and 

catabolism of metabolites and the transport of the organelles themselves to correct 

locations within the cell (Ramzan et al., 2010).  

 

Almost all functions of mitochondria are either directly or indirectly linked to the 

working of oxidative phosphorylation machinery and energy coupling.  Most part of 

this machinery is in the inner mitochondrial membrane and comprises the four 
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electron transfer chain complexes (complexes I, II, III, and IV), ATP synthase 

(complex V), NADH dehydrogenase (ubiquinone), and cytochrome c as electron 

carriers (Magrane and Manfredi, 2009; Brand and Nicholls, 2011).  Complex IV or 

cytochrome c oxidase (CcO) is the terminal enzyme of the electron transport chain, 

which catalyzes the final step of electron transfer from reduced cytochrome c to 

oxygen to produce water (H2O).  CcO is also one of the three proton pumps along 

with complexes I and III that generate the proton gradient across the inner 

mitochondrial membrane, which powers the ATP synthesis.  A very common 

approach to address mitochondrial bioenergetics dysfunction is to measure the 

expression, concentration or maximum activity of a few candidate electron transport 

complexes or metabolic enzymes, such as complex I and complex IV (Acin-Perez et 

al., 2011; Brand and Nicholls, 2011). 

 

2.5.1  Cytochrome c Oxidase 

 

CcO in mammals contains 13 subunits of which the 3 catalytic subunits are encoded 

by the mitochondrial genes.  The remaining 10 subunits, which are synthesized in 

cytosol and imported into mitochondria, are coded by the nuclear genome.  These 

subunits are believed to provide structural stability to the complex as well as 

involved in the regulation of enzyme activity.  CcO contains two heme groups (heme 

a and a3) and two copper centers (Cu
2+

 A and Cu
2+

 B) as catalytic centers and 

handles more than 90% of molecular O2 respired by the mammalian cells and 

tissues.  CcO acts as the rate-limiting step of the respiratory chain and its activity is 

an indicator of the oxidative capacity of the cells (Acin-Perez et al., 2011). 
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2.5.2  Mitochondrial Transportation 

 

Mitochondrial function, including aerobic production of ATP and calcium buffering, 

is vital to the health of the neuron, and therefore neurons must have a proper 

intracellular distribution of mitochondria.  Mitochondria are enriched at sites of high 

ATP utilization and Ca
2+

-buffering demands, such as cell bodies, nodes of Ranvier, 

and synaptic terminals (Reeve et al., 2008).  Mitochondria are actively transported to 

areas of high metabolic demand by the motors kinesin and dynein in a calcium 

regulated process involving the protein Milton and the mitochondrial Rho GTPase.  

In addition, mitochondria are also transported along the cell processes in variable 

speed with intracellular signalling (Magrane and Manfredi, 2009).  The direction of 

mitochondrial transport has been proposed to correlate with their bioenergetics state: 

mitochondria with normal membrane potential tend to move toward the periphery 

(anterograde movement), whereas loss of membrane potential results in increased 

retrograde transport (Srinivasan and Avadhani, 2012).  Defects in mitochondrial 

transport would lead to altered distribution of mitochondria along the axon, in turn 

leading to an inability to meet local ATP demands and/or toxic changes in calcium 

buffering. 
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2.5.3  Mitochondrial Dysfunction 

 

The mitochondria are present in a physiological environment, are exposed to a 

relevant mix of substrates and ions and interact with the cytoplasm, plasma 

membrane and other organelles and cell structures.  The structure and function of the 

enzyme are affected in a wide variety of diseases including cancer, 

neurodegenerative diseases, myocardial ischemia or reperfusion, bone and skeletal 

diseases, and diabetes (Cooper and Brown, 2008).  Except in cases of genetic defects, 

it is commonly seen that mitochondrial dysfunction is a cumulative effect of failure 

of more than one complex of the electron transport chain (Mahad et al., 2009).  Some 

of the common mechanisms of CcO dysfunction include assembly defects, covalent 

modifications and loss of subunits, disassembly of super complex organization and 

direct inhibition of enzyme activity.  The impact of these events includes energy 

crisis due to lower ATP production, lactic acidosis, and increased formation of ROS 

in mitochondria (Ramzan et al., 2010). 

 

Four different gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide 

(H2S), and hydrogen cyanide bind to CcO and invariably inhibit the enzyme activity.  

NO has been established as an important second messenger, which is involved in 

diverse physiological and pathological functions.  Although soluble guanyl 

atecyclase is one of its most prominent targets, NO interacts with metal centers of 

many proteins.  The inhibition of CcO by NO is thought to be reversible.  Since O2 

and NO compete for the same binding site in CcO, endogenously generated NO can 

reach concentrations that are inhibitory to CcO under physiological oxygen levels 

(Srinivasan and Avadhani, 2012). 
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2.5.4  Mitochondria Dysfunction and Oxidative Stress 

 

Mitochondria are the principal source of cellular reactive oxygen species (ROS).  

ROS, particularly superoxide anions, are formed invariably as by- products of the 

electron transport chain and other redox reactions in mitochondria through one-

electron reduction of molecular oxygen (O2).  Superoxide is then converted to 

hydrogen peroxide (H2O2) by superoxide dismutases (SODs), present both within the 

mitochondria and in the cytosol (Ferreira et al., 2010).  Depending on their type and 

rate of production, ROS have both physiological roles and pathological effects in the 

context of mitochondrial as well as whole cell function.  Excessive production of 

ROS and the associated cytotoxic effects are generally called oxidative stress 

(Kawamata and Manfredi, 2010; Waldbaum and Patel, 2010).  Peroxidation of 

membrane lipids, direct oxidation of amino acids, and oxidative cleavage of peptide 

bonds in proteins and DNA damage are some of the hallmarks of oxidative stress and 

are responsible for many of the disease symptoms.  Although several redox reactions 

take place in mitochondria, only a few of them have been shown to generate 

detectable oxygen free radicals.  While complexes I and III are the major sites of 

ROS formation, recent reports show that complex II can readily generate superoxide 

radicals in the absence of electron acceptors.  A volume of evidence suggests that 

CcO dysfunction is invariably associated with increased mitochondrial ROS 

production and cellular toxicity (Zambonin et al., 2010). 
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2.6  Axonal Transportation and Regeneration 

 

The unique morphology of neurons, highly polarized cells with extended axons and 

dendrites, makes them particularly dependent on active intracellular transport.  The 

transport of proteins, RNA, and organelles over long distances requires molecular 

motors that operate along the cellular cytoskeleton (Perlson et al., 2010; Stevens and 

Maier, 2008).  Two major roles for axonal transport are supply/clearance and long-

distance signalling.  Supply of newly synthesized proteins and lipids to the distal 

synapse maintains axonal activity, whereas misfolded and aggregated proteins are 

cleared from the axon by transport to the cell soma for efficient degradation.  Active 

transport of mitochondria also supplies local energy needs.  The second major role 

for active transport is the communication of intracellular signals from the distal axon 

to the soma, allowing the neuron to respond to changes in environment.  While 

defects in either supply or clearance can readily be predicted to be deleterious to the 

health of the neuron, there has been a growing appreciation that the propagation of 

stress-signaling along the axon could be a key neurodegenerative pathway leading to 

cell death (Yin et al., 2008). 

 

The proximal cause of cell death in affected neurons possibly is that inhibition of 

transport leads to defects in the localization or delivery of essential cargos.  For 

example, failure to deliver mitochondria to areas of need could induce cell death 

through energy deprivation. Or, disruption of lysosomal and/or autophagosome 

motility could lead to the toxic build-up of aggregated proteins or defective 

organelles (Magrane and Manfredi, 2009).  Another hypothesis is that the key defect 
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in axonal transport is not a disruption in bulk supply/clearance, but instead is an 

alteration in cell signalling (Amiri and Hollenbeck, 2008). 

 

Axons in the central nervous system (CNS) do not regrow after injury, whereas 

lesioned axons in the peripheral nervous system (PNS) regenerate.  After injury, the 

formation of a growth cone at the tip of a transected axon is a crucial step during 

subsequent axonal regeneration.  On the contrary, lesioned CNS axons form 

swellings termed “retraction bulbs” at the tip of their proximal stumps, which are 

oval structures and lack a regenerative response (De Vos et al., 2008).  Growth cones 

contain the machinery for movement and axonal extension consisting of a complex 

interplay of different intracellular events.  For example, mitochondria concentrate in 

the tip of the growing axon to provide energy necessary for axon formation.  Axon 

growth also depends on continuous membrane supply from the soma to support the 

surface expansion of the growing axon.  Notably, microtubules and their dynamic 

rearrangements are essential for axon outgrowth.  Retraction bulbs of injured CNS 

axons increase in size over time, whereas growth cones of injured PNS axons remain 

constant.  Retraction bulbs contain a disorganized microtubule network, whereas 

growth cones possess the typical bundling of microtubules.  Microtubules play a key 

role in axonal growth and guidance.  They form the backbone of the axonal shafts 

and core domain of growth cones, giving stability to those structures and enabling 

organelle transport (Mahad et al., 2009).  In addition, the dynamic microtubules 

protrude through the peripheral regions of growth cones, enabling axon elongation.  

Disruption of microtubules in growth cones transforms them into retraction bulb-like 

structures whose growth is inhibited.  Thus, the stability and organization of 
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microtubules define the fate of lesioned axonal stumps to become either advancing 

growth cones or non-growing retraction bulbs. 

 

2.7  Neurotrophic Factors 

 

Study by Yin et al. (2008) showed that motor nerves are superior to sensory nerves 

for promoting motoneuron survival and axonal regeneration after root avulsion.  This 

is partly caused by the higher expression of brain-derived neurotrophic factor 

(BDNF) and glial cell line-derived neurotrophic factor (GDNF) in motor nerves. 

 

Motoneurons require neurotrophic factors for survival during embryonic 

development and after injury in adult animals (Yin et al., 2008).  Neurotrophic 

factors for motoneurons are classified into families according to their structures.  

They include neurotrophins, cytokines, the transforming growth factor beta 

superfamily (TGF-β), and many others (Sendtner et al., 2009). 

 

BDNF and GDNF are well-known neurotrophic factors for motoneurons in the 

neurotrophin and transforming growth factor-β families, respectively.  The BDNF 

signals through tropomyosin receptor kinase B (TrkB) receptor, and/or low affinity 

nerve growth factor receptor (p75 neurotrophin receptor), whereas GDNF uses 

GDNF family receptors (GFR-α1 and c-ret).  They promote motoneuron survival 

both in vitro and in vivo.  Numerous studies have demonstrated that they also 

promote axonal regeneration (Yin et al., 2008). 
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2.8  Taxol 

 

Taxol (also known as Paclitaxel) has been approved by the U.S. Food and Drug 

Administration as an chemotherapeutic agent for the treatment of ovarian and breast 

cancer (Piccart et al., 2010; Rowinsky et al., 2009).  Currently, it is also being used 

to treat other tumors including non-small cell lung carcinoma and Kaposi‟s sarcoma.  

It is originally derived from the bark of the western yew tree called Taxus brevifolia.  

Compared to other oncogenic agents, the clinical development of taxol progressed 

slowly because of the small amounts of drug obtainable from the crude bark extract 

and its poor water solubility (Piccart et al., 2010). 

 

Taxol is a diterpene alkaloid and it‟s chemical name is 5β,20-Epoxy-

l,2α,4,7β,10β,13α-hexahydroxytax-l l-en-9-one 4,10-diacetate 2-benzoate 13-ester 

with (2R,3S)-N-benzoyl-3-phenylisoserine.  It is a white to off-white crystalline 

powder with the empirical formula C47H51NO14 and a molecular weight of 853.9.  It 

is highly lipophilic and melts at around 216-217° C (Sparreboom et al., 2008).  

Molecular structure of Taxol is shown in Figure 2.8. 

 

 

 

 

 

 

 


