ISOLATION AND EXPRESSION OF HEMOLYSIN E (HIVE)

FROM Salmonella enterica serovar Typhi (S. Typhi) ISOLATES

RASYADA A. RAHMAN @ RAHIM

UNIVERSITI SAINS MALAYSIA

ISOLAT	ION AND	EXPRESSION	OF HE	MOLYSIN	\mathbf{E}	(HlvE)

FROM Salmonella enterica serovar Typhi (S. Typhi) ISOLATES

by

RASYADA A. RAHMAN @ RAHIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

ACKNOWLEDGMENT

Alhamdulillah.

I would like to express appreciation and gratitude to my supervisor, Dr. Maizan Mohamed for her guidance, patience and support in my studies. Huge thanks also go to my co-supervisor, Assoc. Prof. Dr. Shaharum Shamsuddin who is very compassionate, encouraging, and supportive. Thank you also to my field supervisor, Assoc. Prof. Dr. Rochman Naim for the advice, guidance and for giving me the opportunity to be here at INFORMM.

To other lecturers, Prof. Rusli Ismail, Assoc. Prof. Phua Kia Kien, Assoc. Prof. Tan Soo Choon, Dr. Aziah Ismail, Dr. Khairul Mohd Fadzli Mustaffa, Dr. Hamid Fauzi, Dr. Fazia Adyani Ahmad Fuad, thank you for the motivation and advice. I appreciate the cooperation that I received at Molecular Laboratory of Pusat Pengajian Sains Kesihatan (PPSK), USM especially Nurul Aini Samsuddin, Tee Chee Wei, Wong Weng Kin, Maisara Ab. Samad and Hania. I wish to express my thank to my best friends, Nor Faizah Abu Bakar and Adibah Ahamad Bahtiar for the endless motivation, great support and for being such great listeners. Thank you to Mohd Farid Hussin, Aziana Ismail, Nur Eliyana Mohd Redhuan, Siti Mariam Mawarni Ramli, Nurul Aqmar Siam, Nik Farhana Nik Mustafa, Wan Nur Liyana Wan Mathshor, Nor Fadhilah Kamaruzzaman, Faizah Harun, Wan NurFahizul Izzati Wan Alias, Hemaniswarri Dewi, Goay Yuan Xin, Chin Kai Ling, Eliyana Saffie, Julia Abdullah, Nor Amalina Zulkiply, Faizul Rahman Sjafri, Nur Sabrina Kamarulzaman, Roziana, Haslizai Hassan, Norhafiza Nasir, Noralwiah Hj Ab Karim, Zalani Mamat, Nur Azean Ismail, Amy Amilda Anthony, Yusminiza Yusof, Rosmawati Zakaria,

Elis Rosliza Mohd Adzmi, Nor Irma Mohd Nasir, Badrul Syam Mat Zainuddin, Mohd Nuramin Ahmad, Ahmad Fathi Mustapai, Basyirah Ghazali, Mohammad Hafiznur Yunus, Zafri Mohammad, Mohd Nasir Yusuf, Mohd Khairi Mohd Nor, Mohd Hafiz Mohamad, all students, support staff and administrative staff at INFORMM. I really appreciate all your help. Thanks!

Finally, I would like to thank my parents and family members for their do'a, love, encouragement and support during my study.

This research was financially funded by the Research University grant. Thank you also goes to USM for providing me the USM fellowship to support my study.

TABLE OF CONTENTS

ACKI	NOWLEI	OGMENT	ii
TABI	LE OF CO	ONTENTS	iv
LIST	OF TABI	LES	X
LIST	OF FIGU	RES	xi
LIST	OF SYM	BOLS AND ABBREVIATIONS	. xiii
ABST	ΓRAK		. xiv
ABST	TRACT		. xvi
CHAI	PTER 1		18
INTR	ODUCTI	ON	18
1.1	Salmo	nella and disease: An overview	18
1.2	2 Typho	id fever	19
1.3	Salmo	nella enterica serovar Typhi	20
1.4	Labora	atory diagnosis of typhoid fever	23
	1.4.1	Identification of S. Typhi by culture method	23
	1.4.2	Serological diagnostic methods	23
1.5	S Pathog	genicity of S. Typhi	24
1.6	Salmo	nella Pathogenecity Island (SPI)	26
1.7	7 Functi	on of HlyE in S. Typhi pathogenesis	28
1.8	B Peripla	asmic protein releasable by osmotic shock	30
1.9	Ration	ale of study	32
	1.9.1	General objective	35
	1.9.2	Research objectives	35
CHAI	PTER 2		37
MAT	ERIALS .	AND METHODS	37
2.1	Materi	als	37
	2.1.1	Bacterial isolates	37
	2.1.2	Cloning and expression vector	39
	2.1.3	Sera samples	39
	2.1.4	U937 human monocytic cell line	39
2.2	2 Media	and chemicals	39
	2.2.1	Media preparation for culture purposes	42
	2.2.1 (a)	Nutrient broth	42

2.2.1 (b)	Nutrient agar	42
2.2.1 (c)	Luria Bertani (LB) broth	42
2.2.1 (d)	LB agar	42
2.2.1 (e)	LB agar with ampicillin or kanamycin	43
2.2.1 (f)	Salmonella Shigella (SS) agar	43
2.2.1 (g)	Blood agar	43
2.2.1 (h)	Triple Sugar Iron (TSI) agar	43
2.2.1 (i)	Urea agar base	43
2.2.1 (j)	Simmons citrate agar	44
2.2.1 (k)	Methyl Red Vogas-Proskauer (MRVP) medium	44
2.2.1 (1)	Sulphate Indole Motility (SIM) medium	44
2.2.1 (m)	Sodium hydroxide (NaOH) (3.0 M)	45
2.2.2	Buffer for isolation of periplasmic protein	45
2.2.2 (a)	20 mM Tris-HCl, pH 8.0	45
2.2.2 (b)	Resuspend buffer, pH 8.0	45
2.2.3	Buffer for cloning and expression	45
2.2.3 (a)	Agarose 1% (w/v)	45
2.2.3 (b)	Cell lysis buffer (7 M urea, 20 mM HEPES, pH 7.0)	46
2.2.3 (c)	1M IPTG stock solution	46
2.2.3 (d)	Tris (1.0 M)	46
2.2.3 (e)	Ethylenediaminetetracetic Acid (EDTA) (0.5 M)	46
2.2.3 (f)	Tris EDTA (TE) buffer (10 mM Tris, 1 mM EDTA)	47
2.2.3 (g)	Phosphate buffered saline (PBS) (1X, pH 7.4)	47
2.2.3 (h)	Ampicillin stock solution (100 mg/mL)	47
2.2.3 (i)	Kanamycin stock solution (50 mg/mL)	47
2.2.3 (j)	100 mM Magnesium Chloride (MgCl ₂)	47
2.2.3 (k)	100 mM Calcium Chloride (CaCl ₂)	48
2.2.4	Buffer preparation for SDS-PAGE and Western blot	48
2.2.4 (a)	Resolving gel buffer, pH 9.3	48
2.2.4 (b)	Stacking gel buffer, pH 6.8	48
2.2.4 (c)	Ammonium persulfate (AP) 20%	49
2.2.4 (d)	Sample buffer, pH 6.8	49
2.2.4 (e)	Running buffer	49
2.2.4 (f)	Coomassie blue stain	49
2.2.4 (g)	Coomassie destaining solution	49

	2.2.4 (h)	Western blot transfer buffer	50
	2.2.4 (i)	3% blocking solution	50
	2.2.5	Preparation of reagents for histadine-tagged protein purification	50
	2.2.5 (a)	Binding buffer	50
	2.2.5 (b)	Washing buffer	50
	2.2.5 (c)	Elution buffer	51
	2.2.6	Buffer and media preparation for cell culture	51
	2.2.6 (a)	Phosphate buffered saline (PBS) (1X, pH 7.2)	51
	2.2.6 (b)	Complete media	51
2.3	3 Metho	ods	52
	2.3.1	DNA extraction and PCR amplifications	52
	2.3.1.1	Reconfirmation of isolates of <i>S</i> . Typhi from the glycerol stock	52
	2.3.1.2	2 Genomic DNA extraction	52
	2.3.1.3	3 Agarose gel electrophoresis	53
	2.3.1.4	PCR screening for <i>aroC</i> and <i>hlyE</i> of <i>S</i> . Typhi isolates	54
	2.3.1.5	5 DNA purification from PCR product and enzyme reaction mixtures	54
	2.3.1.6	Reconfirmation of <i>hlyE</i> by small fragments PCR and sequencing	55
	2.3.2	Assays for hemolysin activity	58
	2.3.2.1	Haemolytic display on blood agar	58
	2.3.2.2	2 Disk-diffusion assay on blood agar	58
	2.3.3	Isolation of periplasmic protein by osmotic shock	59
	2.3.4	Construction of recombinant plasmid	60
	2.3.4.1	Amplication of <i>hlyE</i> by PCR for cloning	60
	2.3.4.2	2 Gel purification of DNA	62
	2.3.4.3	Restriction enzyme digestion	62
	2.3.4.4	4 Preparation of competent BL21 E. coli cells	63
	2.3.4.5	5 hlyE cloned into pCR2.1-TOPO vector	64
	2.3.4.6	5 Ligation	65
	2.3.4.7	7 Transformation of competent cell	65
	2.3.4.8	8 Plasmid extraction	66
	2.3.4.9	Analysis of recombinant plasmid	67
	2.3	.4.9.1 PCR colony screening	67

2.3	.4.9.2 Restriction endonuclease digestion of DNA	68
2.3	.4.9.3 DNA sequencing	68
2.3.5	Expression of the <i>hlyE</i> gene	68
2.3.5.	I Induction of <i>hlyE</i> with IPTG	68
2.3.5.2	2 Preparation of lysed cells	69
2.3.5.3	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)	70
2.3.5.4	Peptide analyzing by MALDI-TOF/TOF mass spectrometry	71
2.3.5.5	5 Western blot	72
2.3.6	Protein purification	73
2.3.6.	Preparation of samples for protein purification	73
2.3.6.2	2 Immobilized metal affinity chromatography (IMAC)	74
2.3.6.3	Purification of histidine-tagged protein by immobilized Ni ²⁺ absorption chromatography	75
2.3.7	Cytotoxicity assays of mammalian cells	75
2.3.7.	1 Thawing of cells from frozen storage	75
2.3.7.2	2 Sub-culturing of the cells	76
2.3.7.3	3 Cell counting	76
2.3.7.4	4 Cryo-storage of the cells	77
2.3.7.5	5 Seeding of cell and cytotoxicity test	77
2.3.7.6	6 Cell viability and 50% inhibitory concentration (IC ₅₀)	78
CHAPTER 3		80
EXPERIMENT	FAL DESIGN AND RESULTS	80
3.1 PCR s	screening for aroC and hlyE genes in clinical isolates of S. Typhi	80
3.1.1	Screening for aroC gene by PCR	80
3.1.2	Screening for <i>hlyE</i> gene by PCR	82
3.1.3	Confirmation of hlyE PCR product by sequencing	82
3.2 Hemo	lysis activity of S. Typhi isolates	86
3.2.1	Haemolytic display on blood agar	86
3.2.2	Confirmation assay for hemolysis by a modified disk-diffusion assay on blood agar	86
3.2.3	SDS-PAGE analysis of periplasmic protein (crude protein)	89
3.2.4	Haemolytic activity of crude periplasmic protein on blood agar	91
3.2.5	Western blot analysis of periplasmic protein against typhoid sera	93
3.2.6	Protein identification (periplasmic proteins) by mass spectrometry	95

3.3	Produc	tion of recombinant plasmid	105
3	3.1	hlyE cloned into pCR2.1-TOPO (intermediate vector)	105
	3.3.1.1	Amplification of <i>hlyE</i> by PCR	105
	3.3.1.2	PCR screening of positive clones (pCR2.1-TOPO construct)	107
	3.3.1.3	Restriction enzyme digestion of positive clones (pCR2.1-TOPO construct)	107
	3.3.1.4	Confirmation of pCR2.1-TOPO construct by sequencing	110
3	3.2	hlyE cloned into pET50b (expression vector)	113
	3.3.2.1	PCR screening of positive clones (pET50b construct)	113
	3.3.2.2	Restriction enzyme digestion of positive clones (pEThlyT2)	114
	3.3.2.3	Confirmation of pEThlyT2 construct by sequencing	114
3.4	Expres	sion of HlyE recombinant protein	118
3.4		Verification of target recombinant protein by SDS-PAGE analysis	118
3.4		Optimization for the expression of the HlyE recombinant protein	120
	3.4.2.1	Induction of the HlyE recombinant protein at different intervals	120
	3.4.2.2	Induction of the recombinant protein with different incubation temperatures	122
3.4		Determination of immunoreactivity of the expressed recombinant protein by Western blot	124
3.		Protein identification (HlyE recombinant protein) by mass spectrometry	125
3.5	HlyE re	ecombinant protein purification	131
3		SDS-PAGE analysis of fractions collected by performing IMAC technique	131
3	5.2	Verification of fractions collected by Western blot	132
3.6	Cytoto	xicity effects of purified HlyE recombinant protein	135
3.	6.1	24 hours incubation of treatment	135
3.	6.2	48 hours incubation of treatment	137
СНАРТ	ER 4		139
DISCUS	SSION		139
4.1		ce of intact <i>hlyE</i> gene in <i>S</i> . Typhi vaccine strain Ty21a and <i>S</i> . isolates	139
4.2		on of haemolytic activity of <i>S</i> . Typhi isolates using ampicillin-ffusion assay	140
4.3		ce of haemolytic activity in periplasmic proteins of <i>S</i> . Typhi e strain and clinical isolate	142

4.4	Expression of HlyE recombinant protein in <i>E. coli</i> system	144
4.5	Purification of HlyE recombinant protein using IMAC	148
4.6	Cytotoxicity effects of HlyE recombinant protein on U937 human monocytic cell	149
СНАРТ	ER 5	150
CONCL	LUSION AND RECOMMENDATION FOR FUTURE RESEARCH	150
5.1	Recommendation for future research	151
REFER	ENCES	152
LIST O	F ABSTRACT PUBLICATIONS	160

LIST OF TABLES

Table 1.1:	Biochemical tests for differentiation of <i>S</i> . Typhi from related subspecies (adapted from WHO, 2003)	. 22
Table 2.1:	E. coli strains used for cloning and expression study	. 38
Table 2.2:	List of chemicals, reagents and media used in this study	. 40
Table 2.3:	List of primers	. 56
Table 3.1:	Total number of <i>S</i> . Typhi isolates that harbored <i>hlyE</i> and displayed hemolysis on blood agar by ampicillin-disk diffusion assay	. 88
Table 3.2:	Details of the Mascot analysis for 55 kDa protein band from <i>S.</i> Typhimurium. 55 kDa proteins of <i>S.</i> Typhimurium were analysed by MALDI-TOF/TOF. Mass spectra were analysed to identify protein(s) of interest using Mascot sequence matching software with Ludwig NR database. Proteins score greater than 84 is significant (p<0.05)	. 97
Table 3.3:	Matched peptides against fliC Phase 1-l flagellin Salmonella Typhimurium amino acid sequence	. 99
Table 3.4:	Details of the Mascot analysis for 60 kDa protein band from <i>S.</i> Typhi. 60 kDa proteins of <i>S.</i> Typhi were analysed by MALDI-TOF/TOF. Mass spectra were analysed to identify protein(s) of interest using Mascot sequence matching software with Ludwig NR database. Proteins score greater than 84 is significant (p<0.05)	101
Table 3.5:	Matched peptides against fliC Phase 1-1 flagellin Salmonella Typhi amino acid sequence	103
Table 3.6:	Details of the Mascot analysis for recombinant protein. ~74 kDa proteins were analysed by MALDI-TOF/TOF. Mass spectra were analysed to identify protein(s) of interest using Mascot sequence matching software with Ludwig NR database. Proteins score greater than 85 is significant (p<0.05)	127
Table 3.7:	Matched peptides against transcription elongation protein nusA Escherichia coli amino acid sequence	129
Table 3.8:	Raw data, mean value and percentage of cell viability for 24 hours incubation of treatment	136
Table 3.9:	Raw data, mean value and percentage of cell viability for 48 hours incubation of treatment	138

LIST OF FIGURES

Figure 1.1:	Flow chart of methodology	36
Figure 2.1:	Schematic diagram of small fragments for hlyE	57
Figure 2.2:	Location of sense and antisense primers in the <i>hlyE</i> gene coding sequence designed for cloning purposes	61
Figure 3.1:	PCR product of <i>aroC</i> gene amplification resolved on 1% agarose gel electrophoresis	81
Figure 3.2:	PCR product of <i>hlyE</i> resolved on 1% agarose gel electrophoresis.	83
Figure 3.3:	Alignment of <i>hlyE</i> sequence between the vaccine strain Ty21a, two <i>S</i> . Typhi clinical isolates and <i>S</i> . Typhi CT18 (reference sequence) using BioEdit software	85
Figure 3.4:	Hemolysis by S. Typhi on the blood agar plate	87
Figure 3.5:	SDS-PAGE analysis of periplasmic protein (crude protein)	90
Figure 3.6:	Haemolytic activity of crude proteins (periplasmic proteins) on blood agar	92
Figure 3.7:	Western blot analysis of crude protein (periplasmic protein)	94
Figure 3.8:	Amino acid sequence of Phase 1-1 flagellin of <i>S</i> . Typhimurium. The underlined amino acids were the peptides identified in MALDI-TOF/TOF mass spectrometry of 55 kDa protein band from SDS-PAGE	100
Figure 3.9:	Amino acid sequence of Phase 1-1 flagellin (<i>Salmonella</i> Typhi). The underlined amino acids were the peptides identified in MALDI-TOF/TOF mass spectrometry of 60 kDa protein band from SDS-PAGE	104
Figure 3.10:	PCR product of <i>hlyE</i> gene resolved on 1% agarose gel electrophoresis	106
Figure 3.11:	PCR screening of positive clones (pCR2.1-TOPO construct) resolved on 1% agarose gel electrophoresis	108
Figure 3.12:	Restriction enzyme analysis of positive clones (pCR2.1-TOPO construct) resolved on 1% agarose gel electrophoresis	109
Figure 3.13:	Alignment of recombinant pCR2.1-TOPO (clone 2) sequence with S. Typhi CT18 as reference sequence using BioEdit software	112
Figure 3.14:	PCR screening of positive clones (pET50b construct) resolved on 1% agarose gel electrophoresis	115
Figure 3.15:	Restriction enzyme analysis of positive clones (pEThlyT2) resolved on 1% agarose gel electrophoresis	116
Figure 3.16:	Sequence of pEThlyT2 recombinant vector	117

SDS-PAGE analysis of HlyE recombinant protein	119
SDS-PAGE analysis of recombinant pEThlyT2 at several induction intervals	121
SDS-PAGE analysis of recombinant pEThlyT2 induced at different incubation temperatures	123
Western blot analysis of the expressed HlyE recombinant protein.	126
An amino acid sequence of NusA <i>Escherichia coli</i> Peptides identified from Mascot search engine against NusA are underlined	130
SDS-PAGE analysis of the fractions collected by performing IMAC	133
Western blot analysis of the fractions collected from IMAC	134
Cytotoxicity effects of HlyE recombinant protein on U937 cell line at 24 hours	136
Cytotoxicity effects of HlyE recombinant protein on U937 cell line at 48 hours	138
	SDS-PAGE analysis of recombinant pEThlyT2 at several induction intervals SDS-PAGE analysis of recombinant pEThlyT2 induced at different incubation temperatures Western blot analysis of the expressed HlyE recombinant protein An amino acid sequence of NusA Escherichia coli Peptides identified from Mascot search engine against NusA are underlined SDS-PAGE analysis of the fractions collected by performing IMAC. Western blot analysis of the fractions collected from IMAC. Cytotoxicity effects of HlyE recombinant protein on U937 cell line at 24 hours Cytotoxicity effects of HlyE recombinant protein on U937 cell

LIST OF SYMBOLS AND ABBREVIATIONS

AP Alkaline persulfate

bp Base pair

dH₂O Distilled water

DNA Deoxyribonucleic acid

dNTP Deoxynucleotide triphosphates

EDTA Ethylene diamine tetra acetic acid

ELISA Enzyme Linked Immunosorbent Assay

IgA Immunoglobulin A
IgG Immunoglobulin G
IgM Immunoglobulin M

IMAC Immobilized metal affinity chromatography
IPTG Isopropyl-beta-D-thiogalactopyranoside

kb Kilobase kDa KiloDalton

L Liter

mA Milliampere
mg Milligram
mL Milliliter

MW Molecular Weight

nm Nanometer

OD Optical Density

PCR Polymerase Chain Reaction

pH Potential Hydrogeni RE Restriction enzyme

rpm Revolutions per minute

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis

SPI Salmonella Pathogenecity Island

Taq DNA polymerase Thermus aquaticus DNA polymerase

TEMED N, N, N', N'- tetramethylethylenediamine

 $\begin{array}{ccc} UV & & Ultraviolet \\ V & & Voltage \\ \mu L & & Microliter \\ \mu g & & Microgram \end{array}$

PENGASINGAN DAN PENGEKSPRESAN HEMOLISIN E (HIyE) DARIPADA Salmonella enterica serovar Typhi (S. Typhi) ISOLAT

ABSTRAK

Analisa perbandingan proteomik Salmonella enterica serovar Typhi (S. Typhi) dan Salmonella enterica serovar Typhimurium (S. Typhimurium) menunjukkan sekumpulan protein yang diekspres unik terhadap S. Typhi. Salah satu daripada protein tersebut adalah hemolisin E (HlyE). Gen hlyE ini adalah spesifik untuk perumah manusia, tiada atau berubah fungsi dalam S. Typhimurium. Gen hlyE merupakan gen yang terdapat pada 'Salmonella Pathogenecity Island (SPI) 18'. Dalam kajian ini, kehadiran dan fungsi gen hlyE di dalam isolat klinikal S. Typhi telah ditentukan. Analisis PCR dan jujukan DNA menunjukkan bahawa S. Typhi mempunyai keseluruhan salinan jujukan bagi gen hlyE. Walaupun gen hlyE hadir di dalam isolat S. Typhi, bakteria ini tidak menunjukkan zon hemolitik pada agar darah kuda. Peningkatan aktiviti hemolitik telah dilihat apabila S. Typhi dikultur pada agar darah kuda menggunakan asai cakera-difusi dengan kehadiran ampisilin. Protein periplasmik yang diekstrak daripada S. Typhimurium dan S. Typhi (strain vaksin dan isolat klinikal) menunjukkan kehadiran protein 34 kDa iaitu merupakan anggaran saiz untuk HlyE. Ekstrak protein periplasmik daripada S. Typhi menunjukkan aktiviti hemolitik yang kuat pada agar darah. Protein rekombinan HlyE menunjukkan reaksi positif terhadap IgG sera pesakit demam kepialu, ini menunjukkan penghasilan HlyE yang reaktif ketika infeksi. Protein rekombinan HlyE yang ditulenkan ini mempunyai kesan sitotoksik terhadap sel U937 manusia. Kajian ini memberikan informasi asas

terhadap aktiviti gen hlyE dan pengetahuan tambahan dalam kajian kepatogenan S. Typhi terhadap manusia

ISOLATION AND EXPRESSION OF HEMOLYSIN E (HIVE)

FROM Salmonella enterica serovar Typhi (S. Typhi) ISOLATES

ABSTRACT

Comparative proteomic analysis of Salmonella enterica serovar Typhi (S. Typhi) and Salmonella enterica serovar Typhimurium (S. Typhimurium) revealed a subset of highly expressed proteins unique to S. Typhi. One of these proteins is hemolysin E (HlyE). The *hlyE* gene is necessary for human-host specificity, which is absent or functionally altered in S. Typhimurium. hlyE gene belongs to Salmonella Pathogenecity Island (SPI) 18. In this study, the presence and the function of hlyE gene in S. Typhi clinical isolates was determined. PCR and DNA sequence analyses showed that S. Typhi, serovar that is specific for human, harbors an intact copy of hlyE gene. Despite the presence of hlyE gene in S. Typhi isolates, the bacteria did not display haemolytic activity when cultured on horse blood agar plates. Increased haemolytic activity was observed when S. Typhi was grown on horse agar plates in disk-diffusion assay in the presence of ampicillin disk. Crude periplasmic proteins extracted from S. Typhimurium and S.Typhi (vaccine strain and clinical isolates) showed the presence of 34 kDa proteins, which is an expected size for HlyE. The crude protein extracts from S. Typhi showed strong haemolytic activity on the blood agar plates. HlyE recombinant protein showed positive reaction against IgG of sera from typhoid patients, suggesting reactive HlyE production during infection. The purified HlyE recombinant proteins have a cytotoxic activity towards U937 human monocytic cell line. This research provides fundamental information on the activity

of hlyE gene product and contributes additional knowledge in the study of S. Typhi pathogenesis in human.

CHAPTER 1

INTRODUCTION

1.1 Salmonella and disease: An overview

'Salmonella' was named after Daniel Elmer Salmon, an American veterinary pathologist, who discovered *Salmonella* bacterium isolated from pigs in 1885. Currently, there are 2579 classified serovars of *Salmonella enterica* (Grimont & Patrick, 2007) which are differentiated by their antigenic characteristics and host range (Grimont & Patrick, 2007; Popoff & Minor, 1997). The nomenclature system used for the genus *Salmonella* is based on recommendations from the Centers for Disease Control and Prevention (CDC), USA (Brenner *et al.*, 2000). The complete names of these serovars are commonly abbreviated such as '*Salmonella enterica* serovar Typhi' is commonly referred as *Salmonella* Typhi or *S.* Typhi (Judicial, 2005). The various *Salmonella enterica* serovars infect a wide range of vertebrate animals. Several serovars have very narrow and restricted host. For example, humans are host-specific for serovar Typhi whereas serovar Pullorum exclusively infects chicken. These host-specific serovars cause a systemic illness that could be fatal if left untreated. In contrast to *S.* Typhi, *S.* Typhimurium, infects a wide range of hosts including humans and other vertebrates.

Infections of *S. enterica* in human may display different clinical manifestation depending on the *Salmonella enterica* serovars. There are two main clinical manifestation associated with *Salmonella* infections in humans. First, *S.* Typhi and *S.*

Paratyphi cause systemic infection called typhoid fever. This enteric fever is a lifethreatening disease and display several symptoms like prolonged fever (38°C and above) followed by malaise, anorexia and nausea. 1–3% of hospitalized patients faced the more serious complication, which is intestinal perforation. After traversing the intestinal mucosa, the causative bacteria then disseminate, resulting in secondary infections of the liver, spleen, bone narrow, gallbladder and Peyer's patches of the terminal ileum (Parry et al., 2002). The second is gastrointestinal disease, the more common clinical outcome of Salmonella infection in humans caused by nontyphoidal Salmonella. This non-typhoidal salmonellosis is commonly caused by S. Typhimurium and S. Enteritidis, which results in self-limiting disease such as nausea, vomiting, abdominal cramping and diarrhea. The non-typhoidal Salmonella are primarily transmitted to human directly or indirectly from animal sources and mostly via foodborne. In some cases the sources of this infection are pets, direct personal contact, nosocomial infection, waterborne and contaminated drugs and solutions (Hohman, 2001; Ohl & Miller, 2001). Patients less than 3 months old, greater than 50 years old, and patients with diabetes, malignancy, rheumatologic disorders, HIV infection and immunosuppression, are at risk of getting gastrointestinal salmonellosis. About 5% of non-typhoidal infections are associated with bacteremia (Hohman, 2001; Pang et al., 1995).

1.2 Typhoid fever

Typhoid fever is a global health problem. According to World Health Organization (WHO), approximately 216 000 to 600 000 (1-4%) deaths are reported yearly from 21 million registered typhoid cases worldwide. It is estimated that 90% of the death cases occur in Asia. Ministry of Health (MOH) Malaysia reported that the annual

incidences of typhoid in Malaysia for the past 10 years (1998–2007) is below 5 cases per 100 000 population, which is classified as low endemic region for typhoid fever. Kelantan has the highest annual incidence when compared to other states in Malaysia. From April to June 2005, an outbreak occurred in Kelantan with 735 reported cases and 2 deaths (MOH, 2007).

A person is confirmed to have typhoid fever when he has a fever (38°C and above) for at least 3 days with a laboratory confirmed positive culture (blood, bone marrow or stool) for *S*. Typhi (WHO, 2003). Mode of infection is by ingestion of food or water contaminated with fecal that contains *S*. Typhi. The infection is transmitted from person to person through poor hygiene practices and sewage contamination of water supply (MOH, 2007). Acute systemic illness is characterized by prolonged fever, abdominal pain, and persistent bacteremia. About 10 to 20% of patients showed acute diarrhea symptom after ingestion of *S*. Typhi. This may last for several days. On the second week of infection, the fever continues and the patient may appear severely ill. Gastrointestinal complications, such as bleeding or perforation may occur at any time but usually during the third week of infection (Levine, 2009). Common physical symptoms for typhoid patients are prolonged fever, brown coated tongue, confusion, decreased auditory acuity and nuchal rigidity (Crum, 2003). Rose spots on abdomen and chest may develop on some patients (Levine, 2009).

1.3 Salmonella enterica serovar Typhi

S. Typhi is a rod-shape, Gram negative, facultative anaerobic, non-encapsulated, flagellated bacilli belonging to the family of *Enterobacteriaceae*. It is motile with peritrichous flagella. S. Typhi is identified in the laboratory by culturing on selective

media followed by several biochemical and serological tests. Suspected colony obtained from selective media is further distinguished from other *Salmonella* serotypes by its biochemical properties and agglutination with specific antisera. For example, on Salmonella Shigella (SS) agar, Salmonellae produce lactose nonfermenting colonies with black centres. The colony with such appearance was chosen for biochemical tests screening as described in Table 1.1. In serological test, *S.* Typhi is positive for LPS antigen O9 and O12, protein flagella antigen H-d and polysaccharide capsular antigen Vi (WHO, 2003).

Table 1.1: Biochemical tests for differentiation of *S*. Typhi from related subspecies (adapted from WHO, 2003)

0	Kliger's Iron Agar Test			Motility, Indole, Urea Tests			Citrate	
Organism	Slant	Butt	H_2S	Gas	Motility	Indole	Urea	Test
S. Typhi	Alkaline	Acid	Wk+	-	+	-	-	-
S. Paratyphi A	Alkaline	Acid	-	+	+	-	-	-
Other <i>Salmonella</i> sp.	Alkaline	Acid	V	V	+	-	-	V

'+' = Positive

'-' = Negative

Wk + = Weak positive

V = Variable result

 H_2S = Hydrogen sulphide

1.4 Laboratory diagnosis of typhoid fever

1.4.1 Identification of S. Typhi by culture method

The definitive diagnosis of typhoid fever depends on the isolation of *S*. Typhi from blood, bone marrow or a specific anatomical lesion from typhoid patients. Bone marrow aspirate culture is the gold standard for the diagnosis of typhoid fever and is principally important for patients who have been previously treated, have a long history of illness and have been getting negative for blood culture at the recommended volume of blood (WHO, 2003). However, bone marrow aspirate samples are difficult to obtain and relatively (Bhutta, 2006). Thus, blood culture is the best option to diagnose typhoid fever, as more than 80% of typhoid patients have the causative bacteria in their blood (WHO, 2003).

1.4.2 Serological diagnostic methods

Serological diagnostic tests give a rapid diagnosis of typhoid fever compared to bacterial culture method, which requires 3 to 5 days to perform. There are several serological methods widely being used to diagnose typhoid fever. Felix-Widal test works by detecting agglutinating antibodies against O and H antigens. However, the test only gives moderate sensitivity and specificity. It produces false negative results for up to 30% of culture-positive cases of typhoid fever (WHO, 2003). Moreover, other *Salmonella* serotypes also posses the same O and H antigens similar to *S*. Typhi (WHO, 2003; Grimont & Patrick, 2007) and there are cross-reacting epitopes between *S*. Typhi with other *Enterobacteriaceae* (WHO, 2003). These factors can lead to false positive results. However, the test is still being used in many areas since it is an affordable diagnostic method (Baba *et al.*, 2013; Ley *et al.*, 2010).

TYPHIDOT® test kit is developed under USM license based on the principle of dot-blot enzyme immune-assay (Dot-EIA), for detecting IgM and IgG antibodies specific for a 50 kDa antigen of *S.* Typhi (Ismail *et al.*, 1991a). This protein is an outer membrane protein and is found to be a specific protein to *S.* Typhi (Ismail *et al.*, 1991b). Dot EIA test offers simplicity, speedity/rapidity, specificity (75%), sensitivity (95%) and cost-effective (Choo *et al.*, 1994). However, in convalescence or reinfection cases, the level of IgG is boosted by the secondary immune response, which mask the IgM. In order to increase the diagnostic accuracy, TYPHIDOT-M was later developed where the original TYPHIDOT® test was modified by inactivating total IgG in the sera sample. Inactivation of IgG removes competitive binding and allows access of the antigen to bind to the specific IgM (Bhutta & Mansurali, 1999). This test was reported to be useful in typhoid endemic areas, since it can be differentiate between convalescence and acute cases. This test was reported to have 92% sensitivity and 100% specificity in independent evaluation studies for all age groups of typhoid fever (Bhutta, 2006).

1.5 Pathogenicity of S. Typhi

Once the *S*. Typhi enters the host via ingestion of contaminated food or water, it passes through the stomach and the gastric acid barrier, then it reaches a site where it can invade the small intestine epithelial cells. *S*. Typhi invades the epithelium through two ways, which are by invasion of microfold (M) cells of Peyer's patches and by direct translocation across the absorptive epithelial cells. After penetration into the intestinal mucosa, the bacteria are immediately engulfed by macrophages but resist from being killed. Through these vehicles, they are able to enter mesenteric lymph nodes. The bacteria multiply until the critical microbial load is sufficient to