

VERY LARGE SCALE INTEGRATION CELL

BASED PATH EXTRACTOR FOR PHYSICAL TO

LAYOUT MAPPING IN FAULT ISOLATION

WORK

MATTHEW PRAGASAM

UNIVERSITY SAINS MALAYSIA

2017

VERY LARGE SCALE INTEGRATION CELL

BASED PATH EXTRACTOR FOR PHYSICAL TO

LAYOUT MAPPING IN FAULT ISOLATION

WORK

By

MATTHEW PRAGASAM

Thesis submitted in fulfillment of the requirements

for the degree of Master of Science

(Electronic Systems Design Engineering)

August 2017

i

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my academic and research supervisor

Assoc. Prof. Ir. Dr. Mohamad Kamarol Mohd. Jamil for his guidance and constant

support in helping me to conduct and complete this work during and after working

hours. I would also like to thank him for his ever-ready support in consulting me

throughout completing my research.

I am grateful for the facilities and workspace provided by University Sains Malaysia,

Penang, which had enabled me to carry out most of my discussions there. Many thanks

to all the people I have come to know during my studies in USM Penang, whose

friendship I cherish and experiences I will always remember. I owe my sincere

appreciation to my family who have provided me constant emotional support and had

encouraged me throughout my year of studies. I want to especially thank USM Penang

for offering me this opportunity to study the programme of my greatest interest.

Finally, I would like to extend my profound appreciation to my beloved parents for

their love, affection and invaluable support throughout many late nights completing

my work.

ii

 TABLE OF CONTENTS

ACKNOWLEDGMENTS I

ABSTRAK X

ABSTRACT XI

CHAPTER 1

INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 4

1.3 Objectives 7

1.4 Research Scope 7

1.5 Research Contributions 8

1.6 Thesis Outline 8

CHAPTER 2

LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Cell Based Hierarchical Design Methodology 11

2.2.1 Cell-Based Design Structure and Hierarchical Netlist Extraction 11

2.2.2 Effect of Different Cell-Based Methodologies 13

2.2.3 Data Model and Standard Cell Libraries 13

2.3 Data Extraction Method in Very Large Scale Integration Integrated Circuit

Designs 16

2.3.1 Parametric Path Extraction Method 16

iii

2.4 Circuit Analysis Algorithm Used in Electronic Design Automation 19

2.4.1 Depth-First (DFS) and Breadth-First Search (BFS) Algorithm 19

2.4.2 Hierarchical Path Planning Algorithm 21

2.4.3 Interconnect Traversal Algorithm 23

2.5 Physical to Layout Debug Method and Analysis 24

2.5.1 Fault Isolation and Failure Analysis 24

2.6 Summary Review 27

CHAPTER 3

METHODOLOGY 31

3.1 Introduction 31

3.2 Introduction to OpenAccess (OA) Model and Nlview in Schematic

Mapping tool. 31

3.3 Process Flow of Research Work 34

3.4 Development of a Cell-based Specific Circuit Path Extractor Program 36

3.4.1 Search method used in Path Extraction Program 37

3.4.2 Path Extractor Algorithm with Design-specific Constraints 41

3.4.3 Depth-First Search (DFS) Algorithm with Depth of Search (DoS)

Manipulation with Hierarchical Conditions 45

3.4.4 Complete Net Path Retrieval and Process 46

3.5 Experimental Setup Overview and Justification of Proposed Analytical

Method 49

3.5.1 Program Iteration and Visited Hierarchical Depth 50

3.5.2 Determining Fan-in from Visited Nets 51

3.5.3 Path Found Condition at Program Runtime 53

iv

CHAPTER 4

RESULTS AND DISCUSSIONS 56

4.1 Introduction 56

4.2 Evaluation of Path Extraction Search Function in Regards to Depth of

Search (DoS) 58

4.2.1 Evaluation of Path Extraction Design Search Coverage 61

4.2.2 Search Pattern by Increasing Max Depth of Search (DoS) 67

4.3 Effects of Max DoS40 on Number of Iterations & Fan-In Count 70

4.4 Evaluation of Path Extractor’s Search-ability 77

4.5 Effect of Path Extraction at Different Hierarchical Depth 80

4.6 Evaluation of path extractor’s search behavior with given Max Dos 84

CHAPTER 5

CONCLUSION AND FUTURE WORKS 90

5.1 Summary 90

5.2 Conclusion to the development of CBD Circuit Path Extractor 90

5.3 Conclusion to the Study of a Suitable Search Algorithm 91

5.3 Recommendations for Future Works 91

REFERENCES 94

v

LIST OF FIGURES

Figure 1.1: Design abstraction levels in digital circuits. 2

Figure 1.2: Primitive cell with 3 input and 1 output terminals. 3

Figure 1.3: Components inside a Primitive cell (Flat view). 3

Figure 1.4: Microprocessor Transistor Counts from 1971 to 2011. 4

Figure 1.5: Average cell count in 10 nm semiconductor chips. 5

Figure 1.6: Cell with all 3 inout pins. 6

Figure 2.1: VLSI Custom Design Flow 12

Figure 2.2: OpenAccess API 2.0 database structure. 14

Figure 2.3: Embedded module hierarchy 15

Figure 2.4: Sequential design flow 15

Figure 2.5: Extraction methodology in hierarchical circuit extraction. 18

Figure 2.6: Three categories contained within the extraction process. 18

Figure 2.7: Sample OA Graph. 20

Figure 2.8: Example of Breadth-First Search structure. 21

Figure 2.9: Polysilicon layer of a 800nm process IC. 24

Figure 2.10: Design Under Test (DUT) build up area and layout. 25

Figure 2.11: Significance of Failure analysis in FI. 26

Figure 3.1: Nlview plotting objects on canvas. 32

Figure 3.2: Illustration of pin, net and instance object in a Cell-based Design. 33

Figure 3.3: Research flow chart for development of the path extraction program. 35

Figure 3.4: Consideration in CBD methodology in path extractor program. 36

Figure 3.5: Design information used by path extractor program. 37

Figure 3.6: Inputs to path extractor program and Nlview translation. 38

vi

Figure 3.7: Start net and connected nets in cell-based methodology. 39

Figure 3.8: BFS and DFS in a graph. 40

Figure 3.9: General flowchart of the Path Extractor Program. 42

Figure 3.10: Resolve net name and setup of DFS path extractor algorithm. 43

Figure 3.11: Path Extractor program input dialog. 44

Figure 3.12: Error when user selects an input pin as a driver. 44

Figure 3.13: Error when user selects an output pin as the receiver. 44

Figure 3.14: DFS path extractor algorithm. 45

Figure 3.15: Path constructor flowchart at runtime. 47

Figure 3.16: DFS methodology with aid of stack status as net sequence. 48

Figure 3.17: Method implemented to track iteration count and depth of search. 50

Figure 3.18: Code implementation of tracking fan-in count. 52

Figure 3.19: Visited nets in comparison with fan-in nets. 53

Figure 3.20: Timer implementation in the search program. 54

Figure 4.1: Driver and receiver pin from different cells. 57

Figure 4.2: Illustration of unfolded design of loaded parent cell. 57

Figure 4.3: Number of program iteration vs depth of search at max DoS 3. 58

Figure 4.4: Path Extractor program at DoS 3 on xterm (stdout terminal). 59

Figure 4.5: “Depth” in Path Extractor program search. 60

Figure 4.6: Path Extractor program at DoS 4 on xterm (stdout terminal). 61

Figure 4.7: Number of program iteration vs depth of search at max DoS 4. 62

Figure 4.8: RUN1 - Path Extractor program at DoS 5 on xterm(stdout terminal). 63

Figure 4.9: RUN2 - Path Extractor program at DoS 5 on xterm(stdout terminal). 63

Figure 4.10: Branches in a Cell-Based Design. 64

Figure 4.11: RUN1 - Number of program iter. vs depth of search at max DoS 5. 65

vii

Figure 4.12: RUN2 - Number of program iter. vs depth of search at max DoS 5. 66

Figure 4.13: Branch search in relation to overall elapsed time. 66

Figure 4.14: Path Extractor program at DoS 6 on xterm (stdout terminal). 67

Figure 4.15: Number of program iteration vs depth of search at max DoS 6. 68

Figure 4.16: Path Extractor program at DoS 7 on xterm (stdout terminal). 68

Figure 4.17: Number of program iteration vs depth of search at max DoS 7. 69

Figure 4.18: Path Extractor program at DoS 8 on xterm (stdout terminal). 69

Figure 4.19: Number of program iteration vs depth of search at max DoS 8. 70

Figure 4.20: Path Extractor program at DoS 40 on xterm (stdout terminal). 71

Figure 4.21: Graph from 1st fan-in iteration to 150th fan-in at max DoS 40. 72

Figure 4.22: Graph from 56500 iteration to 58881 at max DoS 40. 73

Figure 4.23: Graph from 58882 iteration to 612613 at max DoS 40. 75

Figure 4.24: Cell fan-in nets per visited net from net no. 1 to no. 105 at DoS 40 78

Figure 4.25: Fan-in nets from clock net connected cell compared to DUT fan-ins. 79

Figure 4.26: Number of fan-in signal vs. hierarchical depth at DoS 40. 80

Figure 4.27: RUN1- Depth of search result vs. iteration at given max DoS 14. 81

Figure 4.28: RUN2- Depth of search result vs. iteration at given max DoS 14. 82

Figure 4.29: Graph relating count of depth reaching max DoS set. 83

Figure 4.30: Depth requirement at different branches. 84

Figure 4.31: Path extractor result condition in Type 1 & Type 2 path discussion. 86

Figure 4.32: Number of iteration count and maximum DoS set. 87

Figure 4.33: Increments in fan-in nets in regards to max DoS set. 88

viii

LIST OF TABLES

Table 2.1: Properties of cell identified from netlist. 12

Table 2.2 Assumptions of GIPER in interconnect library generation. 17

Table 2.3: Algorithm used urban traffic path-planning (Ma & Hou, 2010). 22

Table 2.4: Research topics related to design database and cell structure area. 28

Table 2.5: Research topics related to search algorithm and traversal methods. 29

Table 2.6: Research topics related to failure analysis in fault isolation work. 30

Table 3.1: Different object type with its original and Nlview name. 33

Table 3.2: Experimental setup and methodology 49

Table 4.1: Cell-net (clock) with high fan-in net count at DoS 40. 77

Table 4.2: Paths found at different depth at max DoS 40. 79

Table 4.3: Results from manipulating the max DoS. 82

Table 4.4: Depth requirement to reach ‘stop-net” from different branches. 84

Table 4.5: Type 1 and Type 2 results obtained from max DoS 10 & 11. 85

Table 4.6: Number of iteration resulting from manipulating max DoS. 88

ix

LIST OF ABBREVIATION

API Application Programming Interface

APR Auto Place and Route

ASIC Application Specific Integrated Circuit

BFS Breadth-First Search

CAD Computer Aided Design

CBD Cell-Based Design

DEF Design Exchange Format

DFS Depth-First Search

DoS Depth of Search

DUT Design Under Test

EDA Electronic Design Automation

FA Failure Analysis

FI Fault Isolation

IC Integrated Circuit

IM Information Model

OA OpenAccess

OS Operating System

x

LITAR EKSTRAKTOR INTEGRASI SKALA SANGAT BESAR

BERASASKAN SEL UNTUK FIZIKAL KE TATALETAK

PEMETAAN DALAM KERJA KESALAHAN PENGASINGAN

ABSTRAK

Siasatan dalam jawatan-silikon semakin mencabar kemajuan teknologi dalam

keupayaan Pemetaan Fizikal ke Tataletak. Bidang yang memerlukan inovasi tersebut

adalah kesalahan kerja pengasingan dalam analisis kegagalan peranti semikonduktor

pada peringkat pasca silikon. Sejak kerja kesalahan pengasingan bermula di peringkat

“Register Transfer Level” (RTL) untuk membentuk sempadan yang disyaki yang

terdiri daripada pelbagai logik dari satu hujung ke hujung yang lain, “Electronic

Design Automation” (EDA) membantu mengenal pasti kesalahan dalam sempadan

yang dinyatakan. Oleh itu, program ekstraktor litar yang mampu mengekstrak semua

laluan mungkin dari isyarat awal hingga akhir boleh menjimatkan masa jurutera dalam

mengesan komponen yang terlibat antara garis kesalahan dalam skematik. Untuk

mendapat semua isyarat yang mungkin terlibat dalam sempadan yang disyaki adalah

carian masalah pengiraan popular. Disebabkan itu, program litar ekstraktor yang

dicadangkan menggabungkan ciri-ciri algoritma “Depth-First Search” (DFS) dengan

mengambil kira spesifikasi reka bentuk berasaskan sel. Objektif dicapai dalam kajian

ini terbukti dengan keputusan pengekstrakan jalan konsisten walaupun dengan

manipulasi “Depth of Search” (DoS). Prestasi berbeza purata 12.6 % (kiraan lelaran)

dengan menjaga kedalaman maksimum yang dibenarkan carian berterusan. Laluan

urutan bersih adalah konsisten sepanjang pengesahan program jalan pemerah.

Perkembangan ini dan kajian kaedah ekstrak jalan membawa kepentingan dalam

bidang EDA dan kerja siasatan.

xi

VERY LARGE SCALE INTEGRATION CELL BASED PATH

EXTRACTOR FOR PHYSICAL TO LAYOUT MAPPING IN

FAULT ISOLATION WORK

ABSTRACT

Debug and diagnosis in post-silicon challenges the technological advancement in

Physical-to-Layout Mapping capabilities. Areas that require such innovation are fault

isolation work in failure analysis of semiconductor devices, at post-silicon stage. Since

fault isolation work begins at Register Transfer Level (RTL) level to form a suspected

boundary consisting of multiple logics from one end to the other, layout to schematic

mapping automation tool helps to identify fault in design within given boundary.

Therefore the development of a path extractor program which is capable of extracting

all possible paths from these start to end signals can save engineers time in tracing

components involved between a fault line. This feature is extremely significant in

Electronic Design Automation (EDA) as it can provide results of net name sequences

stored in a database of mapper files. These mapper files can be used in layout design

debug as the net sequence represents schematic signals. To be able to retrieve all

possible signals involved within a suspected boundary is a popular search

computational problem. Therefore the path extractor program proposed incorporates

the characteristics of a depth-first search algorithm by considering the specifications

of a cell-based design. The objectives achieved in this research are proven reliable with

path extraction results consistent even with search depth manipulation. Performance

differs an average of 12.6 % (iteration count) with keeping maximum allowable depth

of search constant. Paths of net sequences were consistent throughout the verification

of the path extractor program. This development and study of the path extract method

carries significance in areas of EDA and debug diagnosis work.

1

CHAPTER 1

INTRODUCTION

1.1 Background

In Electronic Design Automation (EDA) which refers to electronic computer-

aided designs for electronic systems commonly used in the semiconductor design flow

by design engineers (Sifakis, 2015). These software tools are used to design and

validate full semiconductor chips within the design flow cycle from Register Transfer

Level (RTL) to layout in pre-silicon and debug & diagnosis in post-silicon. These EDA

tools are useful since modern fabrication technology enables semiconductor chips to

contain billions of transistors (Courtland, 2017) as technology node reduces and

number of transistors (components) in a semiconductor chips doubles every 18 months

according to Moore’s Law (Bai, 2016). Since a full semiconductor design such as a

microchip may contain billion of transistors, cell-based design methodology are

widely used in EDA tools to provide abstract representation of components in terms

of physical layout or diagrams (Xiu, 2007).

 The use of cell-based design methodology enables design engineers to work on

smaller partitions of various cells at different level of abstraction. As an example, an

engineer may choose to focus on logical function of a particular circuit whereas a

layout engineer is more interested in its physical layout instead. Having a cell-based

design model of both physical and logical abstraction helps engineers to work on

individual or group of cells based on patterns, design requirements or even its

2

architecture (Xiu, 2007). This methodology also enables engineers to reuse cells

known as “instances” in more complex designs. This technique does not require

understanding of all the implementation details. An instance could be anything from a

single transistor to a resistor or capacitor. In some cases, a cell represents a block of

integrated circuit chip design.

 Complex designs contains many instances and hence, the connectivity of these

cells increases as the design becomes more dense, stacked within multiple hierarchies

(Srivastava, Winter 2001) as seen in Figure 1.1.

Figure 1.1: Design abstraction levels in digital circuits (Chandrakasan, Nikolić, &

Rabaey, 1995).

In a cell based design (CBD), cells that are within a another cell are known as

a child and the parent is known as a master cell. Both these cells are interconnected

and can be referenced through its input and output signals. Moreover, a parent cell

may contain multiple child cells that may have other instances nested in them hence,

tracing the connectivity becomes a challenge as circuit designs becomes increasingly

complex with increased depth. These depths are known as hierarchical design

defined in the design netlist which is a description of the circuit connectivity.

3

Figure 1.2: Primitive cell with 3 input and 1 output terminals.

The description of the connectivity includes input and output terminals to a

particular cell also known as pin connections shown in Figure 1.2. Each cell can be

expanded to unfold instances or components that are nested within. Shown in Figure

1.3 are the cell’s interconnects unfolded from the cell in Figure 1.2.

Figure 1.3: Components inside a Primitive cell (Flat view).

Standard cells are direct representation of simplest logical functions of a

combinational group of transistors which its structure cannot be further expanded,

identified as a “flat view”. For example, a Standard cell represents Boolean functions

of inverters, AND, OR, XOR, XNOR or storage functions such as flops and latches.

This research proposes a solution to extract connectivity information tracing from a

4

single driver pin to a receiver pin throughout the schematic design based on logical

functions.

1.2 Problem Statements

In accordance to Moore’s law (Moore, 1965), transistor count is predicted to

double every 2 years. Transistor count in semiconductor chips has exponentially

increased up to 2.6 billion within a span of 30 years since 1971 depicted in Figure 1.4.

Figure 1.4: Microprocessor Transistor Counts from 1971 to 2011 (Klopfer, 2012).

Increased complexity in full semiconductor chips means that more transistors of

different functions and architecture can be grouped and synthesized into different type

5

of cells. This causes the cell counts within a design to increase modelled and used in

EDA tools (Dunlop, Evans, & Rigge, 1997).

Figure 1.5: Average cell count in 10 nm semiconductor chips.

Figure 1.5 shows the average cell count from standard to netlist conversion of

10 nm design to OpenAccess (OA) model experience as of year 2017. Comparison

was made in an SOC design as compared to server CPUs that are modeled in OA to

form cell based IC design through spice netlist conversion. The OpenAccess Coalition

(Blanchard et al., 2002) delivers and provide a broad industry standard Application

Programming Interface (API) and Information Model (IM) essential for modern IC

design systems (Blanchard, 2017). Computational search challenges arises in tracing

fault affected components in a cell-based design schematic as more and more cells are

fitted into a design and cell instances being embedded in multiple hierarchies.

Due to the hierarchical structure of Cell-Based Design (CBD), tracing signal

paths from one terminal to the other across multiple depths of hierarchy manually is

time consuming. This is because engineers are required to identify, analyze and trace

each individual connection otherwise known as nets, traversing through cell and

instance pins to carry out fault isolation work (Liu, 2012). Determining components

SOC,

330000

Server CPU,

1980000

N
u
m

b
er

 o
f

C
el

ls

6

between a start and end signal are time consuming for cells that has bi-directional pin

where it can be treated as fan-in or fan-out of a particular cell as seen in Figure 1.6.

Figure 1.6: Cell with all 3 inout pins.

The fan-in and fan-out sequence of a particular cell has to be taken into

consideration when traversing through a hierarchy (Tala, 2006). As an example, a cell

with 5 terminals such as a register may have 3 strict input pins which are known as

fan-in of a cell, whereas the remaining in-out pins that drives other cells are known as

fan-out. The number of pins are multiplied for registers with higher resolutions such

as a 100-bit register. Manual efforts to trace signals through such components would

be time consuming as not all terminals would have paths leading to the receiver pin.

 Apart from that, cell based designs are loaded on demand as user expands and

view the interconnects of a particular cell to work on. For a complex full chip design,

traversing through the entire design to identify a particular signal path from a driver to

receiver pin requires complete load-up of the object model which greatly affects

performance. As an example, the complete load-up of a cell-based design that only

contains 34 cells at current depth requires a duration of 2 minutes and 18 seconds based

7

on work experience in Intel. Therefore an automated path extractor program to traverse

through all available cells with returned valid paths can save users effort and time.

1.3 Objectives

The objectives of this research are:

I. To develop a cell-based design circuit signal path extractor driven by a single

driver and receiver pin.

II. To analyse a suitable search algorithm method used to identify sequence of

nets involved during path extraction.

1.4 Research Scope

The critical area involved in this research are the search algorithm and parameters

used in identifying accurate paths from a single driver pin to a receiver pin. The search

algorithm involved in development will cover hierarchical search and traversal method

in respect to performance measured in unit time. The structure of the cell based design

circuit represented by OpenAccess (OA) model libraries are studied and covers the

methodology that enables the application of the search algorithm.

 Conditions such as the depth of search which manipulates the path extraction

performance are analyzed and discussed. The search algorithm is heavily dependent

on the depth of search as more cells are involved as the search area expands. Similar

to a linked tree data structure involving graphs, search algorithms used in these areas

are experimented, analyzed and discussed. In this research, each cell and instance are

treated as object nodes in a search pattern, the branches to these nodes represents the

connectivity information in sequence. Since digital circuit designs used are represented

8

as cell-based designs, analogue or electrical characteristics of the research are not

covered as it does not affect the search algorithm for Cell Based Design (CBD) path

extraction.

1.5 Research Contributions

This research contributes to improved turn-around-time in fault isolation work for

Failure Analysis (FA) Engineers in layout to schematic mapping. The path extractor

can be used to extract the possible paths with given start and end signal received from

post-silicon debug tool that formed a suspected boundary consisting of multiple logics

from one end to the other.

 Apart from that, the path extractor can be used to acquire schematic signals to

create a mapper file containing all connectivity information. As an example, a 100 bits

register from bit 99 until bit 0 contains inverters and buffers in between each bit, path

extractor can be used to retrieve all connectivity information by only providing the

input and output signals. Therefore, these information can used in post-silicon debug

tools where FA engineers carry out physical to layout mapping.

1.6 Thesis Outline

This thesis is organized into five main chapters whereby in chapter 2, the topic of

path extraction in Very Large Scale Integration (VLSI) designs are being studied and

discussed especially in areas where solutions can be applied to electronic design

automation tools. Besides that, search algorithm such as the depth-first search (DFS)

and breadth-first search (BFS) are discussed to review strength and weakness of

9

individual methods. Applications of VLSI cell based methodology and application of

these algorithm are also being discussed in this chapter.

In chapter 3, the methodology of the research is charted. The development stages

of the research from search algorithm to manipulative parameters and implementation

of conditions due to cell structures are discussed in detail. The search algorithm

presents the method that is used in traversing through the hierarchical tree structure of

the cell based design. For manipulative parameters, depth of search is discussed as to

how the search algorithm depends on. Since not all terminals are bidirectional pins,

therefore how the path extraction method identifies and respond to these cell structure

and signal connectivity are thoroughly discussed here.

In chapter 4, careful analysis of collected results from experiments are discussed

and presented in this section. These experimental results involves topics of

performance in unit time measurement, specifications of the search algorithm,

connectivity information and calculative changes that was retrieved by manipulating

the depth of search parameter. This chapter also focuses on the algorithm which is

used in distinctive designs with different cell pin configuration where similarities and

differences of results obtained are discussed and analyzed.

 Finally in chapter 5 concludes the content of the study completed in this

research. Final remarks, overall summary and future improvements that could be

enhanced were proposed and justified in this chapter. Opinions related to future works

interpreted from result collection are emphasized in this chapter.

10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The development of the cell based design path extractor involves a multitude

of areas which are related to Electronic Design Automation (EDA). Hence, this

literature review section provides an in-depth discussion of present methodology and

result analysis in areas of cell based design methodology, type of data extractions,

search and circuit extraction algorithms, motivation and works that are involved within

the topic. Besides that, the current problems and gaps of these areas are discussed and

reviewed so to provide an in-depth knowledge of the current technological solutions

available. Because this research contributes to the advancement of EDA, many

references are taken from journals and publications originating from this categories,

with scholars contributing to areas of advancing design integration technologies for

Computer Aided Design (CAD) designers and software developers in areas of

semiconductor Integrated Circuit (IC) design.

 The structure of this chapter is categorized into 6 sections in sequential order

which discusses in detail of current and past researches. A summary of critical analysis

was tabulated at the end of the chapter to justify disadvantages, strengths and gaps of

the path extraction topic in Cell Based Design (CBD).

11

2.2 Cell Based Hierarchical Design Methodology

 To be able to develop a circuit path extraction method, understanding the

hierarchical structure and how this methodology is being used in current and previous

research and work is important. As an example, OpenAccess (OA) provides industry

standard database for cell based design methodology in the form of libraries (Hahn,

2012). According to Inoue, OA has the capacity and performance standards required

for today’s largest semiconductor design. The reason being, OA provides standard

C++ Application Programming Interface (API) that facilitates simple and swift access

to a unified data model for physical and logical designs alike (Inoue, 2006). Popular

methodologies and details are discussed in the following subsection.

2.2.1 Cell-Based Design Structure and Hierarchical Netlist Extraction

 To be able to acquire the hierarchical structure of a cell based design,

information of these designs are extracted from the gate-level netlist. The gate-level

netlist acquired from Logic Synthesis within the Very Large Scale Integration (VLSI)

Integrated Circuit (IC) (Thakur, 2016) design flow helps validation engineers to

understand the connectivity of the silicon design that is to be fabricated.

12

Figure 2.1: VLSI Custom Design Flow (Thakur, 2016)

Figure 2.1 shows the netlist information could be used for floor planning, Auto

Place and Route (APR) and visualization of schematics and physical designs.

Connectivity information is generated into a netlist file which contains information of

each particular cell in a design including each instances. According to L.G. Chen et al.

from the connectivity information acquired, cells and its interconnects is known (Chen,

Lee, & Wang, 1987). The cells identified from the netlist file contains the following

properties shown in Table 2.1:

Table 2.1: Properties of cell identified from netlist.

Properties that could be identified from netlist to model extraction.

Each cell are distinctively different from its name.

All connections to a cell should be connected through the input or output pins.

All input and output pins should be named with pin types which represents the pin as

input or output pin type.

13

For particular cells, different cell pins can result in different number of fan-in

or fan-outs of a cell. However, these pin can also be known as bidirectional pins

representing both input and output pins alike depending on signal direction.

2.2.2 Effect of Different Cell-Based Methodologies

 In this paper which was discussed by B. Kick et al. proposed a standard cell

based methodology for high-performance support chips (Kick, Baur, Koehl, Ludwig,

& Pflueger, 1997). The paper describes the methodology used in the design of a set of

CMOS support chips used in IBM server chips. The logical design aspect is based on

functional units of each cell. The majority of the logics implemented by using standard

cell components placed and routed flat are determined using timing-driven techniques.

 Custom library components are used whenever required for optimizing

performance. Using this technique, comparable cell density to those of present-day

custom designs with reasonable turnaround times were discussed thoroughly in this

paper.

2.2.3 Data Model and Standard Cell Libraries

 OpenAccess (OA) database is commonly supported by Electronic Design

Automation (EDA) applications due to the standardization it provides for interoperable

representation in semiconductor IC design as mentioned by Mark Hahn from Cadence

Design Systems (Hahn, 2012). In the paper published by Shishpal S. Rawat from Intel

and Sumit DasGupta from Si2 organisation (Rawat & DasGupta, 2012), discusses

details of the OA API standards and reference database such as the embedded module

hierarchy and constraint classes that aids in silicon design. The embedded module

hierarchy represents the cell-based design methodology that is widely used in

14

representing embedded components in a chip design of multiple hierarchies or

modules as shown in Figure 2.2. In simple terms, OA is a complete, next-generation

database for representing IC designs with its vast functionality as described by Joseph

T. Santos (Santos, 2004). OA provides the data model that captures both

implementation and intent of an Integrated Circuit (IC) design specification as it

comprises of three integrated databases shown in Figure 2.2.

Figure 2.2: OpenAccess API 2.0 database structure.

The structure of these integrated database features high-performance access to

design data while consuming minimal memory ideal for use in EDA applications. Cells

contain definition of other primitive cells or standard cells in Gate-level functions at

the lowest hierarchy. Besides that, OpenAccess data model also covers design data

that includes structural netlist connectivity, placement and routing, and hierarchical

information. Similar representation can also be seen in other EDA design formats such

as Verilog, Design Exchange Format (DEF) introduced by Cadence and the popular

Milkyway database available from Synopsys (Cadence Design Systems Inc., 2009).

15

Figure 2.3: Embedded module hierarchy (Hahn, 2012).

In a custom design flow, the database helps in providing a library model of the

design representations as shown in Figure 2.3. The involvement of these libraries in

the path extractor program from sequential design flow as described by Lavago et al.

is after the routing stage referred to Figure 2.4.

Figure 2.4: Sequential design flow (Lavagno, Martin, & Scheffer, 2006).

16

The hierarchical representation of connectivity in a cell-based design is defined

in the netlist. Proven and described in the textbook (Lavagno, Martin, & Scheffer,

2006), EDA for IC Implementation Circuit Design and Process Technology.

2.3 Data Extraction Method in Very Large Scale Integration Integrated

Circuit Designs

 This section discusses about recent and past research works in the areas of

information extraction of VLSI circuit designs. These extraction methods and

analytical results were studied in detail to understand more on the parameters and

information retrieved from interconnect extractions. This literature review section

aims to provide in-depth understanding in areas of a VLSI data extractor that interacts

with a design database and the applications that motivates the development of such a

feature.

2.3.1 Parametric Path Extraction Method

 A 3D Global interconnect parameter extractor known as (GIPER) was

developed by S. Y. Oh et al. to provide a practical EDA extraction tool for a full-chip

global critical path analysis that extracts resistance and capacitance (R,C) parameters

(Oh, et al., 1996). A typical global interconnect parameter extraction of a net takes

several minutes on a HP 9000/755 workstation within 5 % accuracy comparable to a

full 3D numerical simulation as discussed in the publication. As mentioned by S. Y.

Oh et al, five assumptions are used to simplify and make the 3D interconnect model

library generation practical with occupying reasonable CPU time and accuracy.

However, three assumptions are taken into review due to its involvement in

17

hierarchical circuit design in a full custom chip. Table 2.2 presents the assumptions

carried out in GIPER for interconnect model library generation.

Table 2.2 Assumptions of GIPER in interconnect library generation.

Assumptions to simple 3D interconnect model library generation

It is enough to include only cross-overs in 3D interconnect model library for global

interconnect parameter extraction.

The cross-section of hierarchical interconnect is determined to be rectangular and

planar.

Adjacent metal layers routing directions are orthogonal to each other.

Apart from that, the hierarchical circuit of an IC netlist design should be taken

into consideration also. In a paper regards to hierarchical IC layout circuit extraction

as discussed in a paper by Ahsan Bootehsaz et al. described a set of heuristic methods

for a hierarchical circuit extractor (Bootehsaz & Cottrell, 1986). The key points to note

in this research is that the strength of an extraction algorithms depends on the

capability of a software in exploiting the natural hierarchical structure of an IC layout

design. Besides that, the handling in overlapping cells also known as instances without

creating partial devices are important treated as one of the parameters in optimizing

the extraction algorithm.

 In this paper, Ahsan Bootehsaz et al. mentioned that all technology dependent

information are kept in a user accessible file external to the program which is also used

to configure or manipulate the extent of the parameter extraction shown in Figure 2.5.

18

Figure 2.5: Extraction methodology used by Ahsan Bootehsaz et al. in hierarchical

circuit extraction.

The circuit extraction proposed is performed in a bottom-up manner which

produces a netlist description similar with the hierarchical structure of the layout. The

extraction process as proposed in this paper is categorized into three categories shown

in Figure 2.6.

Figure 2.6: Three categories contained within the extraction process (Bootehsaz &

Cottrell, 1986).

Tech. independent information &

configurations externally accessible

 Running extraction program

First Phase: Preparation of

technology file (tech. file) which

provides technology dependent

information.

Third Phase: The feature extractor

which computes and populates the

hierarchical circuit extraction result.

Second Phase: Implemented as front-

end process, exploits the hierarchical

design structure of the layout,

analyzes and processes overlapping

or repeated instances.

Extraction Process

19

2.4 Circuit Analysis Algorithm Used in Electronic Design Automation

 This section discusses about the previous works relating to circuit analysis in

EDA tools. Previous researches involving search algorithms, hierarchical connectivity,

cell placement as well as existing design traversal method are thoroughly discussed in

this section.

2.4.1 Depth-First (DFS) and Breadth-First Search (BFS) Algorithm

 In the research that studies the depth-first search algorithm involved in a

communication network by S.A.M. Makki et al. discusses about embedding

information “forward and return” messages which helps to explore the linked tree more

efficiently (Makki & Havas, 1994). The key improvement in their development of the

depth-first search tree algorithm is to reduce the number of “return” messages by using

dynamic backtracking. This was made possible by including message information that

communicates to the receiver the potential return message address which may not

necessarily be its parent node.

 In the algorithm, a node is defined to be a “split point” if it has two or more

unvisited neighbors or it is a root node when visited. This way, nodes that are not split

points could be bypassed by return messages. This paper discusses heavily in

providing the program more information during traversal of the DFS tree which helps

to improve performance and extract more information of the tree structure at runtime.

For analysis purposes, the sample graph in Figure 2.7 was studied.

20

Figure 2.7: Sample graph (Makki & Havas, 1994).

 Assume that node 1 in the graph is the root node and total number of nodes

involve depends on the route chosen by the program. The routing as described by

S.A.M. Makki et al. is in order in which the nodes receive the forward message equals

to 14. For example, if the program chooses the route (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15) or (1, 4, 7, 8, 11, 12, 15, 14, 13, 10, 9, 6, 5, 3, 2), the number of return

messages known as nodes is 6. However if the route taken is (1, 15, 14, 13, 12, 11, 10,

9, 8, 7, 6, 5, 4, 3, 2), the number of return messages is 8. The worst-case discussed in

this paper of 14 return messages arises from the route (1, 15, 12, 13, 14, 11, 8, 9, 10,

7, 4, 5, 6, 3, 2).

 Apart from that, in a research conducted by Xinguo D. et al. involving the

combination of breadth-first search (BFS) with depth-first search (DFS) algorithm for

shortest VLSI routing was studied (Deng, et al. 2010). This study discusses about the

hybrid method that utilizes capability of BFS algorithm which requires less time to

find nodes closer to root, and DFS algorithm to find the shortest path between two

nodes in wire routing. In this study, BFS algorithm was used to compute the shortest

distance between every node and the start node. This is proven to consume high

21

bandwidth as it utilises a huge amount of computer memory as mentioned in this paper.

The depth-first search algorithm was used to traverse through all the shortest paths

received from the BFS algorithm from the end to the start position.

Figure 2.8: Example of Breadth-First Search structure (Deng, et al. 2010).

 Illustrated by Xinguo D. et. al. in Figure 2.8, to find the shortest path between

two point, BFS algorithm begins search at root node “a” and labels its reachable

neighbor such at point “a” is 1. Followed by the labelling next reachable square with

increment of 1. This labelling process is continued until the algorithm reaches point

“b” or until it has no nodes to traverse any further. Hence, the final number reaching

point “b” is 8 indicating it’s distance. For the DFS algorithm, the tracing begins at the

end point which is the “b” node and moves to any neighbor with 1 value less than the

previous b’s label until it reaches node “a”.

2.4.2 Hierarchical Path Planning Algorithm

 In a recent research proposed by Tosmate C. et al. the use of DFS worst-fit

search based for data center networks resulting in multipath routing was introduced

(Cheocherngngarn, et. al. 2012). In this paper, the multipath routing problems in data

22

center networks (DCNs) were studied. The depth-first search algorithm was proposed

as opposed to an integer linear program as it is not suitable for fast runtime routing

calculations. The main reason behind the use of the DFS algorithm is to find a sequence

of worst-fit links to connect source and destination of a flow. Since DCNs topologies

are defined in hierarchies, the depth-first search algorithm can quickly traverse

between the hierarchical layers to find a path.

 Understanding the hierarchical path planning method as discussed by Yong-

Jie M. et al. helps to understand the aspect of path planning in an ant colony algorithm

and genetic algorithm (Ma & Hou, 2010). The path planning method referred to Table

2.3 algorithm type was used to tackle the path planning feature aimed at urban road

traffic by analyzing traffic restrictions.

Table 2.3: Algorithm used urban traffic path-planning (Ma & Hou, 2010).

Algorithm type Description

Ant Colony Employed at bottom to calculate selected

subnets for local optimization in parallel.

Genetic Genetic algorithm is used at the top for

global optimization.

This research helps to identify the best solution to a converged global

optimization method in which the advantages of an Ant colony algorithm is stronger

in local search capability and faster convergence speed whereas Generic algorithm has

stronger global search capability. The disadvantages of these two algorithm are that an

Ant colony algorithm is weaker at global search capability and Genetic algorithm is

slow at convergence speed (Cristina Martinez, 2008). The algorithm introduces

different methods of algorithm usage at each hierarchical layer running these programs

in parallel to improve search efficiency. Apart from that hybrid genetic algorithm was

also introduced by Xiongfeng C. et. al. in solving VLSI standard cell placement

23

problem which the paper presents an adaptive hybrid genetic algorithm in standard cell

VLSI placement which belong to NP-hard combinatorial optimization problem (Chen,

et. al. 2016).

2.4.3 Interconnect Traversal Algorithm

 The research proposed by R. Sharathkumar et al. discusses about a practical

algorithm for connectivity extraction Very Large Scale Integration (VLSI) layouts

(Sharathkumar, et al. 2006). As Moore’s law continues to strive, the number of

transistors increases hence, connectivity information becomes increasingly large. The

problem discussed in this paper relates to processing large VLSI layouts being too

large for computer’s main memory, communication between the internal memory

which is faster and the slower external memory is often the performance bottleneck.

The traversal algorithm and data structures designed under the assumption of the single

level memory may not be meaningful.

 R. Sharathkumar et al. designed and implemented a practical external memory

algorithm which extracts connectivity information from a VLSI layout design. The

first solution to this implementation is using a “UNION-FIND” (Lu, et al. 2016) data

structure and second, the author discusses about targeting the problem with a “square-

root” rule counter problem present in VLSI layout design. In the result of this

implementation, the paper list that the standard main memory algorithm uses the

operating system’s (OS) memory management routine to access the disk but fails to

perform well as the program does not have control over how the OS perform disk

accesses.

24

2.5 Physical to Layout Debug Method and Analysis

As this dissertation research aids in silicon debug method, physical-to-layout

mapping plays an important role in fault isolation debug in maintaining silicon design

quality. Figure 2.9 shows an example of a “physical” 800 nm process E-fuse bits on a

polysilicon layer.

Figure 2.9: Polysilicon layer of a 800nm process IC (McMaster, 2014).

 Silicon architecture mapping (Physical to Layout) in post-silicon validation

(Mishra, et al. 2017) discusses about pin-pointing the location which issue was found

probing between two nodes on a silicon tracing to layout schematic pins in an

Electronic Design Automation (EDA) tool. As designs becomes more complex,

understanding these faults and recent debug methods becomes increasingly

challenging (Shafique, et al. 2014) and important in debug diagnosis EDA tools.

2.5.1 Fault Isolation and Failure Analysis

 In general, emission microscopy (EMMI) is able to detect photon emission

event induced by crystal defect but is not always reliable due to thick dense

metallization and high doped substrate as discussed by N.S. Lee et al. (Lee & Yong,

2016). In publication, the author proposed fault isolation of die level crystal defect

failure mechanism through “OBIRCH” analysis and micro-probing. Electrical failure

