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LITAR EKSTRAKTOR INTEGRASI SKALA SANGAT BESAR 

BERASASKAN SEL UNTUK FIZIKAL KE TATALETAK 

PEMETAAN DALAM KERJA KESALAHAN PENGASINGAN 

 

ABSTRAK  

 

Siasatan dalam jawatan-silikon semakin mencabar kemajuan teknologi dalam 

keupayaan Pemetaan Fizikal ke Tataletak. Bidang yang memerlukan inovasi tersebut 

adalah kesalahan kerja pengasingan dalam analisis kegagalan peranti semikonduktor 

pada peringkat pasca silikon. Sejak kerja kesalahan pengasingan bermula di peringkat 

“Register Transfer Level” (RTL) untuk membentuk sempadan yang disyaki yang 

terdiri daripada pelbagai logik dari satu hujung ke hujung yang lain, “Electronic 

Design Automation” (EDA) membantu mengenal pasti kesalahan dalam sempadan 

yang dinyatakan. Oleh itu, program ekstraktor litar yang mampu mengekstrak semua 

laluan mungkin dari isyarat awal hingga akhir boleh menjimatkan masa jurutera dalam 

mengesan komponen yang terlibat antara garis kesalahan dalam skematik. Untuk 

mendapat semua isyarat yang mungkin terlibat dalam sempadan yang disyaki adalah 

carian masalah pengiraan popular. Disebabkan itu, program litar ekstraktor yang 

dicadangkan menggabungkan ciri-ciri algoritma “Depth-First Search” (DFS) dengan 

mengambil kira spesifikasi reka bentuk berasaskan sel. Objektif dicapai dalam kajian 

ini terbukti  dengan keputusan pengekstrakan jalan konsisten walaupun dengan 

manipulasi “Depth of Search” (DoS). Prestasi berbeza purata 12.6 % (kiraan lelaran) 

dengan menjaga kedalaman maksimum yang dibenarkan carian berterusan. Laluan 

urutan bersih adalah konsisten sepanjang pengesahan program jalan pemerah. 

Perkembangan ini dan kajian kaedah ekstrak jalan membawa kepentingan dalam 

bidang EDA dan kerja siasatan. 
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VERY LARGE SCALE INTEGRATION CELL BASED PATH 

EXTRACTOR FOR PHYSICAL TO LAYOUT MAPPING IN 

FAULT ISOLATION WORK 

 

ABSTRACT 

  

Debug and diagnosis in post-silicon challenges the technological advancement in 

Physical-to-Layout Mapping capabilities. Areas that require such innovation are fault 

isolation work in failure analysis of semiconductor devices, at post-silicon stage. Since 

fault isolation work begins at Register Transfer Level (RTL) level to form a suspected 

boundary consisting of multiple logics from one end to the other, layout to schematic 

mapping automation tool helps to identify fault in design within given boundary. 

Therefore the development of a path extractor program which is capable of extracting 

all possible paths from these start to end signals can save engineers time in tracing 

components involved between a fault line. This feature is extremely significant in 

Electronic Design Automation (EDA) as it can provide results of net name sequences 

stored in a database of mapper files. These mapper files can be used in layout design 

debug as the net sequence represents schematic signals. To be able to retrieve all 

possible signals involved within a suspected boundary is a popular search 

computational problem. Therefore the path extractor program proposed incorporates 

the characteristics of a depth-first search algorithm by considering the specifications 

of a cell-based design. The objectives achieved in this research are proven reliable with 

path extraction results consistent even with search depth manipulation. Performance 

differs an average of 12.6 % (iteration count) with keeping maximum allowable depth 

of search constant. Paths of net sequences were consistent throughout the verification 

of the path extractor program. This development and study of the path extract method 

carries  significance in areas of EDA and debug diagnosis work.
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

In Electronic Design Automation (EDA) which refers to electronic computer-

aided designs for electronic systems commonly used in the semiconductor design flow 

by design engineers (Sifakis, 2015). These software tools are used to design and 

validate full semiconductor chips within the design flow cycle from Register Transfer 

Level (RTL) to layout in pre-silicon and debug & diagnosis in post-silicon. These EDA 

tools are useful since modern fabrication technology enables semiconductor chips to 

contain billions of transistors (Courtland, 2017) as technology node reduces and 

number of transistors (components) in a semiconductor chips doubles every 18 months 

according to Moore’s Law (Bai, 2016). Since a full semiconductor design such as a 

microchip may contain billion of transistors, cell-based design methodology are 

widely used in EDA tools to provide abstract representation of components in terms 

of physical layout or diagrams (Xiu, 2007).  

 The use of cell-based design methodology enables design engineers to work on 

smaller partitions of various cells at different level of abstraction. As an example, an 

engineer may choose to focus on logical function of a particular circuit whereas a 

layout engineer is more interested in its physical layout instead. Having a cell-based 

design model of both physical and logical abstraction helps engineers to work on 

individual or group of cells based on patterns, design requirements or even its 
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architecture (Xiu, 2007). This methodology also enables engineers to reuse cells 

known as “instances” in more complex designs. This technique does not require 

understanding of all the implementation details. An instance could be anything from a 

single transistor to a resistor or capacitor. In some cases, a cell represents a block of 

integrated circuit chip design.  

 Complex designs contains many instances and hence, the connectivity of these 

cells increases as the design becomes more dense, stacked within multiple hierarchies 

(Srivastava, Winter 2001) as seen in Figure 1.1.  

 

Figure 1.1: Design abstraction levels in digital circuits (Chandrakasan, Nikolić, & 

Rabaey, 1995). 

 

In a cell based design (CBD), cells that are within a another cell are known as 

a child and the parent is known as a master cell. Both these cells are interconnected 

and can be referenced through its input and output signals. Moreover, a parent cell 

may contain multiple child cells that may have other instances nested in them hence, 

tracing the connectivity becomes a challenge as circuit designs becomes increasingly 

complex with increased depth. These depths are known as hierarchical design 

defined in the design netlist which is a description of the circuit connectivity.  
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Figure 1.2: Primitive cell with 3 input and 1 output terminals. 

 

The description of the connectivity includes input and output terminals to a 

particular cell also known as pin connections shown in Figure 1.2. Each cell can be 

expanded to unfold instances or components that are nested within. Shown in Figure 

1.3 are the cell’s interconnects unfolded from the cell in Figure 1.2. 

 

Figure 1.3: Components inside a Primitive cell (Flat view). 

 

Standard cells are direct representation of simplest logical functions of a 

combinational  group of transistors which its structure cannot be further expanded, 

identified as a “flat view”. For example, a Standard cell represents Boolean functions 

of inverters, AND, OR, XOR, XNOR or storage functions such as flops and latches. 

This research proposes a solution to extract connectivity information tracing from a 
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single driver pin to a receiver pin throughout the schematic design based on logical 

functions. 

 

1.2 Problem Statements 

In accordance to Moore’s law (Moore, 1965), transistor count is predicted to 

double every 2 years. Transistor count in semiconductor chips has exponentially 

increased up to 2.6 billion within a span of 30 years since 1971 depicted in Figure 1.4. 

 

Figure 1.4: Microprocessor Transistor Counts from 1971 to 2011 (Klopfer, 2012). 

 

Increased complexity in full semiconductor chips means that more transistors of 

different functions and architecture can be grouped and synthesized into different type 
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of cells. This causes the cell counts within a design to increase modelled and used in 

EDA tools (Dunlop, Evans, & Rigge, 1997).  

 

Figure 1.5: Average cell count in 10 nm semiconductor chips. 

 

Figure 1.5 shows the average cell count from standard to netlist conversion of 

10 nm design to OpenAccess (OA) model experience as of year 2017. Comparison 

was made in an SOC design as compared to server CPUs that are modeled in OA to 

form cell based IC design through spice netlist conversion. The OpenAccess Coalition 

(Blanchard et al., 2002) delivers and provide a broad industry standard Application 

Programming Interface (API) and Information Model (IM) essential for modern IC 

design systems (Blanchard, 2017). Computational search challenges arises in tracing 

fault affected components in a cell-based design schematic as more and more cells are 

fitted into a design and cell instances being embedded in multiple hierarchies. 

Due to the hierarchical structure of Cell-Based Design (CBD), tracing signal 

paths from one terminal to the other across multiple depths of hierarchy manually is 

time consuming. This is because engineers are required to identify, analyze and trace 

each individual connection otherwise known as nets, traversing through cell and 

instance pins to carry out fault isolation work (Liu, 2012). Determining components 
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between a start and end signal are time consuming for cells that has bi-directional pin 

where it can be treated as fan-in or fan-out of a particular cell as seen in Figure 1.6. 

 

Figure 1.6: Cell with all 3 inout pins. 

 

The fan-in and fan-out sequence of a particular cell has to be taken into 

consideration when traversing through a hierarchy (Tala, 2006). As an example, a cell 

with 5 terminals such as a register may have 3 strict input pins which are known as 

fan-in of a cell, whereas the remaining in-out pins that drives other cells are known as 

fan-out. The number of pins are multiplied for registers with higher resolutions such 

as a 100-bit register. Manual efforts to trace signals through such components would 

be time consuming as not all terminals would have paths leading to the receiver pin.  

 Apart from that, cell based designs are loaded on demand as user expands and 

view the interconnects of a particular cell to work on. For a complex full chip design, 

traversing through the entire design to identify a particular signal path from a driver to 

receiver pin requires complete load-up of the object model which greatly affects 

performance. As an example, the complete load-up of a cell-based design that only 

contains 34 cells at current depth requires a duration of 2 minutes and 18 seconds based 
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on work experience in Intel. Therefore an automated path extractor program to traverse 

through all available cells with returned valid paths can save users effort and time. 

 

1.3 Objectives 

The objectives of this research are: 

I. To develop a cell-based design circuit signal path extractor driven by a single 

driver and receiver pin. 

II. To analyse a suitable search algorithm method used to identify sequence of 

nets involved during path extraction. 

 

1.4 Research Scope 

The critical area involved in this research are the search algorithm and parameters 

used in identifying accurate paths from a single driver pin to a receiver pin. The search 

algorithm involved in development will cover hierarchical search and traversal method 

in respect to performance measured in unit time. The structure of the cell based design 

circuit represented by OpenAccess (OA) model libraries are studied and covers the 

methodology that enables the application of the search algorithm. 

 Conditions such as the depth of search which manipulates the path extraction 

performance are analyzed and discussed. The search algorithm is heavily dependent 

on the depth of search as more cells are involved as the search area expands. Similar 

to a linked tree data structure involving graphs, search algorithms used in these areas 

are experimented, analyzed and discussed. In this research, each cell and instance are 

treated as object nodes in a search pattern, the branches to these nodes represents the 

connectivity information in sequence. Since digital circuit designs used are represented 
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as cell-based designs, analogue or electrical characteristics of the research are not 

covered as it does not affect the search algorithm for Cell Based Design (CBD) path 

extraction.   

 

1.5 Research Contributions 

This research contributes to improved turn-around-time in fault isolation work for 

Failure Analysis (FA) Engineers in layout to schematic mapping. The path extractor 

can be used to extract the possible paths with given start and end signal received from 

post-silicon debug tool that formed a suspected boundary consisting of multiple logics 

from one end to the other.  

 Apart from that, the path extractor can be used to acquire schematic signals to 

create a mapper file containing all connectivity information. As an example, a 100 bits 

register from bit 99 until bit 0 contains inverters and buffers in between each bit, path 

extractor can be used to retrieve all connectivity information by only providing the 

input and output signals. Therefore, these information can used in post-silicon debug 

tools where FA engineers carry out physical to layout mapping. 

 

1.6 Thesis Outline 

This thesis is organized into five main chapters whereby in chapter 2, the topic of 

path extraction in Very Large Scale Integration (VLSI) designs are being studied and 

discussed especially in areas where solutions can be applied to electronic design 

automation tools. Besides that, search algorithm such as the depth-first search (DFS) 

and breadth-first search (BFS) are discussed to review strength and weakness of 
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individual methods. Applications of VLSI cell based methodology and application of 

these algorithm are also being discussed in this chapter.  

In chapter 3, the methodology of the research is charted. The development stages 

of the research from search algorithm to manipulative parameters and implementation 

of conditions due to cell structures are discussed in detail. The search algorithm 

presents the method that is used in traversing through the hierarchical tree structure of 

the cell based design. For manipulative parameters, depth of search is discussed as to 

how the search algorithm depends on. Since not all terminals are bidirectional pins, 

therefore how the path extraction method identifies and respond to these cell structure 

and signal connectivity are thoroughly discussed here. 

In chapter 4, careful analysis of collected results from experiments are discussed 

and presented in this section. These experimental results involves topics of 

performance in unit time measurement, specifications of the search algorithm, 

connectivity information and calculative changes that was retrieved by manipulating 

the depth of search parameter. This chapter also focuses on the algorithm which  is 

used in distinctive designs with different cell pin configuration where similarities and 

differences of results obtained are discussed and analyzed. 

 Finally in chapter 5 concludes the content of the study completed in this 

research. Final remarks, overall summary and future improvements that could be 

enhanced were proposed and justified in this chapter. Opinions related to future works 

interpreted from result collection are emphasized in this chapter.  
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CHAPTER 2  
 

 

LITERATURE REVIEW 

 

2.1 Introduction 

The development of the cell based design path extractor involves a multitude 

of areas which are related to Electronic Design Automation (EDA). Hence, this 

literature review section provides an in-depth discussion of present methodology and 

result analysis in areas of cell based design methodology, type of data extractions, 

search and circuit extraction algorithms, motivation and works that are involved within 

the topic. Besides that, the current problems and gaps of these areas are discussed and 

reviewed so to provide an in-depth knowledge of the current technological solutions 

available. Because this research contributes to the advancement of EDA, many 

references are taken from journals and publications originating from this categories, 

with scholars contributing to areas of advancing design integration technologies for 

Computer Aided Design (CAD) designers and software developers in areas of 

semiconductor Integrated Circuit (IC) design.  

 The structure of this chapter is categorized into 6 sections in sequential order 

which discusses in detail of current and past researches. A summary of critical analysis 

was tabulated at the end of the chapter to justify disadvantages, strengths and gaps of 

the path extraction topic in Cell Based Design (CBD).  
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2.2 Cell Based Hierarchical Design Methodology 

 To be able to develop a circuit path extraction method, understanding the 

hierarchical structure and how this methodology is being used in current and previous 

research and work is important. As an example, OpenAccess (OA) provides industry 

standard database for cell based design methodology in the form of libraries (Hahn, 

2012). According to Inoue, OA has the capacity and performance standards required 

for today’s largest semiconductor design. The reason being, OA provides standard 

C++ Application Programming Interface (API) that facilitates simple and swift access 

to a unified data model for physical and logical designs alike (Inoue, 2006). Popular 

methodologies and details are discussed in the following subsection. 

 

2.2.1 Cell-Based Design Structure and Hierarchical Netlist Extraction 

 To be able to acquire the hierarchical structure of a cell based design, 

information of these designs are extracted from the gate-level netlist. The gate-level 

netlist acquired from Logic Synthesis within the Very Large Scale Integration (VLSI) 

Integrated Circuit (IC) (Thakur, 2016) design flow helps validation engineers to 

understand the connectivity of the silicon design that is to be fabricated.  
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Figure 2.1: VLSI Custom Design Flow (Thakur, 2016) 

 

Figure 2.1 shows the netlist information could be used for floor planning, Auto 

Place and Route (APR) and visualization of schematics and physical designs. 

Connectivity information is generated into a netlist file which contains information of 

each particular cell in a design including each instances. According to L.G. Chen et al. 

from the connectivity information acquired, cells and its interconnects is known (Chen, 

Lee, & Wang, 1987). The cells identified from the netlist file contains the following 

properties shown in Table 2.1: 

Table 2.1: Properties of cell identified from netlist. 

Properties that could be identified from netlist to model extraction. 

Each cell are distinctively different from its name. 

All connections to a cell should be connected through the input or output pins. 

All input and output pins should be named with pin types which represents the pin as 

input or output pin type. 

 



13 

 

For particular cells, different cell pins can result in different number of fan-in 

or fan-outs of a cell. However, these pin can also be known as bidirectional pins 

representing both input and output pins alike depending on signal direction. 

 

2.2.2 Effect of Different Cell-Based Methodologies 

 In this paper which was discussed by B. Kick et al. proposed a standard cell 

based methodology for high-performance support chips (Kick, Baur, Koehl, Ludwig, 

& Pflueger, 1997). The paper describes the methodology used in the design of a set of 

CMOS support chips used in IBM server chips. The logical design aspect is based on 

functional units of each cell. The majority of the logics implemented by using standard 

cell components placed and routed flat are determined using timing-driven techniques.  

 Custom library components are used whenever required for optimizing 

performance. Using this technique, comparable cell density to those of present-day 

custom designs with reasonable turnaround times were discussed thoroughly in this 

paper.  

 

2.2.3 Data Model and Standard Cell Libraries 

 OpenAccess (OA) database is commonly supported by Electronic Design 

Automation (EDA) applications due to the standardization it provides for interoperable 

representation in semiconductor IC design as mentioned by Mark Hahn from Cadence 

Design Systems (Hahn, 2012). In the paper published by Shishpal S. Rawat from Intel 

and Sumit DasGupta from Si2 organisation (Rawat & DasGupta, 2012), discusses 

details of the OA API standards and reference database such as the embedded module 

hierarchy and constraint classes that aids in silicon design. The embedded module 

hierarchy represents the cell-based design methodology that is widely used in 
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representing embedded components in a chip design of multiple hierarchies or 

modules as shown in Figure 2.2. In simple terms, OA is a complete, next-generation 

database for representing IC designs with its vast functionality as described by Joseph 

T. Santos (Santos, 2004). OA provides the data model that captures both 

implementation and intent of an Integrated Circuit (IC) design specification as it 

comprises of three integrated databases shown in Figure 2.2. 

 

Figure 2.2: OpenAccess API 2.0 database structure. 

 

The structure of these integrated database features high-performance access to 

design data while consuming minimal memory ideal for use in EDA applications. Cells 

contain definition of other primitive cells or standard cells in Gate-level functions at 

the lowest hierarchy. Besides that, OpenAccess data model also covers design data 

that includes structural netlist connectivity, placement and routing, and hierarchical 

information. Similar representation can also be seen in other EDA design formats such 

as Verilog, Design Exchange Format (DEF) introduced by Cadence and the popular 

Milkyway database available from Synopsys (Cadence Design Systems Inc., 2009).  
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Figure 2.3: Embedded module hierarchy (Hahn, 2012). 

 

In a custom design flow, the database helps in providing a library model of the 

design representations as shown in Figure 2.3. The involvement of these libraries in 

the path extractor program from sequential design flow as described by Lavago et al. 

is after the routing stage referred to Figure 2.4. 

 

Figure 2.4: Sequential design flow (Lavagno, Martin, & Scheffer, 2006). 
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The hierarchical representation of connectivity in a cell-based design is defined 

in the netlist. Proven and described in the textbook (Lavagno, Martin, & Scheffer, 

2006), EDA for IC Implementation Circuit Design and Process Technology. 

 

2.3 Data Extraction Method in Very Large Scale Integration Integrated 

Circuit Designs 

 This section discusses about recent and past research works in the areas of 

information extraction of VLSI circuit designs. These extraction methods and 

analytical results were studied in detail to understand more on the parameters and 

information retrieved from interconnect extractions. This literature review section 

aims to provide in-depth understanding in areas of a VLSI data extractor that interacts 

with a design database and the applications that motivates the development of such a 

feature. 

 

2.3.1 Parametric Path Extraction Method 

 A 3D Global interconnect parameter extractor known as (GIPER) was 

developed by S. Y. Oh et al. to provide a practical EDA extraction tool for a full-chip 

global critical path analysis that extracts resistance and capacitance (R,C) parameters 

(Oh, et al., 1996). A typical global interconnect parameter extraction of a net takes 

several minutes on a HP 9000/755 workstation within 5 % accuracy comparable to a 

full 3D numerical simulation as discussed in the publication. As mentioned by S. Y. 

Oh et al, five assumptions are used to simplify and make the 3D interconnect model 

library generation practical with occupying reasonable CPU time and accuracy. 

However, three assumptions are taken into review due to its involvement in 
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hierarchical circuit design in a full custom chip. Table 2.2 presents the assumptions 

carried out in GIPER for interconnect model library generation. 

 

Table 2.2 Assumptions of GIPER in interconnect library generation. 

Assumptions to simple 3D interconnect model library generation 

It is enough to include only cross-overs in 3D interconnect model library for global 

interconnect parameter extraction. 

The cross-section of hierarchical interconnect is determined to be rectangular and 

planar. 

Adjacent metal layers routing directions are orthogonal to each other.  

  

Apart from that, the hierarchical circuit of an IC netlist design should be taken 

into consideration also. In a paper regards to hierarchical IC layout circuit extraction 

as discussed in a paper by Ahsan Bootehsaz et al. described a set of heuristic methods 

for a hierarchical circuit extractor (Bootehsaz & Cottrell, 1986). The key points to note 

in this research is that the strength of an extraction algorithms depends on the 

capability of a software in exploiting the natural hierarchical structure of an IC layout 

design. Besides that, the handling in overlapping cells also known as instances without 

creating partial devices are important treated as one of the parameters in optimizing 

the extraction algorithm. 

 In this paper, Ahsan Bootehsaz et al. mentioned that all technology dependent 

information are kept in a user accessible file external to the program which is also used 

to configure or manipulate the extent of the parameter extraction shown in Figure 2.5.  
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Figure 2.5: Extraction methodology used by Ahsan Bootehsaz et al. in hierarchical 

circuit extraction. 

 

The circuit extraction proposed is performed in a bottom-up manner which 

produces a netlist description similar with the hierarchical structure of the layout. The 

extraction process as proposed in this paper is categorized into three categories shown 

in Figure 2.6. 

 

Figure 2.6: Three categories contained within the extraction process (Bootehsaz & 

Cottrell, 1986). 

 

 
Tech. independent information & 

configurations externally accessible 

 Running extraction program 

First Phase: Preparation of 

technology file (tech. file) which 

provides technology dependent 

information. 

Third Phase: The feature extractor 

which computes and populates the 

hierarchical circuit extraction result. 

Second Phase: Implemented as front-

end process, exploits the hierarchical 

design structure of the layout, 

analyzes and processes overlapping 

or repeated instances. 

Extraction Process 
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2.4 Circuit Analysis Algorithm Used in Electronic Design Automation 

 This section discusses about the previous works relating to circuit analysis in 

EDA tools. Previous researches involving search algorithms, hierarchical connectivity, 

cell placement as well as existing design traversal method are thoroughly discussed in 

this section.  

 

2.4.1 Depth-First (DFS) and Breadth-First Search (BFS) Algorithm 

 In the research that studies the depth-first search algorithm involved in a 

communication network by S.A.M. Makki et al. discusses about embedding 

information “forward and return” messages which helps to explore the linked tree more 

efficiently (Makki & Havas, 1994). The key improvement in their development of the 

depth-first search tree algorithm is to reduce the number of “return” messages by using 

dynamic backtracking. This was made possible by including message information that 

communicates to the receiver the potential return message address which may not 

necessarily be its parent node. 

 In the algorithm, a node is defined to be a “split point” if it has two or more 

unvisited neighbors or it is a root node when visited. This way, nodes that are not split 

points could be bypassed by return messages. This paper discusses heavily in 

providing the program more information during traversal of the DFS tree which helps 

to improve performance and extract more information of the tree structure at runtime. 

For analysis purposes, the sample graph in Figure 2.7 was studied. 
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Figure 2.7: Sample graph (Makki & Havas, 1994). 

 

 Assume that node 1 in the graph is the root node and total number of nodes 

involve depends on the route chosen by the program. The routing as described by 

S.A.M. Makki et al. is in order in which the nodes receive the forward message equals 

to 14. For example, if the program chooses the route (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15) or (1, 4, 7, 8, 11, 12, 15, 14, 13, 10, 9, 6, 5, 3, 2), the number of return 

messages known as nodes is 6. However if the route taken is (1, 15, 14, 13, 12, 11, 10, 

9, 8, 7, 6, 5, 4, 3, 2), the number of return messages is 8. The worst-case discussed in 

this paper of 14 return messages arises from the route (1, 15, 12, 13, 14, 11, 8, 9, 10, 

7, 4, 5, 6, 3, 2). 

 Apart from that, in a research conducted by Xinguo D. et al. involving the 

combination of breadth-first search (BFS) with depth-first search (DFS) algorithm for 

shortest VLSI routing was studied (Deng, et al. 2010). This study discusses about the 

hybrid method that utilizes capability of BFS algorithm which requires less time to 

find nodes closer to root, and DFS algorithm to find the shortest path between two 

nodes in wire routing. In this study, BFS algorithm was used to compute the shortest 

distance between every node and the start node. This is proven to consume high 
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bandwidth as it utilises a huge amount of computer memory as mentioned in this paper. 

The depth-first search algorithm was used to traverse through all the shortest paths 

received from the BFS algorithm from the end to the start position. 

 

Figure 2.8: Example of Breadth-First Search structure (Deng, et al. 2010). 

 

 Illustrated by Xinguo D. et. al. in Figure 2.8, to find the shortest path between 

two point, BFS algorithm begins search at root node “a” and labels its reachable 

neighbor such at point “a” is 1. Followed by the labelling next reachable square with 

increment of 1. This labelling process is continued until the algorithm reaches point 

“b” or until it has no nodes to traverse any further. Hence, the final number reaching 

point “b” is 8 indicating it’s distance. For the DFS algorithm, the tracing begins at the 

end point which is the “b” node and moves to any neighbor with 1 value less than the 

previous b’s label until it reaches node “a”. 

 

2.4.2 Hierarchical Path Planning Algorithm 

 In a recent research proposed by Tosmate C. et al. the use of DFS worst-fit 

search based for data center networks resulting in multipath routing was introduced 

(Cheocherngngarn, et. al. 2012). In this paper, the multipath routing problems in data 
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center networks (DCNs) were studied. The depth-first search algorithm was proposed 

as opposed to an integer linear program as it is not suitable for fast runtime routing 

calculations. The main reason behind the use of the DFS algorithm is to find a sequence 

of worst-fit links to connect source and destination of a flow. Since DCNs topologies 

are defined in hierarchies, the depth-first search algorithm can quickly traverse 

between the hierarchical layers to find a path. 

 Understanding the hierarchical path planning method as discussed by Yong-

Jie M. et al. helps to understand the aspect of path planning in an ant colony algorithm 

and genetic algorithm (Ma & Hou, 2010). The path planning method referred to Table 

2.3 algorithm type was used to tackle the path planning feature aimed at urban road 

traffic by analyzing traffic restrictions.  

Table 2.3: Algorithm used urban traffic path-planning (Ma & Hou, 2010). 

Algorithm type Description 

Ant Colony Employed at bottom to calculate selected 

subnets for local optimization in parallel. 

Genetic Genetic algorithm is used at the top for 

global optimization. 

   

This research helps to identify the best solution to a converged global 

optimization method in which the advantages of an Ant colony algorithm is stronger 

in local search capability and faster convergence speed whereas Generic algorithm has 

stronger global search capability. The disadvantages of these two algorithm are that an 

Ant colony algorithm is weaker at global search capability and Genetic algorithm is 

slow at convergence speed (Cristina Martinez, 2008). The algorithm introduces 

different methods of algorithm usage at each hierarchical layer running these programs 

in parallel to improve search efficiency. Apart from that hybrid genetic algorithm was 

also introduced by Xiongfeng C. et. al. in solving VLSI standard cell placement 
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problem which the paper presents an adaptive hybrid genetic algorithm in standard cell 

VLSI placement which belong to NP-hard combinatorial optimization problem (Chen, 

et. al. 2016).  

 

2.4.3 Interconnect Traversal Algorithm 

 The research proposed by R. Sharathkumar et al. discusses about a practical 

algorithm for connectivity extraction Very Large Scale Integration (VLSI) layouts 

(Sharathkumar, et al. 2006). As Moore’s law continues to strive, the number of 

transistors increases hence, connectivity information becomes increasingly large. The 

problem discussed in this paper relates to processing large VLSI layouts being too 

large for computer’s main memory, communication between the internal memory 

which is faster and the slower external memory is often the performance bottleneck. 

The traversal algorithm and data structures designed under the assumption of the single 

level memory may not be meaningful.  

 R. Sharathkumar et al. designed and implemented a practical external memory 

algorithm which extracts connectivity information from a VLSI layout design. The 

first solution to this implementation is using a “UNION-FIND” (Lu, et al. 2016) data 

structure and second, the author discusses about targeting the problem with a “square-

root” rule counter problem present in VLSI layout design. In the result of this 

implementation, the paper list that the standard main memory algorithm uses the 

operating system’s (OS) memory management routine to access the disk but fails to 

perform well as the program does not have control over how the OS perform disk 

accesses.  
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2.5  Physical to Layout Debug Method and Analysis 

As this dissertation research aids in silicon debug method, physical-to-layout 

mapping plays an important role in fault isolation debug in maintaining silicon design 

quality. Figure 2.9 shows an example of a “physical” 800 nm process E-fuse bits on a 

polysilicon layer. 

 

Figure 2.9: Polysilicon layer of a 800nm process IC (McMaster, 2014).  

 

 Silicon architecture mapping (Physical to Layout) in post-silicon validation 

(Mishra, et al. 2017) discusses about pin-pointing the location which issue was found 

probing between two nodes on a silicon tracing to layout schematic pins in an 

Electronic Design Automation (EDA) tool. As designs becomes more complex, 

understanding these faults and recent debug methods becomes increasingly 

challenging (Shafique, et al. 2014) and important in debug diagnosis EDA tools.  

 

2.5.1 Fault Isolation and Failure Analysis 

 In general, emission microscopy (EMMI) is able to detect photon emission 

event induced by crystal defect but is not always reliable due to thick dense 

metallization and high doped substrate as discussed by N.S. Lee et al. (Lee & Yong, 

2016). In publication, the author proposed fault isolation of die level crystal defect 

failure mechanism through “OBIRCH” analysis and micro-probing. Electrical failure 


