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Pelaksanaan Perkakasan Untuk Piawai Penyulitan Lanjutan 

Dengan Kelajuan Yang Berkesan                                     

ABSTRAK 

Kriptografi memainkan peranan yang penting dalam keselamatan data terhadap serangan 

dari pihak ketiga. Dalam tesis ini, tumpuan adalah untuk melaksanakan algoritma 

kriptografi yang biasa digunakan seperti Piawai Penyulitan Lanjutan (AES) dan 

meningkatkan prestasi kelajuannya. Motivasi adalah untuk membuat proses penyulitan 

semakin pendek untuk meningkatkan keupayaan sistem dalam pemprosesan jumlah data 

yang besar. FPGA dipilih sebagai platform kerana ia tidak mempunyai overhed perisian 

dan sesuai untuk aplikasi masa nyata. Kebanyakan kajian mengoptimumkan sumber 

perkakasan untuk melaksanakan AES di FPGA dan cara-cara termasuklah pengiraan aktif 

dan gelung bergulir seni bina yang mengurangkan sistem kelajuan. Tesis ini adalah untuk 

membentangkan reka bentuk pemprosesan yang tinggi dalam 128-bit AES algoritma 

dengan menggunakan gelung membuka, seni bina saluran maklumat dan pendekatan LUT 

untuk bekerja secara selari dalam penyegerakan yang tepat untuk memenuhi keperluan 

aplikasi masa nyata. Reka bentuk sistem dikodkan daripada Verilog HDL di dalam 

ModelSim dan reka bentuk perkakasan dianalisa melalui Altera Cyclone II daripada 

Quartus II. Proses penyulitan boleh dicapaikan dalam daya pemprosesan maksimum 32 

Gbits/s beroperasi dengan kekerapan 250 MHz. Selain itu, penyulitan AES 128-bit yang 

beroperasi dalam satu kitaran penuh hanya memerlukan 41 kitar jam untuk mendapatkan 

data yang disulitkan. Perbandingan dengan kerja-kerja berkaitan dilakukan dan akhirnya 

mencapai penghantaran lebih tinggi daripada kerja-kerja berkaitan dengan 3.47% dan 

22% masing-masing. Dua objektif yang ditetapkan dalam tesis ini telah dicapai.  
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Speed Efficient Hardware Implementation Of Advanced 

Encryption Standard (AES)  

ABSTRACT 

       Cryptography plays a vital role in data security against the attacks from the third party. 

In this thesis, the focus is to leverage existing, commonly used cryptography algorithm 

which is the Advanced Encryption Standard (AES) and improve its speed performance. 

The motivation is to make encryption process as short as possible to aid in increasing a 

system's ability to process large amount of data. FPGA is chosen as the platform due to it 

does not have software overhead and is meant to be customized for real time applications. 

Most of the researches are done on the area of optimizing hardware resources to 

implement AES on FPGA. The methods of optimization include on the fly computations 

and looping architecture, where all these of methods reduce the speed. This thesis presents 

a high throughput design of the 128-bit AES algorithm using loop unrolling, pipelined 

architecture and LUT approach which is able to work in parallel to allow accurate 

synchronization in order to fulfill the real time application needs. The system design is 

coded using Verilog HDL in ModelSim and the hardware design is analyzed through 

Altera Cyclone II in Quartus II. The maximum throughput of 32 Gbits/s operating at 250 

MHz for the encryption process can be achieved. Also, one full cycle of a 128-bit AES 

encryption only needs 41 clock cycles in order to get the encrypted data. The comparison 

with the related works is done and eventually achieved higher throughput than the related 

works by 3.47% and 22% respectively. The two objectives set in this thesis are achieved.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

In this world of technology, privacy and secrecy are the vital aspects to be 

contemplated due to the explosive growth of internet. Cryptography is the security 

mechanism that protect and prevent the data from leaking to the public access. 

Cryptography is known as “secret-writing” in Greek origin word which is meant to make 

the data immune to attacks and keep them safe and secure. In the old days, cryptography 

had been used as a communication medium between two people for their top secret. 

Nowadays, the purpose of cryptography has been changed based on the high technology 

demand of the people into an algorithm (Joshi, 2015). Cryptography is the practice of 

secret writing for secure communication with the conversion of plain text form into cipher 

text form, where only desired entity can retrieves information. On the other way, the cipher 

text can be transformed into plain text only if the receiver has the correct cipher key (Talha 

et al., 2016). 

There are two processes in cryptography algorithm which are encryption and 

decryption. Encryption is the process of encoding or converting data into form of code in 

order to protect users from being easily hacked by third parties. The data, which is the 

original plain text is converted into a cipher text, which is the unreadable text through 

encryption. On the other hand, decryption is a process which reverts the cipher text back 

to original plain text (Joshi, 2015). Both of encryption and decryption algorithms need 

either only one key or more than one key to complete the whole process. The two main 
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encryption algorithms include symmetric key algorithm and asymmetric key algorithm.  

Symmetric key algorithm uses only one key for the encryption and decryption process, 

thus it is called as private key algorithm. For asymmetric key algorithm, it uses two keys 

which one for the encryption process and another one for the decryption process. 

Therefore, asymmetric key algorithm is named as public key algorithm. The symmetric 

key algorithm (private key algorithm) is easy to implement and less complex when 

compared to asymmetric key algorithm (public key algorithm). Besides, symmetric key 

algorithm is fast when compared to asymmetric key algorithm as it uses only one key. 

Symmetric encryption uses fewer Computer Processer Unit (CPU) cycles than 

asymmetric encryption, hence symmetric algorithms are better than asymmetric 

algorithms in speed. Examples of symmetric algorithms are Data Encryption Standard 

(DES) and Advanced Encryption Standard (AES), where one of the example of 

asymmetric algorithm is Remote Secure Access (Priya et al., 2015). In this thesis, 

decryption will be not covered and will focus only on encryption. 

Symmetric-key cryptography is known as the most instinctive of cryptography, 

which involves the utilization of one secret key only by the participants to perform 

encryption and decryption of data during the secure communication (Priya et al., 2015). 

Data Encryption Standard (DES) uses a key of 56 bits and converts a 64 bits of input block 

plain text into a 64 bits of output block cipher text during encryption. The key size of 56 

bits is one of the most contentious aspects of DES algorithm as it is relatively small to 

cope with brute-force attack coming from modern computers (Deshpande et al., 2014). 

Triple DES, known as 3DES, which uses larger keys can generate better security. 

However, 3DES algorithm is relatively poor in software because DES was originally 
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practical in hardware implementation only (Oukili et al., 2016). Advanced Encryption 

Standard (AES) has better security than 3DES as it has symmetric block cipher with a 128 

bits block size which hold up 3 different key lengths of 128 bits, 192 bits and 256 bits 

(Kaur et al., 2013). This allows AES algorithm to replace its forerunner DES algorithm as 

it supports better security, efficiency and adaptability with a larger key size. Key size is 

vital as it determines the security strength and power consumption (Deshpande et al., 

2014). Hence, AES algorithm is chosen for the encryption purpose, as private key 

algorithm provides better in speed which is the main target to tackle on real time 

application in this thesis. 

In this thesis, the target specification of a speed efficient encryption system need 

to be have high throughput to encrypt volume data in a shorter period in order to protect 

the real-time applications from being accessed by other people. Besides that, encryption 

has been widely used in many different real-time applications like cellular networks, ATM 

cards, online banking, wireless communications, electronic commerce and military 

communications as it provides information security in terms of confidentiality and 

integrity during communication.  Therefore, there is a need to design an efficient and fast 

processing speed of 128-bit AES algorithm with pipelining hardware architecture to 

improve the data security of the real time application nowadays. 
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1.2 Problem Statements 

AES encryption is known as an efficient platform for both software and hardware 

implementation (Ghewari et al., 2010). If AES algorithm is implemented at software level, 

the output will shows slower result when compared to hardware implementation that can 

execute the operation in parallel (Hongsongkiat et al., 2014). Moreover, hardware 

implementation of AES provides better performance and efficiency to the system in terms 

of security than software implementation. This is because software implementation of 

AES encryption often requires continuous updates in order to keep up with the hacking 

techniques (Kanguru, 2017).  

Besides, software implementation of AES takes longer processing time than 

hardware. Hence, software implementation of AES unable to provide full proved security 

and creates time consuming system for financial industry and instance business. The only 

advantage of using software implementation is to save cost and chip area as no additional 

hardware is required and the program already resides in that of the instruction memory 

(Hongsongkiat et al., 2014). 

Previously, there are many different proposed architectures on the size of the 

hardware implementation of AES algorithm. Mostly, people are concerned about how to 

reduce the hardware used to save cost, but this might in the same way decrease the speed 

of the application. In this thesis, high throughput is the main concern as real time 

application need fast processing speed to deliver data to the users which in the same time 

data need to be protected well by encryption process. There are few types of methods in 

order to achieve higher throughput by improving the encryption process which are 
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pipelining (Joshi, 2015), inner round pipelining (Thongkhome et al., 2011) and outer 

round pipelining (Rahimunnisa et al., 2013). 

Regarding to (Tay et al., 2014), the area of the hardware used can be reduced by 

optimizing the AES S-Box in Sub Bytes, which is one of the most resources consuming 

in AES encryption. However, this type of architecture will decrease the processing speed 

of AES encryption because it takes more clock cycles to perform the substitution 

operations by reducing the S-Box numbers. Besides, reduction of pipeline registers is 

encouraged by (Alaoui, 2010) as claimed that pipeline registers are burden on hardware 

requirement. By the way, this is not suitable for high speed application as it will results in 

slower processing time. 

 

1.3 Research Objectives 

 To increase the processing speed of 128-bit AES algorithm by proposing a new      

   hardware architecture. 

 To evaluate the performance of the proposed architecture. 
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1.4 Research Scope 

This thesis is mainly covered on the speed optimization of hardware 

implementation of AES encryption algorithm only by pipelined architecture. There will 

be no decryption algorithms as the Advanced Encryption Standard Algorithm Validation 

Suite (AESAVS) can be used to provide testing in order to determine the exactness of the 

AES algorithm implementation. The target is only on Register-Transfer Level (RTL) 

implementation, where the synthesize platform is FPGA. AES is also known as Rijndael 

in which the theory is robust enough, hence there will be no modifications on the 

mathematical concepts. On the other hand, AES’ security measures such as side channel 

attack is not part of the research. Mode of operations in AES like counter mode or 

feedback is not covered in this research as well.  

 

1.5 Thesis Outline 

The overall AES algorithm of encryption process will be further explained which 

includes the few main operations in Chapter 2. In Chapter 3, design to be implemented are 

proposed after reviewing related work in Chapter 2. The implementation of each method 

are explained in detailed for each operation. The results and discussion of the proposed 

architecture are presented in Chapter 4. Besides, the performance in terms of throughput 

is compared with the related works in a table. For Chapter 5, the summary about the 

achievement of objectives has been concluded and future works are also recommended to 

improve the overall design in this thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the overall process flow of AES algorithm during encryption 

process will be explained. Next, each of the sections in AES encryption algorithm will be 

explained in more details in each of the subchapters. Besides, hardware implementation 

of each of the transformations in AES encryption are presented by comparison with the 

related papers in terms of performance and the most important is concerned about the 

processing speed of the applications. 

 

2.2 AES Algorithm 

The AES algorithm is known as Rijndael algorithm, which consists of a series of 

mathematical operations and the basic unit of the process is called a byte (8 bits). This 

algorithm is widely used in Windows Vista’s fault analysis software for security wise in 

configuration file. Besides, the AES algorithm is also used for transactions security in 

ATM machines. The AES algorithm can be implemented in many different of platform 

languages such as C, Matlab, Java but for reconfiguration purpose for hardware 

implementation and synthesized by RTL, Verilog HDL is the chosen one (Deshpande et 

al., 2014).  

The AES algorithm is a symmetric key block cipher that encrypts and decrypts a 

128-bit data block by using the same key. The input data block is fixed to 128 bits while 

it requires key size of 128-bit, 192-bit or 256-bit during encryption (Oukili et al., 2016). 
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The AES algorithm is iterative, which means every iteration is named as a Round. The 

number of rounds is basically dependent on the key size used which is shown in Table 

2.1. During AES encryption, the 128-bit input data (plain text) is converted to 128-bit 

output data (cipher text) using an input 128 bit cipher key in order to lock the information 

from being hacked by third party (Saini et al., 2014).  

 

Table 2.1: AES Key Size with Key length, Block Size and Number of rounds 

(Deshpande et al., 2014) 

AES Key Size Key Length 

(words) 

Block Size (words) Number of rounds 

128-bit 4 4 10 

192-bit 6 4 12 

256-bit 8 4 14 

 

A 128-bit of input plain text is arranged in a 4-by-4 matrix array or called as state, 

which is shown in Figure 2.1 (Talha et al., 2016). Each of the block in the state equals to 

1 byte of data. Therefore, they are total 16 bytes of data in a state.  

 

S15 S11 S7 S3 

S14 S10 S6 S2 

S13 S9 S5 S1 

S12 S8 S4 S0 

Figure 2.1:  A 128-bit of input data is arranged in 4x4 state of array (Talha et al., 2016) 
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The 128-bit AES encryption process can be achieved by going through few steps of 

algorithms (Rao et al., 2015) which is formed mainly from 4 sections. The details of the 

four main sections will be further explained in the following subchapters: 

1. Sub-Bytes 

2. Shift Rows 

3. Mix Columns 

4. Add Round Key 

 

 As shown in Figure 2.2, the 128-bit AES encryption process can be divided into 3 parts: 

1. Add Round Key: XOR-ing the 128-bit plain text (raw data) and 128-bit initial key 

(cipher key).  

2. Repeated Round: (Sub Bytes -> Shift Rows -> Mix Columns -> Add Round Key) 

for 9 times 

3.  Final Round: (Sub Bytes -> Shift Rows -> Add Round Key), without Mix 

Columns 
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Figure 2.2: 128-bit AES encryption algorithm (Rao et al., 2015) 

 

 

 



11 
 

2.2.1 Sub Bytes  

Sub Bytes is able to operate independently in each byte of the State, where each 

byte is referred and substituted regarding to the corresponding byte available in the 

Substitution box (S-Box). S-Box reveals the property of confusion and is known as one 

of the basic substances of symmetric key algorithm that performs substitution. This 

confusion property is used to obscure the finding of the key from the cipher text. In brief, 

S-Box takes one byte (8 bits) input and does transformation in order to deliver one byte 

(8 bits) output (Dao et al., 2015) 

For the S-Box transformation, it consists of two operations which are the Galois 

field (GF) inversion and affine transformation over GF (28). Firstly, for the GF inversion, 

where the field computations have been taken over the binary field GF (28) with that of 

the constant irreducible polynomial, (x) = x8 + x4 + x3 + x + 1. An element of GF (28) 

will be each of the 8-bit input and computes the inverse of the 8-bit input. Next, for the 

affine transformation over GF (28), the input is represented as an 8-bit vector and it will 

be multiplied by a fixed matrix M with 8x8 bits shown in Figure 2.3. Lastly, it be will 

added to a fixed vector C with 8-bit as shown in Figure 2.4. All of these properties provide 

non-linearity over cryptanalysis (Oukili et al., 2016). 
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Figure 2.3: The matrix M for S-Box transformation (Oukili et al., 2016) 

 

 

Figure 2.4: The vector C for S-Box transformation (Oukili et al., 2016) 

 

Finally, An S-Box table with a 16×16 matrix of bytes is generated as shown in 

Table 2.2. A byte (8 bits) will be categorized as the leftmost 4 bits MSB and the rightmost 

4 bits LSB, where the 4 bits MSB will be used as row value (group X) and the 4 bits LSB 

will be used as column value (group Y). All of these values of row and column are served 

as the indexes into the Table 2.2 to select a special value of 8-bit output as shown in Figure 

2.5. Take one value for example, if the hexadecimal value is “53” references number of 

row 5 and column 3 referring to S-Box table, whereas their intersection value is “ED”. 

Therefore, the hexadecimal value “53” is mapped onto the value “ED” as seen in Table 

2.2 (Nadjia et al., 2015). 
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Table 2.2: AES Encryption S-Box table (Deshpande et al., 2014) 

 

 

 

 

 

Figure 2.5: S-Box Transformation (Nadjia et al., 2015) 
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There are two common Sub Bytes hardware implemented which are Look Up 

Table (LUT) and combinational logic calculation. The LUT approach is implemented in 

Sub Bytes regarding to design of (Nadjia et al., 2015). Combinational logic calculation 

method is not implemented in this thesis as this on-the-fly method takes longer time to 

calculate as it needs to go through 2 main calculations which are affine transformation and 

multiplicative inverse in GF(28). LUT is chosen as the method of substitution process in 

AES algorithm as it is faster and easier to implement for better processing speed circuit 

design. 

In this non-linear Sub Bytes Module, it contains 16 S-boxes which can be seen in 

Figure 2.6. The 128-bit input data (State) is divided into 16 bytes, where each byte of the 

State is the input to the S-Box. Each input byte of the State will be mapped to the S-Boxes 

to substitute the corresponding value with the LUT.  All the output from S-boxes are 

concatenated to compose the output of the Sub Bytes Module, where the S-Boxes are 

stored in RAM (Random Access Memory). 



15 
 

 

Figure 2.6: Circuit design of Sub Bytes Module 
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2.2.2 Shift Rows 

Shift Rows transformation rotates row-wisely the bytes of the State for this last 3 

rows respectively except for the first row. In this transformation, the last 3 rows of the 

State are left shifted cyclically by different offsets (Deshpande et al., 2014). The Shift 

Rows transformation is shown in Figure 2.7. There is a register triggered by clock signal 

to act as the medium to perform row shifting to the State (Maraghy et al., 2013). 

1. Row 0:  Not shifted. 

2. Row 1: One byte shifted to the left. 

3. Row 2: Two bytes shifted to the left. 

4. Row 3: Three bytes shifted to the left. 

 

Figure 2.7: Shift Row Operation (Deshpande et al., 2014) 

 

The Shift Rows Module is working with the operation of the shifting of connection 

(Gao et al., 2008). The shifting operation can be applied by rerouting the wire of each byte 

of the State from the source to the destination which can be seen in Figure 2.8. This 

rerouting method does not requires clock cycle to run the Shift Rows operation. This 

proposed method requires no additional hardware overheads and it is considered as an 

added advantage to the design. 
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Figure 2.8: Rerouting of each byte of the State in Shift Rows Module 

 

2.2.3 Mix Columns 

In Mix Columns transformation, each column of the State bytes in Figure 2.9 is 

multiplied by a fixed matrix as shown in Figure 2.10. The two column vectors represent 

the State bytes’ i-th column and i-th column of the transformed Mix Columns State matrix 

in Figure 2.10, for i = 0, 1, 2 and 3 respectively (Balamurugan et al., 2014). 

 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

Figure 2.9: State bytes used for Mix Columns (Balamurugan et al., 2014) 

 

 
Figure 2.10: Fixed matrix used for encryption process (Balamurugan et al., 2014) 
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In the Mix Columns operation, the state bytes will be treated as the polynomials 

of Galois Field algebra, GF (28). This operation can be entitled as a matrix multiplication 

which can be seen in Figure 2.11, where S represents the initial state and S’ represent the 

final state after this operation. (Prathyusha et al., 2013) 

 

Figure 2.11: Mix Columns multiplication process (Prathyusha et al., 2013) 

 

The Mix Columns Module is designed with Galois multiplication and 4 inputs 

XOR operation by referring to (Narasimhulu et al., 2014). But unlike combinational 

implementation of Galois field multiplication, this proposed design which uses Galois 

multiplication with ROM based implementation as this method is significantly faster than 

the combinational implementation in order to avoid combinational delays. For an 8-bit 

(one byte) of input data, there will be 256 multiplication conditions, where all these 

conditions will be readily stored in the (256 x 8) ROM. The Mix Columns Module uses 

two ROMs for Galois multiplication of “2” and “3” in order to perform 4 Input XOR 

operation. This design offers higher speed in the hardware implementation. 
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2.2.4 Add Round Key 

Add Round Key Transformation is the process of a 128-bit state (Input Bytes) 

XOR with a 128-bit round key, which the 128-bit round key is generated from the cipher 

key through the Key Expansion module as seen as Figure 2.12. The output from this 

transformation will creates the Output Bytes in a form of 128-bit (Prathyusha et al., 2013).  

The implementation of Add Round Key Module is the simplest steps in 128-bit 

AES algorithm, which only requires XOR gates to make the transformation as shown in 

Figure 2.13. Although this method might use a lot of hardware resources as each bit of the 

input data will XOR with each bit of the round key. However, this is the fastest way which 

fulfill the faster processing speed in this thesis. In this case, 128-bit AES requires 128 

XOR gates to get the transformation done. 

 



20 
 

 

Figure 2.12: Add Round Key Process in AES algorithm 

 

 

       

Figure 2.13: Circuit design of Add Round Key Module 
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2.2.5 Key Expansion  

The Key Expansion in AES algorithm is mainly used to generate the 128-bit round 

key from the cipher key for each round. In this thesis, 128-bit AES algorithm is used where 

10 rounds of transformation will be performed, therefore there will be 10 round keys being 

generated (Berent, 2017). 

There are 3 important functions in this algorithm which is:  

1. Rot Word  

2. Sub Word  

3. RCON 

 

Here is the brief explanation on the 3 functions in Key Expansion algorithm: 

2.2.5.a Rot Word 

Rot Word is quite similar to the Shift Row Transformation, where it has circular shifts on 

4 bytes. The simple process is shown in Table 2.3. 

Table 2.3: Before and after Rot Word process 

Before Rot Word (4 bytes) After Rot Word (4 bytes) 

3,4,5,6 4,5,6,3 

 

2.2.5.b Sub Word 

Sub word utilizes the S-box table in Table 2.2 for substitution which is similar to Sub 

Bytes Transformation where each of the 4 bytes is in the argument. 
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2.2.5.c RCON  

RCON function provides exponentiation of 2 in Rijndael finite field to the round keys. 

The RCON table is shown in Table 2.4, where “i” is the round number and the equation 

for RCON[i] is 2i-1. Taking Round 1 as example where i=1, then RCON [1]= 21-1 = 20 = 1. 

Table 2.4: RCON table with value at respective round 

 

 

 

2.2.5.d Key expansion flow with 128-bit of cipher key to generate 128-bit of Round 

Key 

 

Figure 2.14: Key expansion flow which uses 128-bit of cipher key to generate 128-bit of 

RoundKey[0] 
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Figure 2.15: KeyColumn0 is rotated downwards and substituted with S-box value 

 

The full flow of Key Expansion to generate a 128-bit of cipher key is shown in 

Figure 2.14. As shown in Figure 2.15, the Rot Word function takes places where the 

rightmost column of cipher key which is KeyColumn0 is rotated one byte downwards. 

Next, it will goes to Sub Word function. Each byte of the KeyColumn0 will be substituted 

with a new value through the Sub-Bytes operation with the aid of S-Box table shown in 

Table 2.2.  

RCON, the substituted rightmost KeyColumn0 is XOR-ed with the leftmost 

unsubstituted KeyColumn3 and RCON[i]. For RCON[i], the value of “i” is a constant 

which will be changed according to the number of rounds as shown in Table 2.4. Hence, 

the leftmost column of Generated RoundKey[0], which the RKColumn3 is generated as 

shown in Figure 2.16. 
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Figure 2.16: Calculation to obtain RKColumn3 

 

Next, the process continues to move on when the newly generated RKColumn3 is 

XOR-ed with KeyColumn1 to obtain RKColumn2 as shown in Figure 2.17. The repeated 

process will be executed with the generated RKColumn2 and KeyColumn to generate 

RKColumn1 and RKColumn0 as shown in Figure 2.18 and Figure 2.19 respectively. 

Finally, the generated RoundKey[1] can be used in Add Round Key Transformation 

during encryption. 

 

 

Figure 2.17: Calculation to obtain RKColumn2 


