
i

SPEED EFFICIENT HARDWARE IMPLEMENTATION OF

ADVANCED ENCRYPTION STANDARD (AES)

By

LOW CHIAU THIAN

A Dissertation submitted for partial fulfilment of the requirement

for the degree of Master of Science (Microelectronic Engineering)

August 2017

ii

ACKNOWLEDGEMENTS

First of all, I would to express my greatest gratitude to my supervisor, Dr. Bakhtiar

Affendi Rosdi. His willingness of giving his time generously to supervise me with expert

comments and guidance has been very much appreciated. If it wasn’t his guidance and

encouragement throughout this research period, I wouldn’t had complete my thesis in time

successfully.

Besides, I would like to thank my family and friends for spending their hectic

moment to accompany me throughout the thesis. Their advices and opinions given have

proven to be helpful. Without their assistance, this thesis will not have been as successful

as it is.

Last but not least, I would like to express my greatest appreciation to Intel Penang

Company for providing me the study sponsorship for this Microelectronic Engineering

course. Without their financial support, it wouldn’t be me to pursue my Master degree in

School of Electrical and Electronic Engineering Universiti Sains Malaysia.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRAK .. x

ABSTRACT .. xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statements ... 4

1.3 Research Objectives ... 5

1.4 Research Scope .. 6

1.5 Thesis Outline .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 Introduction .. 7

2.2 AES Algorithm .. 7

2.2.1 Sub Bytes ... 11

2.2.2 Shift Rows .. 16

2.2.3 Mix Columns ... 17

2.2.4 Add Round Key ... 19

2.2.5 Key Expansion ... 21

2.3 Hardware Implementation of AES Algorithm ... 26

2.3.1 Hardware Implementation of Key Expansion .. 27

2.3.2 Speed Optimization by Pipelining ... 29

iv

2.4 Summary .. 30

CHAPTER 3 METHODOLOGY ... 31

3.1 Introduction .. 31

3.2 Overall Flow of AES Design ... 31

3.2.1 Overall Flowchart of Previously Proposed 128-bit AES Algorithm Architecture 32

 3.2.2 Overall Flowchart of Proposed 128-bit AES Algorithm Architecture………………….33

3.2.3 Overview of Performance Evaluation ... 35

3.3 Analysis on Previously Proposed Architecture .. 35

3.4 Development of Proposed Architecture ... 37

3.4.1 Loop Unrolling and Pipelined AES Algorithm Architecture 39

3.4.1.1 Proposed AES Encryption Module .. 41

3.4.1.2 Round Module ... 43

3.4.1.3 AES Key Expansion Module ... 44

3.4.1.4 Round Key Generator Module ... 45

3.4.2 Comparison of Pipelined Architecture and Non-Pipelined Architecture 46

3.4.3 Proposed Fully Pipelined Architecture of AES algorithm ... 47

3.5 Performance Evaluation ... 50

3.6 Summary .. 51

Chapter 4 RESULTS AND DISCUSSION .. 52

4.1 Introduction .. 52

4.2 Simulation Results in ModelSim ... 53

v

4.3 Simulation Results in Quartus II .. 56

4.4 Comparison with Related Works ... 61

Chapter 5 CONCLUSION .. 62

5.1 Conclusion ... 62

5.2 Future Work ... 63

REFERENCES ... 64

APPENDIX A

APPENDIX B

APPENDIX C

vi

LIST OF TABLES

Table 2.1: AES Key Size with Key length, Block Size and Number of rounds (Deshpande et al.,

2014) .. 8

Table 2.2: AES Encryption S-Box table (Deshpande et al., 2014) .. 13

Table 2.3: Before and after Rot Word process ... 21

Table 2.4: RCON table with value at respective round ... 22

Table 2.5: Previous proposed architecture with the respective weaknesses 30

Table 3.1: Input and Output signals in Top Module…………………….………………………..40

Table 3.2: List of Abbreviation for AES modules .. 49

Table 3.3: Test Cases to evaluate the proposed architecture’s stability .. 51

Table 4.1: Test vectors from Appendix A (declared in AESAVS) used to validate the AES

algorithm where the cipher key is set as constant……………………………..….........................52

Table 4.2: Test vectors from Appendix B (declared in FIPS 197, 2001) used to validate the

functionality of the modules in AES algorithm .. 56

Table 4.3: Test vectors from Appendix C (declared in FIPS 197, 2001) used to validate the

functionality of the Key Expansion Module in AES algorithm .. 56

Table 4.4: Test vectors from Appendix A (declared in AESAVS) used to validate the AES

algorithm where the Plain Text is set as constant ... 57

Table 4.5: Comparison results of related works with proposed method 61

file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234023
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234023
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234024
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234025
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234026
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234027
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072771
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072772
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072773
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072778
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072778
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072779
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072779
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072780
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072780
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072781
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072781
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc484072782

vii

LIST OF FIGURES

Figure 2.1: A 128-bit of input data is arranged in 4x4 state of array (Talha et al., 2016) 8

Figure 2.2: 128-bit AES encryption algorithm (Rao et al., 2015) .. 10

Figure 2.3: The matrix M for S-Box transformation (Oukili et al., 2016) 12

Figure 2.4: The vector C for S-Box transformation (Oukili et al., 2016) 12

Figure 2.5: S-Box Transformation (Nadjia et al., 2015) .. 13

Figure 2.6: Circuit design of Sub Bytes Module ... 15

Figure 2.7: Shift Row Operation (Deshpande et al., 2014) .. 16

Figure 2.8: Rerouting of each byte of the State in Shift Rows Module 17

Figure 2.9: State bytes used for Mix Columns (Balamurugan et al., 2014) 17

Figure 2.10: Fixed matrix used for encryption process (Balamurugan et al., 2014) 17

Figure 2.11: Mix Columns multiplication process (Prathyusha et al., 2013) 18

Figure 2.12: Add Round Key Process in AES algorithm ... 20

Figure 2.13: Circuit design of Add Round Key Module .. 20

Figure 2.14: Key expansion flow which uses 128-bit of cipher key to generate 128-bit of

RoundKey[0].. 22

Figure 2.15: KeyColumn0 is rotated downwards and substituted with S-box value 23

Figure 2.16: Calculation to obtain RKColumn3 .. 24

Figure 2.17: Calculation to obtain RKColumn2 .. 24

Figure 2.18: Calculation to obtain RKColumn1 .. 25

Figure 2.19: Calculation to obtain RKColumn0 .. 25

Figure 2.20: Key expansion flow for AES encryption ... 26

Figure 2.21: Online Key Generation architecture .. 27

Figure 2.22: Offline Key Generation architecture ... 28

file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234116
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234117
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234118
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234119
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234120
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234121
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234122
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234123
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234124
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234125
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234126
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234127
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234128
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234129
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234129
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234130
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234131
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234132
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234133
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234134
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234135
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234136
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234137

viii

Figure 3.1: The flowchart of previously proposed 128-bit AES encryption algorithm (Liu et al.,

2015) .. 32

Figure 3.2: The flowchart of proposed 128-bit AES encryption algorithm 33

Figure 3.3: Loop rolling architecture ... 36

Figure 3.4: Loop unrolling architecture ... 38

Figure 3.5: Block Diagram of proposed 128-bit Top Module in AES encryption process 39

Figure 3.6: Block Diagram of proposed AES Encryption Module .. 41

Figure 3.7: Block diagram of proposed AES Round Module .. 43

Figure 3.8: Block Diagram of proposed AES Key Expansion Module 44

Figure 3.9: Block Diagram of proposed AES Round Key Generator Module 45

Figure 3.10: Non-pipelined architecture of Round process ... 46

Figure 3.11: Pipelined architecture of Round process ... 46

Figure 3.12: Fully pipelined architecture of AES algorithm .. 47

Figure 3.13: Parallelism of Encryption Module and Key Expansion Module with pipelined

architecture ... 49

Figure 4.1: Waveform result showing the “cipher_key” and “plain_text” are able to read the input

vectors from AESAVS’s test vectors…………………………………………………………….53

Figure 4.2: Waveform result showing the first data is encrypted and matched with the expected

output from AESAVS’s document .. 53

Figure 4.3: Waveform result showing the 2nd data is encrypted and matched with the expected

output from AESAVS’s document .. 54

 Figure 4.4: Waveform result showing the 3rd data is encrypted and matched with the expected

output from AESAVS’s document .. 55

Figure 4.5: Pipelining of 3 test vectors within one clock cycle for each data encrypted 55

file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234143
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234143
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234144
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234145
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234146
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234147
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234148
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234149
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234150
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234151
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234152
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234153
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234154
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234155
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234155
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234238
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234238
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234239
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234239
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234240
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234240
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234241
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234241
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234242

ix

Figure 4.6: Waveform result showing the Add Round Key Module can XOR-ed 16 bytes (128

bits) of “data_in” and “round_key” into 16 bytes (128 bits) of “data_out” 57

Figure 4.7: Waveform result showing the Sub Bytes Module can substitute 16 bytes (128 bits) of

“data_in” into 16 bytes (128 bits) of “data_out” .. 57

Figure 4.8: Waveform result showing the Shift Rows Module can shifts 16 bytes (128 bits) of

“data_in” into 16 bytes (128 bits) of “data_out” .. 58

Figure 4.9: Waveform result showing the Mix Columns Module can do multiplication job on 16

bytes (128 bits) of “data_in” into 16 bytes (128 bits) of “data_out”.. 58

Figure 4.10: Waveform result showing the Round Key Generator Module can generates a new

“round_key” with the given input “key” .. 59

 Figure 4.11: Waveform result showing the Top Module has encrypted a data in 41 clock cycles

 ... 59

Figure 4.12: Waveform result showing the Top Module takes 3 different cipher keys and same

plain text as inputs ... 60

Figure 4.13: Waveform result showing the Top Module has encrypted 3 data in pipeline from

Figure 4.12’s input ... 60

file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234243
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234243
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234244
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234244
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234245
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234245
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234246
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234246
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234247
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234247
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234248
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234248
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234249
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234249
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234250
file:///C:/Users/ctlow/Desktop/Speed%20Efficient%20Hardware%20Implementation%20of%20Advanced%20Encryption%20Standard%20(AES).docx%23_Toc487234250

x

Pelaksanaan Perkakasan Untuk Piawai Penyulitan Lanjutan

Dengan Kelajuan Yang Berkesan

ABSTRAK

Kriptografi memainkan peranan yang penting dalam keselamatan data terhadap serangan

dari pihak ketiga. Dalam tesis ini, tumpuan adalah untuk melaksanakan algoritma

kriptografi yang biasa digunakan seperti Piawai Penyulitan Lanjutan (AES) dan

meningkatkan prestasi kelajuannya. Motivasi adalah untuk membuat proses penyulitan

semakin pendek untuk meningkatkan keupayaan sistem dalam pemprosesan jumlah data

yang besar. FPGA dipilih sebagai platform kerana ia tidak mempunyai overhed perisian

dan sesuai untuk aplikasi masa nyata. Kebanyakan kajian mengoptimumkan sumber

perkakasan untuk melaksanakan AES di FPGA dan cara-cara termasuklah pengiraan aktif

dan gelung bergulir seni bina yang mengurangkan sistem kelajuan. Tesis ini adalah untuk

membentangkan reka bentuk pemprosesan yang tinggi dalam 128-bit AES algoritma

dengan menggunakan gelung membuka, seni bina saluran maklumat dan pendekatan LUT

untuk bekerja secara selari dalam penyegerakan yang tepat untuk memenuhi keperluan

aplikasi masa nyata. Reka bentuk sistem dikodkan daripada Verilog HDL di dalam

ModelSim dan reka bentuk perkakasan dianalisa melalui Altera Cyclone II daripada

Quartus II. Proses penyulitan boleh dicapaikan dalam daya pemprosesan maksimum 32

Gbits/s beroperasi dengan kekerapan 250 MHz. Selain itu, penyulitan AES 128-bit yang

beroperasi dalam satu kitaran penuh hanya memerlukan 41 kitar jam untuk mendapatkan

data yang disulitkan. Perbandingan dengan kerja-kerja berkaitan dilakukan dan akhirnya

mencapai penghantaran lebih tinggi daripada kerja-kerja berkaitan dengan 3.47% dan

22% masing-masing. Dua objektif yang ditetapkan dalam tesis ini telah dicapai.

xi

Speed Efficient Hardware Implementation Of Advanced

Encryption Standard (AES)

ABSTRACT

 Cryptography plays a vital role in data security against the attacks from the third party.

In this thesis, the focus is to leverage existing, commonly used cryptography algorithm

which is the Advanced Encryption Standard (AES) and improve its speed performance.

The motivation is to make encryption process as short as possible to aid in increasing a

system's ability to process large amount of data. FPGA is chosen as the platform due to it

does not have software overhead and is meant to be customized for real time applications.

Most of the researches are done on the area of optimizing hardware resources to

implement AES on FPGA. The methods of optimization include on the fly computations

and looping architecture, where all these of methods reduce the speed. This thesis presents

a high throughput design of the 128-bit AES algorithm using loop unrolling, pipelined

architecture and LUT approach which is able to work in parallel to allow accurate

synchronization in order to fulfill the real time application needs. The system design is

coded using Verilog HDL in ModelSim and the hardware design is analyzed through

Altera Cyclone II in Quartus II. The maximum throughput of 32 Gbits/s operating at 250

MHz for the encryption process can be achieved. Also, one full cycle of a 128-bit AES

encryption only needs 41 clock cycles in order to get the encrypted data. The comparison

with the related works is done and eventually achieved higher throughput than the related

works by 3.47% and 22% respectively. The two objectives set in this thesis are achieved.

1

CHAPTER 1

INTRODUCTION

1.1 Background

In this world of technology, privacy and secrecy are the vital aspects to be

contemplated due to the explosive growth of internet. Cryptography is the security

mechanism that protect and prevent the data from leaking to the public access.

Cryptography is known as “secret-writing” in Greek origin word which is meant to make

the data immune to attacks and keep them safe and secure. In the old days, cryptography

had been used as a communication medium between two people for their top secret.

Nowadays, the purpose of cryptography has been changed based on the high technology

demand of the people into an algorithm (Joshi, 2015). Cryptography is the practice of

secret writing for secure communication with the conversion of plain text form into cipher

text form, where only desired entity can retrieves information. On the other way, the cipher

text can be transformed into plain text only if the receiver has the correct cipher key (Talha

et al., 2016).

There are two processes in cryptography algorithm which are encryption and

decryption. Encryption is the process of encoding or converting data into form of code in

order to protect users from being easily hacked by third parties. The data, which is the

original plain text is converted into a cipher text, which is the unreadable text through

encryption. On the other hand, decryption is a process which reverts the cipher text back

to original plain text (Joshi, 2015). Both of encryption and decryption algorithms need

either only one key or more than one key to complete the whole process. The two main

2

encryption algorithms include symmetric key algorithm and asymmetric key algorithm.

Symmetric key algorithm uses only one key for the encryption and decryption process,

thus it is called as private key algorithm. For asymmetric key algorithm, it uses two keys

which one for the encryption process and another one for the decryption process.

Therefore, asymmetric key algorithm is named as public key algorithm. The symmetric

key algorithm (private key algorithm) is easy to implement and less complex when

compared to asymmetric key algorithm (public key algorithm). Besides, symmetric key

algorithm is fast when compared to asymmetric key algorithm as it uses only one key.

Symmetric encryption uses fewer Computer Processer Unit (CPU) cycles than

asymmetric encryption, hence symmetric algorithms are better than asymmetric

algorithms in speed. Examples of symmetric algorithms are Data Encryption Standard

(DES) and Advanced Encryption Standard (AES), where one of the example of

asymmetric algorithm is Remote Secure Access (Priya et al., 2015). In this thesis,

decryption will be not covered and will focus only on encryption.

Symmetric-key cryptography is known as the most instinctive of cryptography,

which involves the utilization of one secret key only by the participants to perform

encryption and decryption of data during the secure communication (Priya et al., 2015).

Data Encryption Standard (DES) uses a key of 56 bits and converts a 64 bits of input block

plain text into a 64 bits of output block cipher text during encryption. The key size of 56

bits is one of the most contentious aspects of DES algorithm as it is relatively small to

cope with brute-force attack coming from modern computers (Deshpande et al., 2014).

Triple DES, known as 3DES, which uses larger keys can generate better security.

However, 3DES algorithm is relatively poor in software because DES was originally

3

practical in hardware implementation only (Oukili et al., 2016). Advanced Encryption

Standard (AES) has better security than 3DES as it has symmetric block cipher with a 128

bits block size which hold up 3 different key lengths of 128 bits, 192 bits and 256 bits

(Kaur et al., 2013). This allows AES algorithm to replace its forerunner DES algorithm as

it supports better security, efficiency and adaptability with a larger key size. Key size is

vital as it determines the security strength and power consumption (Deshpande et al.,

2014). Hence, AES algorithm is chosen for the encryption purpose, as private key

algorithm provides better in speed which is the main target to tackle on real time

application in this thesis.

In this thesis, the target specification of a speed efficient encryption system need

to be have high throughput to encrypt volume data in a shorter period in order to protect

the real-time applications from being accessed by other people. Besides that, encryption

has been widely used in many different real-time applications like cellular networks, ATM

cards, online banking, wireless communications, electronic commerce and military

communications as it provides information security in terms of confidentiality and

integrity during communication. Therefore, there is a need to design an efficient and fast

processing speed of 128-bit AES algorithm with pipelining hardware architecture to

improve the data security of the real time application nowadays.

4

1.2 Problem Statements

AES encryption is known as an efficient platform for both software and hardware

implementation (Ghewari et al., 2010). If AES algorithm is implemented at software level,

the output will shows slower result when compared to hardware implementation that can

execute the operation in parallel (Hongsongkiat et al., 2014). Moreover, hardware

implementation of AES provides better performance and efficiency to the system in terms

of security than software implementation. This is because software implementation of

AES encryption often requires continuous updates in order to keep up with the hacking

techniques (Kanguru, 2017).

Besides, software implementation of AES takes longer processing time than

hardware. Hence, software implementation of AES unable to provide full proved security

and creates time consuming system for financial industry and instance business. The only

advantage of using software implementation is to save cost and chip area as no additional

hardware is required and the program already resides in that of the instruction memory

(Hongsongkiat et al., 2014).

Previously, there are many different proposed architectures on the size of the

hardware implementation of AES algorithm. Mostly, people are concerned about how to

reduce the hardware used to save cost, but this might in the same way decrease the speed

of the application. In this thesis, high throughput is the main concern as real time

application need fast processing speed to deliver data to the users which in the same time

data need to be protected well by encryption process. There are few types of methods in

order to achieve higher throughput by improving the encryption process which are

5

pipelining (Joshi, 2015), inner round pipelining (Thongkhome et al., 2011) and outer

round pipelining (Rahimunnisa et al., 2013).

Regarding to (Tay et al., 2014), the area of the hardware used can be reduced by

optimizing the AES S-Box in Sub Bytes, which is one of the most resources consuming

in AES encryption. However, this type of architecture will decrease the processing speed

of AES encryption because it takes more clock cycles to perform the substitution

operations by reducing the S-Box numbers. Besides, reduction of pipeline registers is

encouraged by (Alaoui, 2010) as claimed that pipeline registers are burden on hardware

requirement. By the way, this is not suitable for high speed application as it will results in

slower processing time.

1.3 Research Objectives

 To increase the processing speed of 128-bit AES algorithm by proposing a new

 hardware architecture.

 To evaluate the performance of the proposed architecture.

6

1.4 Research Scope

This thesis is mainly covered on the speed optimization of hardware

implementation of AES encryption algorithm only by pipelined architecture. There will

be no decryption algorithms as the Advanced Encryption Standard Algorithm Validation

Suite (AESAVS) can be used to provide testing in order to determine the exactness of the

AES algorithm implementation. The target is only on Register-Transfer Level (RTL)

implementation, where the synthesize platform is FPGA. AES is also known as Rijndael

in which the theory is robust enough, hence there will be no modifications on the

mathematical concepts. On the other hand, AES’ security measures such as side channel

attack is not part of the research. Mode of operations in AES like counter mode or

feedback is not covered in this research as well.

1.5 Thesis Outline

The overall AES algorithm of encryption process will be further explained which

includes the few main operations in Chapter 2. In Chapter 3, design to be implemented are

proposed after reviewing related work in Chapter 2. The implementation of each method

are explained in detailed for each operation. The results and discussion of the proposed

architecture are presented in Chapter 4. Besides, the performance in terms of throughput

is compared with the related works in a table. For Chapter 5, the summary about the

achievement of objectives has been concluded and future works are also recommended to

improve the overall design in this thesis.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the overall process flow of AES algorithm during encryption

process will be explained. Next, each of the sections in AES encryption algorithm will be

explained in more details in each of the subchapters. Besides, hardware implementation

of each of the transformations in AES encryption are presented by comparison with the

related papers in terms of performance and the most important is concerned about the

processing speed of the applications.

2.2 AES Algorithm

The AES algorithm is known as Rijndael algorithm, which consists of a series of

mathematical operations and the basic unit of the process is called a byte (8 bits). This

algorithm is widely used in Windows Vista’s fault analysis software for security wise in

configuration file. Besides, the AES algorithm is also used for transactions security in

ATM machines. The AES algorithm can be implemented in many different of platform

languages such as C, Matlab, Java but for reconfiguration purpose for hardware

implementation and synthesized by RTL, Verilog HDL is the chosen one (Deshpande et

al., 2014).

The AES algorithm is a symmetric key block cipher that encrypts and decrypts a

128-bit data block by using the same key. The input data block is fixed to 128 bits while

it requires key size of 128-bit, 192-bit or 256-bit during encryption (Oukili et al., 2016).

8

The AES algorithm is iterative, which means every iteration is named as a Round. The

number of rounds is basically dependent on the key size used which is shown in Table

2.1. During AES encryption, the 128-bit input data (plain text) is converted to 128-bit

output data (cipher text) using an input 128 bit cipher key in order to lock the information

from being hacked by third party (Saini et al., 2014).

Table 2.1: AES Key Size with Key length, Block Size and Number of rounds

(Deshpande et al., 2014)

AES Key Size Key Length

(words)

Block Size (words) Number of rounds

128-bit 4 4 10

192-bit 6 4 12

256-bit 8 4 14

A 128-bit of input plain text is arranged in a 4-by-4 matrix array or called as state,

which is shown in Figure 2.1 (Talha et al., 2016). Each of the block in the state equals to

1 byte of data. Therefore, they are total 16 bytes of data in a state.

S15 S11 S7 S3

S14 S10 S6 S2

S13 S9 S5 S1

S12 S8 S4 S0

Figure 2.1: A 128-bit of input data is arranged in 4x4 state of array (Talha et al., 2016)

9

The 128-bit AES encryption process can be achieved by going through few steps of

algorithms (Rao et al., 2015) which is formed mainly from 4 sections. The details of the

four main sections will be further explained in the following subchapters:

1. Sub-Bytes

2. Shift Rows

3. Mix Columns

4. Add Round Key

 As shown in Figure 2.2, the 128-bit AES encryption process can be divided into 3 parts:

1. Add Round Key: XOR-ing the 128-bit plain text (raw data) and 128-bit initial key

(cipher key).

2. Repeated Round: (Sub Bytes -> Shift Rows -> Mix Columns -> Add Round Key)

for 9 times

3. Final Round: (Sub Bytes -> Shift Rows -> Add Round Key), without Mix

Columns

10

Figure 2.2: 128-bit AES encryption algorithm (Rao et al., 2015)

11

2.2.1 Sub Bytes

Sub Bytes is able to operate independently in each byte of the State, where each

byte is referred and substituted regarding to the corresponding byte available in the

Substitution box (S-Box). S-Box reveals the property of confusion and is known as one

of the basic substances of symmetric key algorithm that performs substitution. This

confusion property is used to obscure the finding of the key from the cipher text. In brief,

S-Box takes one byte (8 bits) input and does transformation in order to deliver one byte

(8 bits) output (Dao et al., 2015)

For the S-Box transformation, it consists of two operations which are the Galois

field (GF) inversion and affine transformation over GF (28). Firstly, for the GF inversion,

where the field computations have been taken over the binary field GF (28) with that of

the constant irreducible polynomial, (x) = x8 + x4 + x3 + x + 1. An element of GF (28)

will be each of the 8-bit input and computes the inverse of the 8-bit input. Next, for the

affine transformation over GF (28), the input is represented as an 8-bit vector and it will

be multiplied by a fixed matrix M with 8x8 bits shown in Figure 2.3. Lastly, it be will

added to a fixed vector C with 8-bit as shown in Figure 2.4. All of these properties provide

non-linearity over cryptanalysis (Oukili et al., 2016).

12

Figure 2.3: The matrix M for S-Box transformation (Oukili et al., 2016)

Figure 2.4: The vector C for S-Box transformation (Oukili et al., 2016)

Finally, An S-Box table with a 16×16 matrix of bytes is generated as shown in

Table 2.2. A byte (8 bits) will be categorized as the leftmost 4 bits MSB and the rightmost

4 bits LSB, where the 4 bits MSB will be used as row value (group X) and the 4 bits LSB

will be used as column value (group Y). All of these values of row and column are served

as the indexes into the Table 2.2 to select a special value of 8-bit output as shown in Figure

2.5. Take one value for example, if the hexadecimal value is “53” references number of

row 5 and column 3 referring to S-Box table, whereas their intersection value is “ED”.

Therefore, the hexadecimal value “53” is mapped onto the value “ED” as seen in Table

2.2 (Nadjia et al., 2015).

13

Table 2.2: AES Encryption S-Box table (Deshpande et al., 2014)

Figure 2.5: S-Box Transformation (Nadjia et al., 2015)

14

There are two common Sub Bytes hardware implemented which are Look Up

Table (LUT) and combinational logic calculation. The LUT approach is implemented in

Sub Bytes regarding to design of (Nadjia et al., 2015). Combinational logic calculation

method is not implemented in this thesis as this on-the-fly method takes longer time to

calculate as it needs to go through 2 main calculations which are affine transformation and

multiplicative inverse in GF(28). LUT is chosen as the method of substitution process in

AES algorithm as it is faster and easier to implement for better processing speed circuit

design.

In this non-linear Sub Bytes Module, it contains 16 S-boxes which can be seen in

Figure 2.6. The 128-bit input data (State) is divided into 16 bytes, where each byte of the

State is the input to the S-Box. Each input byte of the State will be mapped to the S-Boxes

to substitute the corresponding value with the LUT. All the output from S-boxes are

concatenated to compose the output of the Sub Bytes Module, where the S-Boxes are

stored in RAM (Random Access Memory).

15

Figure 2.6: Circuit design of Sub Bytes Module

16

2.2.2 Shift Rows

Shift Rows transformation rotates row-wisely the bytes of the State for this last 3

rows respectively except for the first row. In this transformation, the last 3 rows of the

State are left shifted cyclically by different offsets (Deshpande et al., 2014). The Shift

Rows transformation is shown in Figure 2.7. There is a register triggered by clock signal

to act as the medium to perform row shifting to the State (Maraghy et al., 2013).

1. Row 0: Not shifted.

2. Row 1: One byte shifted to the left.

3. Row 2: Two bytes shifted to the left.

4. Row 3: Three bytes shifted to the left.

Figure 2.7: Shift Row Operation (Deshpande et al., 2014)

The Shift Rows Module is working with the operation of the shifting of connection

(Gao et al., 2008). The shifting operation can be applied by rerouting the wire of each byte

of the State from the source to the destination which can be seen in Figure 2.8. This

rerouting method does not requires clock cycle to run the Shift Rows operation. This

proposed method requires no additional hardware overheads and it is considered as an

added advantage to the design.

17

Figure 2.8: Rerouting of each byte of the State in Shift Rows Module

2.2.3 Mix Columns

In Mix Columns transformation, each column of the State bytes in Figure 2.9 is

multiplied by a fixed matrix as shown in Figure 2.10. The two column vectors represent

the State bytes’ i-th column and i-th column of the transformed Mix Columns State matrix

in Figure 2.10, for i = 0, 1, 2 and 3 respectively (Balamurugan et al., 2014).

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 2.9: State bytes used for Mix Columns (Balamurugan et al., 2014)

Figure 2.10: Fixed matrix used for encryption process (Balamurugan et al., 2014)

18

In the Mix Columns operation, the state bytes will be treated as the polynomials

of Galois Field algebra, GF (28). This operation can be entitled as a matrix multiplication

which can be seen in Figure 2.11, where S represents the initial state and S’ represent the

final state after this operation. (Prathyusha et al., 2013)

Figure 2.11: Mix Columns multiplication process (Prathyusha et al., 2013)

The Mix Columns Module is designed with Galois multiplication and 4 inputs

XOR operation by referring to (Narasimhulu et al., 2014). But unlike combinational

implementation of Galois field multiplication, this proposed design which uses Galois

multiplication with ROM based implementation as this method is significantly faster than

the combinational implementation in order to avoid combinational delays. For an 8-bit

(one byte) of input data, there will be 256 multiplication conditions, where all these

conditions will be readily stored in the (256 x 8) ROM. The Mix Columns Module uses

two ROMs for Galois multiplication of “2” and “3” in order to perform 4 Input XOR

operation. This design offers higher speed in the hardware implementation.

19

2.2.4 Add Round Key

Add Round Key Transformation is the process of a 128-bit state (Input Bytes)

XOR with a 128-bit round key, which the 128-bit round key is generated from the cipher

key through the Key Expansion module as seen as Figure 2.12. The output from this

transformation will creates the Output Bytes in a form of 128-bit (Prathyusha et al., 2013).

The implementation of Add Round Key Module is the simplest steps in 128-bit

AES algorithm, which only requires XOR gates to make the transformation as shown in

Figure 2.13. Although this method might use a lot of hardware resources as each bit of the

input data will XOR with each bit of the round key. However, this is the fastest way which

fulfill the faster processing speed in this thesis. In this case, 128-bit AES requires 128

XOR gates to get the transformation done.

20

Figure 2.12: Add Round Key Process in AES algorithm

Figure 2.13: Circuit design of Add Round Key Module

21

2.2.5 Key Expansion

The Key Expansion in AES algorithm is mainly used to generate the 128-bit round

key from the cipher key for each round. In this thesis, 128-bit AES algorithm is used where

10 rounds of transformation will be performed, therefore there will be 10 round keys being

generated (Berent, 2017).

There are 3 important functions in this algorithm which is:

1. Rot Word

2. Sub Word

3. RCON

Here is the brief explanation on the 3 functions in Key Expansion algorithm:

2.2.5.a Rot Word

Rot Word is quite similar to the Shift Row Transformation, where it has circular shifts on

4 bytes. The simple process is shown in Table 2.3.

Table 2.3: Before and after Rot Word process

Before Rot Word (4 bytes) After Rot Word (4 bytes)

3,4,5,6 4,5,6,3

2.2.5.b Sub Word

Sub word utilizes the S-box table in Table 2.2 for substitution which is similar to Sub

Bytes Transformation where each of the 4 bytes is in the argument.

22

2.2.5.c RCON

RCON function provides exponentiation of 2 in Rijndael finite field to the round keys.

The RCON table is shown in Table 2.4, where “i” is the round number and the equation

for RCON[i] is 2i-1. Taking Round 1 as example where i=1, then RCON [1]= 21-1 = 20 = 1.

Table 2.4: RCON table with value at respective round

2.2.5.d Key expansion flow with 128-bit of cipher key to generate 128-bit of Round

Key

Figure 2.14: Key expansion flow which uses 128-bit of cipher key to generate 128-bit of

RoundKey[0]

23

Figure 2.15: KeyColumn0 is rotated downwards and substituted with S-box value

The full flow of Key Expansion to generate a 128-bit of cipher key is shown in

Figure 2.14. As shown in Figure 2.15, the Rot Word function takes places where the

rightmost column of cipher key which is KeyColumn0 is rotated one byte downwards.

Next, it will goes to Sub Word function. Each byte of the KeyColumn0 will be substituted

with a new value through the Sub-Bytes operation with the aid of S-Box table shown in

Table 2.2.

RCON, the substituted rightmost KeyColumn0 is XOR-ed with the leftmost

unsubstituted KeyColumn3 and RCON[i]. For RCON[i], the value of “i” is a constant

which will be changed according to the number of rounds as shown in Table 2.4. Hence,

the leftmost column of Generated RoundKey[0], which the RKColumn3 is generated as

shown in Figure 2.16.

24

Figure 2.16: Calculation to obtain RKColumn3

Next, the process continues to move on when the newly generated RKColumn3 is

XOR-ed with KeyColumn1 to obtain RKColumn2 as shown in Figure 2.17. The repeated

process will be executed with the generated RKColumn2 and KeyColumn to generate

RKColumn1 and RKColumn0 as shown in Figure 2.18 and Figure 2.19 respectively.

Finally, the generated RoundKey[1] can be used in Add Round Key Transformation

during encryption.

Figure 2.17: Calculation to obtain RKColumn2

