AN AUTOMATED TESTING APPROACH
FOR PXI CHASSIS SOFTWARE DRIVER

NG WAI SHYAN

UNIVERSITI SAINS MALAYSIA

2017

AN AUTOMATED TESTING APPROACH
FOR PXI CHASSIS SOFTWARE DRIVER

NG WAI SHYAN

A Dissertation submitted for partial fulfillment of the requirement
for the degree of Master of Science

(Electronic Systems Design Engineering)

July 2017

ACKNOWLEDGMENTS

I would like to thank you to my supervisor Dr. Mohamad Khairi Ishak for providing me his

guidance and helpful advice over this time.

I would like to acknowledge with gratitude, the support and love to my wife and my
parents for their support and encouragement over the years, they all keep me going where |

am today. Especially to my wife for taking care the family when I am busy with the thesis.

My thanks and appreciation to my Keysight colleagues for knowledge sharing and lab
support to complete my work. To Keysight management thanks for giving the opportunity to

further my studies.

Lastly, I would like to express my deepest gratitude to the Electrical and Electronic
Engineering Department of Universiti Sains Malaysia (USM) for providing me the chance to

undertake this remarkable Master in Science Course.

il

PENDEKATAN MENGUJI KUALITI PEMACU
PERISIAN PXI CESI

ABSTRAK

Cesi PXI merupakan suatu produk yang boleh beroperasi dengan pelbagai vendor peranti dan
boleh disambungkan dengan pelbagai jenis cesi, modul dan komputer. Satu siri ujian yang
rumit perlu dijalankan untuk memastikan pemandu peranti dapat berfungsi dalam konfigurasi
yang tertentu. Proses ujian untuk menguji perisian pemacu PXI sangat kompleks kerana ia
perlu melibatkan berbilang konfigurasi untuk satu pemandu. Ujian ini menghadapi masalah
kerana kebanyakan sistem ujian automatik masa kini hanya melaksanakan ujian dengan tanpa
menyemak sama ada kelengkapannya telah dipenuhi ataupun tidak. Tambahan pula, trend
ujian automatik sekarang hanya dapat membenarkan ujian dilaksanakan pada satu konfugursi
sahaja. Justeru, tempoh masa yang panjang diperlukan untuk menyempurnakan ujian tersebut.
Untuk memudahkan dan memendekkan tempoh masa ujian untuk cesi PXI pemandu IVI
dalam berbilang sistem ujian, satu alat perisian automatik telah diciptakan. Dalam usaha
mencipta alat ini, konsep pelayan-pelanggan diguna pakai. Konsep pelayan-pelanggan
mempunyai kelebihan yang dapat memusatkan ujian apabila berbilang sistem ujian perlu
dijalankan. Pelanggan-perisian akan mula melaksanakan tugasnya sebaik sahaja memasuki
sistem operasi sepenuhnya, sistem ujian akan menyambung ke pelayan dan menunggu
tindakan selanjutnya daripada pelayan. Apabila pelayan mengesan sambungan daripada
pelanggan, ia akan memeriksa secara automatik dan menetapkan kelengkapannya. Jika
pelanggan memenuhi kelengkapan ujian suite, ia akan mula melaksanakan ujian tersebut.
Ringkasan semua hasil ujian , pelanggan akan memaklumkan kepada pelayan. Keputusan
menunjukkan ujian yang dijalankan menggunakan perisian automatik dapat mengurangkan
tempoh ujian sebanyak purata 17.1% dan keputusan ujian juga mencadangkan penurunan masa

ujian juga berlaku jika komputer berprestasi tinggi digunakan.

il

AN AUTOMATED TESTING APPROACH FOR PXI
CHASSIS SOFTWARE DRIVER

ABSTRACT

PXI chassis is a multi-vendor interoperable device, it can interconnect with many chassis,
module and computer type. To make sure the device driver is able to function in specific
configuration it must go through a series of testing. The complexity of PXI software testing
has increased when it need to cover multiple configuration for single driver. Majority of the
automated test system will execute test without have a mechanism to verify the test
environment. The current trend of automated software test only execute on single test
configuration, to improve the PXI chassis IVI driver test duration a test software with the
capability of execute multi test configuration is developed. In order to develop this tool, a
server-client concept is adopted. The advantage of server-client is to centralize the testing
when multiple test system perform test at same time. The software tool client will start once
completely boot in to operating system, the test system will connect to server and wait for
further action from server. When server detected incoming client connection it will
automatically verify and fix the testing environment, if the client fulfilled the test suite
requirement it will start execute test. All clients test summary result will be feedbacked to
server. The results show an average of 17.1% test duration reduction on the planned test
configuration when the automated software tool applied on testing. Besides that the results
suggest that execute the test on higher controller hardware performance can reduce the test

duration as well.

v

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
ABSTRAK iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS X
CHAPTER 1. INTRODUCTION 1
1.1 BaCKEIOUNA ...ooeiiiiiiieeeeeeee ettt st e 1
1.2 Problem Statementsccoeeieiiriieieee ettt ettt ettt sne et 2
1.3 ReSearch ODJECLIVESoecuieiiieiieiieriieriie ettt ettt ettt e es 3
1.4 ReESEAICH SCOPEC...cuiiiiiiiieiieeee ettt et ettt sttt e es 3
1.5 Research ContribUtIONceoveriiieierierie ettt 3
1.6 ThesiS OULHNE.....cc.eeiiiiiieiieieeee ettt ettt sttt enee s 4
CHAPTER 2. LITERATURE REVIEW 5
28 R 115 (T 11T 5 o) & TSRS 5
2.2 Unit and Functional TeStS.........cccvuiieoiiiiiiieiiie ettt e ve e e 5
2.3 PXITEQUITEMENL ..ueeuvieceiieeiieeiieieeieesteeseveereesreesteestaestsessseesseesseesseesssesssesssesssesssens 6
2.4 Interchangeable Virtual Instruments (IVI) driver.........ccccoeveiieiiininninneeeeen, 7
2.5 Software Test and QUALILYccceevviiviiiiierierie ettt sreere e e e sreesene e 10
2.6 Test AULOMALIONeiiiuiiiiiieeiie ettt ettt e et e e e e s b e e eateeesaaeeenreeeenes 13
2.7 Controller and chassis for PXIccccooiiiiiiiiieeeeeeeeeeeeeee e 14
2.8 SUIMIMATY ..eiiiiiiiiiieeieete ettt ettt sttt e ae bt e sae e saeesaneeneesaeesane e 18
CHAPTER 3. METHODOLOGY 19
3.1 INETOAUCTION «.ouiiieieiceet ettt sttt ebe et s eaees 19
3.2 OVerall MEthod........ooiieieiee et 19
3.3 Automated software tool application...........ccceveerieriireriierieneeee e 20
3.3.1 Server and Client CONCEPLcevierieeiiiriieitieiee ettt ve e 24
332 Server operation flOW.........ccceeciveeiierienierie et 25
3.3.3 Client operation flOWcc.ccvierieiiieiieieeie et ereesreesreesenesene e 31
3.4 FUNCHON INVOKEeuieiiiitieiieieeteeee ettt sttt 34
3.5 Instrument configuration for Software under test (SUT)c.covevviiviieviieiiennnnns 35
3.5.1 External controller configurationc.ecvevververeeniieerieenieeneeseesne e 36
352 Embedded controller configurationcocceevveieeeieenieenieeneeseesneeneens 39

3.6 TSt FIXTUIES ..ottt ettt ettt s 40
3.7 Software and test files requIrementcccveeeeveeeiieeriee e 42
3.8 Test system hardware SEUP.......c.cccvervveerieerieerienie ettt e e ereesreeseeesene e 43
3.9 SUMIMATY ..ottt et ettt ettt st et e bt e s bt e satesateeateeteesbeesaeeeas 47
CHAPTER 4. RESULTS AND DISCUSSIONS 49
N B 0 U3 (o Ta L o1 o) s OO PUTS PR PRR 49
4.2 Automated test EXECULIONeeueieiieiiiitieetieeite ettt ettt sbe e bt e saeesaeeeas 49
4.3 KtMPxiChassis and KtMTrig IVI driver testingscccceeeverereerieereerieeneennens 52
4.4 Manual teSt EXECULION.eeuieeieeieieiteeieieeetete et eet ettt sttt et e e e e seeeneeneeeeeenes 55
4.5 Comparison between manual and automated.............cccoeceeviiiiiiiiiinieeneenieeiens 57
4.6 Automated test on Window 10 and Windows Embedded Standard 7 test duration
Fo70) 1010 ;10 11011 PRSP URRUUTURRRRO 58

4.7 Advantages of automated test SOftware toOol..........cccvevverieriiiciiericniesee e 59
4.8 SUMIMATY ..eeeiuiieiiiiiiiiteeite ettt ettt ettt e e bt eesbteesateesbeeesabeesabteenbteesabeeenanes 60
CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 61
5.1 CONCIUSIONS ...ttt ettt ettt et ettt esteesee e e eneeneesneeneas 61
5.2 FUUIE WOTKS ...eieieiiieieete ettt ettt see s 62
BIBLIOGRAPHY 64

vi

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

LIST OF TABLES

Automated test time for MO037A and Z440..........coovevvoeeeeieeeeeeeeieeeeeeen. 50

KtMPxiChassis IVI testing on M9019A with Z440 external controller...... 52

KtMTrig IVI testing on M9019A with Z440 external controller 54
Manual setup and teSt tIMEcccveevreerieeriierieeieere et seesereereeees 55
Total test time for M9037 (WES 7) and Z440 (Windows 10)..................... 58

vil

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12

Figure 3-13

Figure 3-14
Figure 3-15
Figure 3-16

Figure 3-17

LIST OF FIGURES

Page
Modular system software architecture [4]........cccceveveecreeciieneerienienreereenenn 8
Relationship between driver typesccoceereerieriieeieeiieeeee e 9
Software Process Management FIOWccccoeeveveiiiciieciiecienieceecie e, 11
M9018B backplane configuration and triggering system [19]................... 15
MO9019A backplane configuration and triggering system [19]................... 16
MO9010A backplane configuration and triggering system [20].................... 17
OVerall teSt TlOWoocuieiieiieiie ettt 20
Test Executive Server without client connectedccocceeieiireeienenenns 21
Test Executive Server Diagnostic TOOISceccvveevieciierienierienie e 22
Test Executive Client CONSOlecoceevvierieiiieiieieeiceeeceee e 23
Test Executive Client Diagnostic Ul.........ccccceeeviiciieciienienierieciecreereennenn 24
Software Tool Server-Client interconnect.............ceeeeveereeeieeeneeneereennenns 25
Code Snippet on start a new detect client..........c.occveeveevieveenienienieereenns 26
Multi-client thread.........ccoceviiiiiiiiee e 27
Network architecture where the application take place..........ccccceveeerieennnnne 28
Server socket communication handle............coccoeeeiiiinneiiieeee 29
Prepare client t0 TUN t8ST.....eiveeieerieeieerieeeie ettt eneeeneees 30
Client sending and rECEIVINGceevveerrierierreereereereesreesseesreesseesreeseesees 31

Interpret and validating received message and enqueue into execution queue

... 33
Invoke method during runtimecccveveeeieeieecieenieeeeeseesee e 34
Type Of CONLTOIIET.......eoeieiieiiecie et 36
A complete external controller hardware SUT configuration 37
PCle High Performance Host Adapter (MO049A)ccoevvevevcvvecieeciieieenne 38

viii

file:///E:/master_writing/correction_2017august1/AN%20AUTOMATED%20TESTING%20APPROACH%20FOR%20PXI%20CHASSIS%20SOFTWARE%20DRIVER.docx%23_Toc489361531

Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21

Figure 3-22

Figure 3-23

Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

Figure 4-7

PXIe High Performance System Module (M9023A)ccceveviriennnenenns 39

Embedded controller hardware SUT configurationcccceeveereeeeeenen. 40
PXI Trig stimulus and response custom-made module...............ccoecueeneene. 41
Clock Switching custom-made module............ccceecvveeiieriieneenienienreeieennenn 42

A complete M9018A chassis setup with embedded controller and test
FIXEUTE .ottt sttt sttt et be s 44

A complete M9010A chassis setup with external controller HP Z440 and

EESE FIXEUTC. ...ttt ettt et e 45
Keysight PXIe Chassis MO019A with test fiXtures.........coceevververvenvennnnn 46
Keysight PXIe Chassis M9018B with test fiXture...........ccccceveeveereereeennen. 46
Keysight PXIe Chassis MO018A with test fiXtures.........coceevvereercvencvennnnn 47

Keysight PXIe Chassis M9010A with Clock Switching module in slot 6.. 47

Test Executive Server running test SUILEcccveeeveeeriereereervesnenreeveenens 49
Automated testing time for each configuration............cccceeeveeeviecieeciiennnenne. 51
MO9019A test with preinstalled Window 10ccoecvevieniininninieeeeen 53
KtMTrig IVI test with M9019A test with preinstalled Windoows10 54
Accumulated mannual test time for each configuration..............cccccvennnee. 56

Manual and automated test duration comparison for each configuration ... 57

Comparison of overall test time between M9037A and Z440 controller.... 59

X

LIST OF ABBREVIATIONS

ANSI-C American National Standard Institute C programming language

COM Component Object Model

COTS Commercial Off-The Shelf

CPU Central Processing Unit

DP Display Port

DLL Dynamic-link library

HID Human Interface Device

VI Interchangeable Virtual Instruments
LAN Local-Area Network

MMIO Memory-mapped I/O

oS Operating System

PPM Parts Per Million

PXI Peripheral Component Interconnect extensions for instrumentation
PXle Peripheral Component Interconnect extensions

SUT Software Under Test

CHAPTER 1

INTRODUCTION

1.1 Background

A hardware device operates on an operating system need a software driver to configure the
device so that the operating system able to recognize the device properly. The device driver
provides libraries of configuration parameter and kernel module during the operating system
startup. A device driver not only limited to provide a correct configuration to operating system

it also safely exposure function, support application and help reference document for end user.

To produce and make sure a device driver in high-quality state the software must go
through a comprehensive testing phase. Test and measurement equipment driver provides user
application programming and software application as part of driver package. This piece of
software support different platform and hardware configuration because of the flexibility and
complexity of the instrument device driver it is important the testing phase to have an essential

multiple testing methods and tools during this phase.

Peripheral Component Interconnect extensions for instrumentation (PXI) is a PC-based
architecture that profoundly utilized PCI and PCle electrical-bus features. Most of the
industrial test, manufacturing test, military, aerospace, automotive and machine monitoring is
using this standard since the platform is scalable and meet most of the solution requirement.
The PXI Systems Alliance promotes and maintains it PXI standard include software and

hardware specification.

The device driver package for PXI is growing more complex the number of modern

environment and operating system platform to support the PXI is increasing. All this changes

is to improve usability and stability of the devices. With all this changes the software testing
become more challenging since the area of coverage keep increasing and software quality need
to be achieved. Each of the feature provided to end user have its own criteria to get the test
passed. All the driver feature must go through a specific testing with different configuration

and platform.

PXIT interconnected uplink and downlink on each test system is not fixed, this adding
more complex to the testing when hardware configurations affect the actual driver and
application function. The hardware itself have upgradable firmware and to make testing more
complex this firmware will directly affect the Interchangeable Virtual Instruments (IVI) driver
work since the IVI driver will query information place by the FPGA on the same Memory-

mapped /O (MMIO)

1.2 Problem Statements

Most of the papers in the past discussed about the strategies and test suite generation of
software testing. The previous work lacks of mentioning the hardware and software
configuration affect the testing strategies. The SUT has become complex because of the built-
in firmware that allow to upgraded or changed by the user. When planning a test suites those

critical parameter that might affect the functionality need to include.

Software developer and end user affected if an undiscovered defect hidden. A software
defect cost less to fix in the beginning of the software development stage rather than near end
release stage. If a defect found after release for consumption, it will cause the organization
reputation damage in term of product quality. It is important the software is tested with all
supported configurations in early stage to reduce the cost and reputation damage to the

organization.

The task to test the correctness of IVI driver and validate the product design based on

allowed hardware configuration need to be systematic. The traditional testing method is not

efficient and not able to sustain the increasing of test coverage. An automated method specific
on PXI is needed to speed up the existing testing and provide a quantitative measurement based

on generated test suite.

1.3 Research Objectives

The objectives of this research project are as following;

1) Toreduce test time by develop an automated test execution for PXI chassis IVI driver
testing.
2) To run test suite when test system meets the test requirement.

3) To investigate and compare the testing duration between different configuration.

1.4 Research Scope

The scope of this work will cover the PXI chassis driver testing. This testing activity is a part
of the software qualification prior to package release. The test execution is based on Windows
operating system software driver with Keysight PXI chassis with embedded and external

controller. The method implement hope to improve testing time by easing the test flow.

1.5 Research Contribution

This work is important because software testing activity should start as soon as the software
development started. The software tool will keep developer actively test their work and
quantify the software quality to a specific configuration. This software tool can actively deploy
test suite to any idle test system without much manual interaction. An automated test system

is developed to facilitate the testing on PXI chassis IVI driver.

1.6 Thesis Outline

Considering the detail, this work contains overall five chapters with the following detail
discussed as below. Chapter 1 consist of introduction to the background on this thesis,
objective of the thesis had been discussed and research contribution in this thesis. Following
is Chapter 2, software testing on unit and functional test, PXI requirement, introduction to [VI
driver, software test and quality mean, test automation, and PXI controller and chassis for this
work setup. Chapter 3 will explain the concept used in developing automated software
application in this thesis, detail on how server and client operation flows, method to invoke a
function, instrument for the testing including external and embedded controller configuration,
fixture used in testing, software and other test file required for the tests to execute and final
test system setup. The result and discussion are discussed in Chapter 4, covering automated
test execution result, two driver tests include KtMPxiChassis and KtMTrig IVI execution,
manual test execution, comparison between manual and automated, Win 10 and WES 7 result
comparison and advantage of the developed software tool. The last chapter on this thesis is

Chapter 5 discussion on conclusion.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will review the past research done mainly on software testing, IVI and PXI. The
highlighted subtopic includes Unit and Functional testing, PCI eXtentions for Instrumentation
(PXI) requirement, Interchangeable Virtual Instruments (IVI) requirement, software test and

quality, test automation, controller and chassis for PXI.

2.2 Unit and Functional Tests

Unit testing is a testing on an individual unit code, this includes method and properties in a
class with all it dependencies mocked up. Each unit test performed to validate the method
produces an expected output with a known input the input can be in the method bound or out
of the bound. Unit test provides a fundamental health of the device driver code and gives an
indication that the code is having the correct logic. Unit testing is an effective technique to
improve software quality, flexibility and time-to-market. The main concept is that each piece
of code needs a test case. It is preferred developer himself develop the unit test but most of the
time manually written unit is not sensible as it is too costly since the unit tests need maintained.
Some developers do not have enough experience to write a good unit test, the outcome of the
unit test does not improve the software quality. As a result, lack of experience and to keep the

effort low, developer will seek for automated test generation tools to complete the unit testing

[1].

Functional test is a testing on the sub-system functionality, it will test on methods or
use cases function, most of the test will set and get feedback from the device. Functional test
is focusing on feature offered to end users where the intended functions are created and used
at system level. It is almost impossible to create functional test that cover each of the
requirements and interactions among the test cases therefore to improve the test quality an
automatically generate functional test cases that cover entire requirement in a complex
software. The functional test case generation needs to be effective and efficient. The automated
functional software tests applied need to be maintainable to support feature improvement on
the test cases requirements. The automated functional test needs to adapt software
development life-cycle models so that it will have a proper development step. The automated
software test development infrastructure is derived by the product software’s feature

specifications so that it perfectly supports the need of the SUT [2].

2.3 PXI requirement

PXI is a short form for PCI extensions for instrument where the technology inheriting and
makes use the benefit of PCI architecture thus the architecture, performance, industry adoption
and Commercial Off-The Shelf (COTS) are compliant with PCI. By using the new Peripheral
Component Interconnect Express(PCle) standard with a shared switch allows each device its
own direct access to the bus. PCle provides each device with dedicated data pipeline and data
sent through serially in packets using pairs of transmit and receive signal lanes. Multiple lanes
can be grouped together to increase bandwidth. In PXI Hardware Specification all chassis
configuration contains a system controller to setup a basic system. A controller can be
embedded or external controller as a system where user can define instructions, execute

application and store necessary instructions or data.

The PXI specification is to allow vendor device to be interoperable. PXI instrument is
widely adopted into test instrument thus instrument designer is encouraged to follow the

specification. The benefit of following the specification is that vendor’s device will able to

6

integrate with other vendor device. The interoperability can be achieved by adopting the same
technology and specification to reduce issues during the design and implementation. The
specification also defines the frameworks and incorporates the existing test and measurement
standards include Microsoft Windows and IVI Foundation as the main driver interface

standard [3].

2.4 Interchangeable Virtual Instruments (IVI) driver

IVI Foundation is an open consortium that guard IVI standard and currently it has three
interface technologies: Component Object Model (COM), American National Standard
Institute C programming language (ANSI-C) and .NET framework. Instrument developer will
need to conform to one or more of the standard technologies. Developer will choose which

architectures to support based on the needs of customer.

IVI-COM instrument driver use COM technology. IVI-COM has a COM API and
distributed on Windows to users in the form of a Win32-DLL. The current measurement
industrial is using IVI-COM to design application by using Visual C++, LabWindows/CVI,
LabVIEW and Agilent VEE support calling into COM object. IVI-COM is interchangeable
with an IVI-COM class-compliant specific driver and to make use of this it need to make a
call to the IVI-COM Session Factory where this software component is defined by the IVI

Foundation.

IVI-C is a driver with a C API distributed on Windows in the form of a Win32-DLL.
The IVI-C also shares the same user as mentioned in IVI-COM. The IVI-NET driver is a .NET
API and the driver is export as .NET API by distribute on the form of a .NET assembly.
Common used application development environment such as C# and VB.NET calling into

NET assembly.

Figure 2-1 shows the application specific software layer interacting with instrument

modules hardware need to go through a series of software layer. Most of the modules offer

more than one software combination options to choose when communicating with the devices.
Is important to choose which combination is suitable when developing an application. Users
may access through different layers and combinations to communicate with the hardware
instrument. Software development environments is a development platform provide by the
hardware vendor itself or other third party vendor when writing a test program. Besides
providing a layer to accessing instrument drivers this software development application
provides an abstraction to engineers to manage linking with the instrument driver. IVI driver
normally is supplied by PXI module manufacturers it provides a programming interface to the
specific device module. VISA is a communication protocol that talks to many interfaces
including GPIB, RS-232, USB, Ethernet and PXI. Developer can access this layer to controller
the device but it requires a certain set of commands that is usually not provided directly by
device manufacturer. The best method to access the device module is by using the IVI driver
provided by manufacturer. The lowest layer before the instruction reach the device it must go
through the specialized kernel driver, this layer provides an interface between instrument and

the PCle bus [4].

Example measurement applications

A"p'ﬁ“’?,ﬁf’" AR -Apps | ' i
. X-Apps VSA Signal Studio temV th
specific software pp 89600 VS g SystemVue

— o 1 E ,T\l =
SW development | =2 4\ @ A £
environments LabVIEW MATLAB WINCVI Visual VEE MS Command

- Studio Excel Expert

r Soft ’L l(
Drivers Front Panel
LabVIEW MATLAB®
Driver Driver
IVI-C / IVI-COM / IVI-NET ! Drivers

VISA - interface to HW

Module Kernel Driver
Hardware { j z

Module or MMI (Multi-module Instrument)

Instrument driver -

VISA

—

Kernel driver

Figure 2-1 Modular system software architecture [4]

Figure 2-2 is a Venn diagram showing the common and specific driver that developers
can choose the type of driver to match the applications needs. [VI driver is an instrument driver
that inherent capabilities, it can directly communicate with instrument hardware or act as a
pass-through layer to other IVI drivers. Developers need to choose an IVI driver as a specific
driver or an IVI class driver. IVI specific driver is a driver that controls a specific instrument
and directly communicates with the instrument hardware it can be class-compliant with other
instrument interchangeability or not compliant with defined IVI class specification since is a
custom API for specialized instrument. IVI class driver is interchange instrument since it uses
IVI class-compliant specific drivers. This class driver exports an API complying with defines
IVI class specifications. IVI class driver are interchangeable when IVI-C and IVI-COM class-

compliant specific drivers are used [5].

IVI Driver

N

IVI Specific
Driver

IVI Class-

Compliant
Specific IVI Class
Driver Driver

IVI Custom
Specific

Driver

N/

Figure 2-2 Relationship between driver types

IVI Foundation promotes the programming standard for test instrument. It is important that a
vendor build on an existing industry standard that allows interchanging instruments and

provides and maintains high-performance software [6].

In most tests and measurement equipment there is a hardware and software interface
to control, set and query. A complex measurement needs a series of setting, feedback from
equipment before the final measurement can be achieve. A large test measurement system
requires a mechanism to manage and organize those data. The current trend is automating the
measurement process by using programming and user interface (UI). This application is based
on IVI driver since it is a widely-used interface. Currently there are 3 flavors of IVI driver
available IVI-C and IVI-COM and IVLNET is the latest interface when make use of .NET
technologies. The IVLNET provides simpler source code thus provide IVLNET easier to

develop [7].

2.5 Software Test and Quality

Nowadays software products are largely used by industry and domestic in various aspect to
perform routine tasks. The software that applied today is become large and increasing in
complexity. All this is because the computer processing power is continuing to increase so as
other hardware component to increase software capability to handle more tasks. The increasing
of software complexity gained attention how to ensure the software quality assurance. Many
parties have tried to introduce a complete quality assurance to manage the whole software
testing process. Thus, the quality of testing can be visualized and standardized through
measurement. Figure 2-3 shows an effective flow for testing management, where the flow
includes measuring the testing process and most important what is the control process as a

close loop check [8].

10

Improve Process

Define Process Control Process Measure Process

A

\ 4

Execute Process

Figure 2-3 Software Process Management Flow

The software quality definition from the user is expectations is the software system
able to perform useful functions as specified, this include performing right functions as
specified that might fit the user’s needs and performing the specified functions correctly over
repeated use or over a long period i.e. the system performs its functions reliably. From the
programmer’s perspective, the software quality mean the system software is conformed to the

product specification.

ISO-9126 is a widely-used quality framework and is define well each of the quality
characteristics. There are 6 main characteristics defined in ISO-9126 which are functionality,

reliability, usability, efficiency, maintainability and portability [9].

Software testing is to evaluate the software product capability whether it meets the
expected results. Software testing normally consists of test case planned in test flow according
to the design requirement. Test strategies give an overview guide to the testing flow on how
the test activities execute more efficiently and effectively. The common test strategies practice
is reviewing the testing requirement and flow to reduce error testing planning. Software testing
usually starts with basic functions testing such as unit test, followed by integration, system and
accepting testing. This early stage testing is conducted by the developer with each of the test

case has it very technique and specific purpose. If the testing finds any abnormality, then the

11

developer needs to initiate debugging activity to simplify the testing when there is an issue
found and it need more investigation to rectify the issues. The software quality of a product
will be improved after going through a planned test. Early detection of an error can save cost
and time of the project. It is important the software testing should be applied to all stages in

the development cycle [10].

The importance of software testing should concentrate on user-focus it is important
the usability of the driver. Previous paper also stress that [VI drive need a testing and validation
strategy to make sure the driver is conformant to IVI specifications and are easy to use. Some
of the common and important item to check are API interfaces, properties and methods,

simulation mode, usable development environment, installation, uninstallation and repair [11].

To achieve a level of reliability and confidence on software is through testing.
Statistical sampling test case is a method way to assess this process in unbiased and efficient
in convention way this usually requires a large number of test cases to reach statically
confident. An adaptive sampling test case is much more efficient since it uses more reliable
feedback from previous test results, this method is useful when testing on subsequence cycle
or release. The test cases allocation depends on the software feature further critical analysis
need to consider are test historical/design data or optimized based on previous test suite model

[12].

The current soft panel design trend is using WPF which is a subset of .NET framework
and must use a .NET Framework programming language such as C# and Visual Basic and
both of these languages are classified as a managed language. .Net Framework compiled into
intermediate language while later compile into machine language before running in common
language runtime (CLR). Some of the low-level VISA library is written using unmanaged C
language when use on soft panel design it need a wrapper to import the Dynamic Link Library

(DI [13].

12

The current software trend has grown to a stage of high complexity and the quality
assurance of the software increased in demand since some of the software will be used by
critical and crucial applications. There are a few challenges to make sure the software delivered
is in a good quality such as testing a large system with a diversity of individual components as
awhole, it is hard to organize all the running tests since the software is distributed and difficult
to justify when testing each component since a single component usually needs other

dependencies [14].

2.6 Test Automation

The automated testing is a test execution with test tools on computer without human
intervention and manual test defined as test case execution without any tool [15]. Previous
paper also mentioned that a particular testing should start with low level test and moving
upward followed by integration testing and finally system testing. A comprehensive set of
testing will can reduce development cost and produce end user is satisfaction. Regression test
is a way that a software test case is retained and reused for other test. The regression tester is
important to make sure the continuously software improvement does not break or affect other

existing functionalities [15].

Software tools are used to automate some of the manual tasks because manual testing
is tedious, error-prone and resource consuming. Theoretically there is no fully automated
testing possible since there are some activities, such as result checking and some physical
configuration are needed. Nonetheless, some degree of automation is needed to sustain the test
and individual activities. Commercial software tools are used to reduce the test deployment
time. However, some large organizations can develop their own tools. The main objective is
to reduce testing time and increase productivity without involving human on tedious and
repetitive tasks that is possibly done by using software tools. In some cases, planning for test
automation is not simple since every product is different and regular commercial software

tools might not fully support the need on specific product test automation. Some of the points

13

to consider when planning test automation include specific needs, potential test for automation,
consideration of existing testing tools, cost to build test automation tools, user training and

impact on schedule of project [9].

The automated test requirements are derived from the software feature specifications.
The test cases are then written according to specific functional part of the SUT. In order to
make sure every test cases are applicable each test feature should have a precise description
on purpose, input processing, outputs and method to handle error. The feature offered in SUT
should be testable and some of the features are dependent or aggregation relation between

them.

2.7 Controller and chassis for PXI

PXI embedded controller consists of complicated interactive interface buses which has raised
the concern on the software quality assurance. Embedded system is ready with network and
with this feature, the testing method has changed to networked embedded software testing
platform. With network connected the controller test data and a terminal server can be

integrated as a framework to fulfill more complex test systems [16].

Testing and measurement systems have incorporated field programmable gate arrays
(FPGAs) to instrument and allowing user to access and customize the firmware or upgrade the
firmware version. The main concern of this FPGA-enabled instrument is the API such as IVI
driver need to function without breaking the software API compatibility. The firmware of the
instrument becomes an important component to consider when planning a test suits. Testing
the IVI driver become more complex and it need a different firmware version or setting to

verify the same software driver [17].

PXI system is a flexible platform that can be derived from one primary host and connected

with one or more sub-systems with processing devices. For example, two PXI system can be

14

communicated through the endpoints by a non-transparent bridge that allows PCI traffic

between memory spaces [18].

Keysight has PXI product since the first chassis M9018A in 2011. M9018A is PXIe
chassis with a total of 18 slots including the PXIe controller and timing module slots. M9018A
has 16 PXle hybrid slots that can accept PXle, 32-bit CompactPCI and Hybrid Slot-
Compatible Module, this chassis can deliver 867.5 W of DC power. M9018A is compatible
with PCle Gen2 speed and it provides twelve PXle peripheral slots of x4 that provide
maximum data bandwidth of 2 GB/s and four PXlIe x8 links providing a maximum data
bandwidth of 4 GB/s. The system slot has a PCle switch fabric that can configure as 2-link
(2x8) or 4-link (4x4) configuration. The chassis backplane speeds capable up to 4 GB/s data
rate speed with external controller to PXIe module slots configuration. The latest model of
MO9018A is M9018B that offer the same capability with an addition front panel trigger ports

[19].

—n X8 (Oor 2x4) . i
PCle Switch Fabric
—» X8 (or 2x4) x1

x8 x4 x4 x4 X8 x4 x4 x4 x4 x8 x4 x4 x4 x8 x4 x4 x4

3

PCl Bus Seg
HHEHE) T
PCle to x1 x1 PCle to SMBus, Clock, Power
PCl Bridge |~ PCI Bridge supply Management
<rrigger bus segment (slots 1-6) > Trigger bus segment (slots 7-12) Trigger bus segment (slots 13—18)>
Trigger
Bridge

Front Panel
Trigger SMBs

Figure 2-4 M9018B backplane configuration and triggering system [19]

15

Keysight also provides ultra-high performance PCle switch fabric that operates at Gen 3
speeds, 18 slots for PXIe product performance through its new chassis M9019A. It has a two-
link system slot (x8, x16) that can generate maximum data bandwidth of 24 GB/s by utilizing
it 24 PCle lanes. When this chassis used with system module M9023A and M9049A PCle

adapter on external PC, it can generate data bandwidth of 16 GB/s between slots [19].

— X8
PCle Switch X8 PCle Switch x1

x16)
x8 x8 x8 x8 X8 x8 x8 x8 x8 x8 x8 x8 x8 x8 x8 x8 x8

) (IR S

PCI Bus Segment

PCle to X1 x1 PCle to SMBus, Clock, Power
PCI Bridge PCI Bridge supply Management

A

<rrigger bus segment (slots 1-6) '> Trigger bus segment (slots 7-12) Trigger bus segment (slots 13~18)>
Trigger

Trigger
Bridge Bridge

Front Panel
Trigger SMBs

Figure 2-5 M9019A backplane configuration and triggering system [19]

Another PXIe chassis that can deliver Gen 3 speed form Keysight is M9010A that
comes with 10 slots. The good thing from this model is that it has the same performance while
in a smaller form-factor. The chassis has eight PXIe hybrid slots, one PXIe timing slot and one
PXle system slot that has the capability to deliver up to 24 GB/s data bandwidths. This chassis

delivers up to 16GB/s data bandwidth between PC and the PXIe chassis [20].

16

X8
X16
X8

!

PCle Switch

X8

!

.t

1

ﬁ.

—
X8

PCle Switch

coni

prprg)

1ection to slot

i &

‘

PCle to x1 SMBus, Clock, Power
PCI Bridge supply Management
Trigger bus segment (slots 1-5) Trigger bus segment (slots 6-10)
Trigger
Bridge

Front Panel
Trigger SMBs

Figure 2-6 M9010A backplane configuration and triggering system [20]

Keysight publishes its tested computer this which includes the capability of personal
computer and embedded PC controller with PXI/AXIe [21]. This is important so that the end
user never bought PC which did not fully function on PXI. Most of the tested computers have
the capability to do enumeration on many PCI devices. The computer BIOS allows and passes
the number of PCI devices detected to the OS so that the following enumeration done by OS
and processor are correctly mapped into the address space of the computer system. If the
enumeration process failed, the OS or application will never get to communicate with the PXI
module since most of the read/write instructions and device configurations need to go through

a specific address space that the device is mapped.

17

2.8 Summary

There is a vast amount of literature on software quality and test automation it gives a clear
definition on software quality, testing process and software automation but there has been lack
of work done in IVI driver test on PXI instrument. This typical software and hardware need a
special attention due to its complex operation environment. PXI devices have the
interoperability function and IVI provides the access to the hardware by shared library or
custom functions. The process to verify this software driver needs to be flexible yet it needs

some degree to reduce the hardware change over test duration.

18

CHAPTER 3

METHODOLOGY

3.1 Introduction

This section will reveal the software tool for automating the test for PXI chassis driver in a
systematic way. The sub topics discussed below include structure of the automated software
tool function and layout, server-client concept, the server and client application process flow,
the idea of invoking a function, testing configuration, test fixture, file setup and the last sub

section is the final hardware setup.

3.2 Overall method

The method introduces in this work start to take place when SUT hardware is done setup.
Figure 3-1 shows Test Executive Server and Test Executive Client started communicate.
Before the test can be start, the test system must get to know the client hardware and software
setup information. After the test system done identify the client configuration and make

necessary installation on the client, the server will start load test into client.

The client will start the test after it received command from the server in sequence
order. In this work the PXI Family Chassis Driver consist of two categories of driver,
KtMPxiChassis and KtMTrig. Each driver categories will have 12 set of tests that are

combination of IVI-C, IVI-NET, x86 and x64 platform.

19

/ KtMPxiChassis Test \

Assemblies

/
/

*Unit Test
*Functional Test

IVI-NET (x64)

IVI-C (x64)

IVI-NET (x86)

IVI-C (x86)

*Fixture Functional Test

Test Executive Server

Test Executive Client

/ KtMTrig Test Assemblies \

(
/

/

*Unit Test
*Functional Test

IVI-NET (x64)

IVI-C (x64)

IVI-NET (x86)

IVI-C (x86)

NS

Fixture Functional Test /

Figure 3-1 Overall test flow

3.3 Automated software tool application

Installer

The automated software tool developed in this thesis is to enhance the PXI chassis IVI driver

testing. It helps reduce the total testing duration and support easy test configuration and

deployment. This automated software tool is divided into two parts, namely Test Executive

Server and Test Executive Client. Consider in a normal dynamic Internet Protocol (IP)

environment scenario, the server application will be executing first to allow the server IP

recorded in a shared file, the server application will wait for the client to come alive. In a static

IP address environment, either server or client can be executing without sequence because the

IP on server is recorded and it will never change.

20

There are two option to start the Test Executive Client. The first option is, in a dynamic
IP address system the server application will be execute first before the client application get
execute, while second option is, the client connects with the server by providing the server IP
address as argument when executing client application. The server application has no issues if
the client connection suddenly drops-out or trying to restart the client, the server will

automatically reconnect the client once it detects the incoming socket connection.

Figure 3-2 presents the Test Executive Server in Test Suites tab. The server application
has a data grid view on top section to shows the active clients currently connected. The data
grid view shows the detail of each client parameter, this include the last record client send
alive message, record executed test suite, installed chassis driver version, Fusion version,
IOLS version and other fixture module driver version. The client information will be added up
in the data grid view when a new active client is connected to the server. The server application
will delete inactive client in the data grid view when it is not able to detect client
acknowledgement message. The bottom of the UI application shows a multi tab control
window. The first tab consists of test suite function where the main function of this tab is to
load and start the test suite, this function can be seen on the bottom-left. The bottom-right list

box will show the summary test result returned from client application when running the test.

[Test Executive Server SR

Clinets Info:

Controller | C Chlive TestErecDT InstalledChassisDrivery'er InstalledFusionDrivery'sr | Installedlolsier InstalledCormerstoneDriveryer InstalledS outhpawDrivelyer

= - N . cbeddedr | 6/28/2017 7.52.20 AM

Test Suit | Diagnostic Tooks

Test Suite Loaded: Completed Test Suite:

Nightly

Save

Load Test Sute AunTestSute | 7| Auto Aun Clear Al
Once | Clear Selected
Up
Dovn

LoadTestSute | | FunTestGute | pua A

Update Rate(sk [5 3: ™ uto check for test completed

Figure 3-2 Test Executive Server without client connected

21

Figure 3-3 shows the diagnostic tool on the second tab bottom of Test Executive server. The
main function in this tab is to manually send individual command to dedicated client. This
diagnostic function is useful when the need to run a single test group or installation or query

for client detail.

[® Test Executive Server =10 x|
Clinets Info:
Cantroller | Contralleiame Chlive TestErecDT InstalledChassisDrivertver | InstalledFusionDiiveryer Installed|alster IrstalledComerstoneDiiveryer Install=dS authpawDriverer

s0_embedded? B/28/2017 10:44:22 Ak

TestSuite Disgnosto Tools |

- Contioller Name: Command to senct Command option

Command | fcsq_embedded? =]l | |]

Ta Client

o -en Testases Instaler || Copyl atestChassisinstaller 11>
TestCases Installer {HnstallVertication: (1>

TestCasesInstaller { UninstallVerification:{}>

Simulate (G vai o = TestCases Instaler:{} InstallVeificatiori/ei0F-{1.6.545.0)>
Incaming TestCaves Instalier-{+ UninstallVeificatioriVerOF-{1.6.545 0)>
Message TestCaves PXIChassisVINelLIniT est (i RuniB6T est (1>

TestCases P ChassislV| Test: (- RunFusionTest:funit MA0T &4, IVINET_«B6 KIMPHC >
TestCases: FX|ChassisV| Test {: RunFusionTest furit M301 84 [VINET kB4 KtMPHCE
TestCases: FX|ChassisV| Test {: RunFusionTest funitM301 84 1VIC 86, KiMPxiC}>
TestCases: FX|ChassisV| Test { RunFusionTest {unit,M301 82 1VIC 64, KMPxiC}
TestCases:FX|ChassisV| Test {: RunFusionTest ifct M30188 IWINE T #86 KIMPC)
TestCases:FX|ChassisV| Test {: RunFusionTest ifct M30184, IWINE T #64 KIMPCE
TestCases: FXIChassisV| Test {: RunFusionTest ifct M3018a, 1WIC, 188, KMPxIC}>
TestCases:PXIChassis| Test {: RunFusionTest ifct M90184,1WIC, 164, KiMPxC)H:
TestCases:PXIChassisV| T est {: RunFusionT est: {fifct M 301 84 1VIC, 486 Kt Py}
TestCases:PXIChassisV| T est {: RunFusionT est: {fifct M 301 84 1VIC, 164 Kt Py}
TestCases:PXIChassisV| T est {: RunFusionT est: ififct M301 84 IVINET 485 KtMPxCH
TestCases: Pl ChassisV| T est: (RunFusionT est:{fifct M0 8, VINE T «64 KIMPSCH
TestCases:Px| Chassisl| T est: (} RunFusionTest: junit M301 8& [WINET 86 KtM Trigh>
TestCases:Px| Chassis| T est: (} RunFusionTest: junit M301 8& [WINET 64 KtM Trigh>
TestCases: PRI Chassish| T sk (FRunFusionT est funit MI01 8& WIC,<85,KHM Trighs
TestCases: PRI Chassish/| T sk (kRunFusionT est funit MI01 8& WIC, <64, KM Trighs
TestCaves: P Chassish| T sk (FRunFusionTest fet MI018& IVINET 86 KM Trigh>

TestCases:PXIChassishVI T est:(1:RunFusionT est {fet MI0184 WINET »64 KiMTrigh

TestCases:PHIChassishVI T est:(1:RunFusionT est {fet MA01 84 1WIC 485, KiM Trighs

TestCases:PXIChassishVI Test: (1:RunFusionT est {fet M0 84 1WIC 464, KiM Trighs

TestCases: P ChassishVI Test: (1 RunFusionT est lfisict MI0T 84, 1VIC »86 Kt Trigh

TestCases: P ChassishVI Test: (1 RunFusionTest lfisict MI0T 84, 1VIC »64 Kt Trigh

TestCases: P ChassishVI Test: (- RunFusionTest lfisict MI0T 84 IVINET #36 KiMTrigh =
TestCasesPoChassishI Test (1 RunFusionTest et MI0N 84 IVINET w54 KiMTrigh> =

Figure 3-3 Test Executive Server Diagnostic Tools

Figure 3-4 illustrates the Test Executive Client console, this console will start all the necessary
threads when it has received command from the server. This client application will
automatically start as soon as the Windows operating system completes boot into desktop.
Figure 3-5 shows the diagnostic interface for the client application, this Ul have two function,
to send a simulate command to server and execute command by injecting a command into

receive queue.

22

BN Administrator: taskeng.exe - FusionConsole-netd. Dexe frun ftests "CiTestSandbox\PxiChas... | = |__I§I_I

get:TotalBusMo

get:TotalBusMo

Found the chassis:M?818n

Microsoft Windows [Version 6.1.76011]
Copyright <(c? 2010 Microsoft Corporation. HAll rights reserved.
C=“WINDOUWS“system32>cd C:“\Program Files“Keysight“Fusion 4

C:=~Program Files:Keysight“Fusion 4>
C:~Program Files:Keysight“Fusion 4>FusionConsole-—net4.B_.exe ~run stests "C:
Sandbox \PxiChassis TestContent sof tvaresivi~KtMPxiChassissbin x86~Releaze™K
ChassislnitTest.d11" sresultfile "C:TestSandhox PxiChaszsissTestResultsxlUni
t IUI-NET x86 KTMPxiChassis17B523200852 frxml" sexit ~sautomated ~name "Unit

IUI-MET x86 KTMPxiChaszisz" sreport "C:xTestSandbox“PxiChassis“TeztRezsults"
Test IUI-NET x86 KTHPxiChassis17A5232008852 _html" sz "C:“\TestSandbox PxiChas
Est@nntsng\suftuage§te§t§Fusiun\Scenarius\Liue.Scenariu_ﬁ?ﬁiﬂﬂ.fﬁxml"

usion 4.1.

Passed
T22

Pazzed
Pazzed
Pazzed
Pazzed
FPaszed
FPassed
FPaszed
FPassed
Paszed
Passed
Passed
Passed
Passed
Pazzed
Pazzed
Pazzed
Pazzed
Fassed
T22

Fassed
FPaszed
Paszed

AA:AA:13.231
AA:0R:80.554
AB:BA:80.552
A@:00:80.558
AA:AA:-8A.552
A8:00:80.558

AA:AA:@A 555
AA:BAA:8A 551
AA:0A:80.550
AA:BAA:8A 551
AA:PAA:8A 552
AA:00:80.564
AA:0R:80.558
AA:0R:80.554
AE:BA:-80.551
AA:AA:-8A.552
A@:00:80.558
AA:-AA:-8A.551
A@:00:80.564
AA:BAA:8A_.552
AA:AA:8A . 551
AA:BAA:8A 551
AA:AA:8@ 552
AA:0A:80 549

AA:BA:@A.551
AB:0P:@A.551
AA:0A:8A.551

GetSupportedlnstrumentMode 13
GetGroupGapabhilities
InstrumentManufacturer
InstrumentModel
InstrumentFirmwareRevision
Identifier

SpecificationMajorlUersion
SpecificationMinorlUersion
IIviComponentIdentity_Description
IIviComponentIdentity_Revision
IIviComponentIdentity_Uendor
RezetInterchangeCheck
InvalidatefAllAttributes
LogicalMame
I0Resourcelescriptor

Cache

QuerylnstrunentStatus
RangeCheck

Zimulate

DriverSetup

Warning

Coercion
InterchangeCheckWarning

Close

IServiceProvider_GetService_Type
DriverOperation
Identity

Figure 3-4 Test Executive Client console

23

Test Executive Client Diagnostic - sq_embedded7

Transmit Message

I j Send |

Simulate Receive

D Eall] =] send |

11 <s0_embedded?: ClientJ Il StatuzProgess: {: ReadPropeties: {ClientU il ClientinfoD ata,Client_LatestDiverys a
¢s0_embedded?:ClientU I StatusProgess: {: R eadPropeties: {ClientL 1l Client nfoD ata.Client_|nstalledFusior™ |
<s0_embedded?:ClientU Il StatusProgess: {}: R eadPropeties: {ClientU Il Client nfoD ata,Client_InstalledChass
¢s0_embedded?: ClientU i StatusProgess: {1 R eadPropeties: {CliemtU il Client nfol ata.Client_|nstallzd olsye
<s0_embedded?:ClientU Il StatusProgess: {}: R eadPropeties: {ClientU Il Client nfoD ata,Client_InstalledCorne:
¢s0_embedded?: ClientU M StatusProgess: {1 P eadPropeties: {CliemtU] Client nfol ata.Client_|nstallzdSouth
<s0_embedded?: TestCases:Installer: {}: CopyL atestChassisinstaller: {}>
¢s_embedded?: TestCases | nstaller - nstall erfication: {1
<sn_embedded?: TestCases: nstaller: {}: Uninstalberification: {}»
<sq_embedded?: TestCases:Installer: {Instal erification: §1.6.545.0)> L
<3q_embedded?:TestCazes:|nstaller {}: UninstalMerification:{1.6.545.00
<3q_embedded?: TestCases:PxIChassisVIT est {}: RunFusionT est: {unit M307 84 IVINE T %86 KM PwC}:
<2q_embedded?:TestCazesFl ChassizVI T et {1 RunFugionT et funit 907 88 WINET #E4 KIMPRIC:
<s3q_embedded?: TestCases: P ChassisWI T est {}: RunF usionT est: {unit M 3071 84,1V C %86 KM PxC}y
<2q_embedded?: T estCazes Pl ChaszsizlVI T st {1 RunFuzionT est {unit k907 88 W1 T sBd KM PHCh:
<sq_embedded?: TestCases:PXIChassisiVIT est: {}: RunFusionT est: {fct M 30188, WVINE T »85 KHMPxCl>
<3q_embedded?: T estCazesF ChassizlVI T et {1 RunFugionTest fot M0 34 VINET 64 K Pt
<s0_embedded?: T estCases:PHIChassizlVIT est: {1 RunF usionT est: {fot t 90184 VIC <86 K PxiC)s
<20_embedded?: T estCases: P ChazsizlVI T est {1 RunFusionTest fot M 30184 VIC =64 ki PriC)
<s0_embedded?: T estCases:PHIChassisVIT est: {}:RunFusionT est: {fixfct M301 88 VI, x86 KHAPxiCh
<20_embedded?: T estCases: P ChazsizlVI T est {1 RunFusionTest fixfot MA01 58 WIC #64 KMPwiCk:
<s0_embedded?: T estCases: P ChassisVIT est: {}: RunFusionT est: {fixfct M301 88 IVINET 86 KtMPxiCk:
<an_embedded?: T estCases: Pl ChassisivIT est:% -RunFusionT est {fiafct MA01 88 IWINET s64 KHP=C):

{

{

{

{

{

{

<s0_embedded?: TestCases: PRI ChazsizlvIT est: {1 RunF usionT est: {unit, M 30188, IVINE T %86 Ktk Trigh>
¢s0_embedded?: T estCases: Pl ChassisVT est [BunF usionT est: {urit M301 82 VINE T 264 Kt Trigh:
<s0_embedded?: T estCases:PXIChazsizvIT est: {}: RunF usionT est: {unit, M 90184, 1VIC x86 Kt Trigks
<an_embedded?: T estCases P ChassisiI T ast £ FunFusionT est {urit b 307 82, W1 sB4 K Trighs
<s0_embedded?: T estCases: P ChassislvI T est: {1 RunFusionT est: {fot b 90184, INE T %86 Kt Trigh>
<a0_embedded?: T estCases Pl ChassisI T et RunFusionT est fot MI0134 IVINET <64 KA Trighs
<sq_embedded?. T estCases:Pi ChassislVIT est: {1 RunFusionT est. {fot M 30184, 1WIC, 86 K Trigh> i

Figure 3-5 Test Executive Client Diagnostic Ul

3.3.1 Server and client concept

The server-client concept in Figure 3-6 was chosen in this work because it is one of the most
feasible ways to manage multiple controllers by using a single computer. To fulfill all the test
coverage the software and hardware on the client will always change after complete a specific
test. The Test Executive Server application has the capability to detect if there is a client alive
and return the information for further action. The Test Executive Server will interactively send
command and receive information from the client. The Test Executive Server will start with
query the client status including existing hardware and software currently available on client
side, once it finishes the query it will continue to check and compare the test requirement if it
meet the loaded test suite. If the software requirement does not meet it will try to install the
needed software. The Test Executive Server will continue verify and download necessary test

files from the shared file server. After complete verify the file needed it will continue to load

24

