
i

AN AUTOMATED TESTING APPROACH

FOR PXI CHASSIS SOFTWARE DRIVER

NG WAI SHYAN

UNIVERSITI SAINS MALAYSIA

2017

i

AN AUTOMATED TESTING APPROACH

FOR PXI CHASSIS SOFTWARE DRIVER

by

NG WAI SHYAN

A Dissertation submitted for partial fulfillment of the requirement

for the degree of Master of Science

(Electronic Systems Design Engineering)

July 2017

ii

ACKNOWLEDGMENTS

I would like to thank you to my supervisor Dr. Mohamad Khairi Ishak for providing me his

guidance and helpful advice over this time.

I would like to acknowledge with gratitude, the support and love to my wife and my

parents for their support and encouragement over the years, they all keep me going where I

am today. Especially to my wife for taking care the family when I am busy with the thesis.

My thanks and appreciation to my Keysight colleagues for knowledge sharing and lab

support to complete my work. To Keysight management thanks for giving the opportunity to

further my studies.

Lastly, I would like to express my deepest gratitude to the Electrical and Electronic

Engineering Department of Universiti Sains Malaysia (USM) for providing me the chance to

undertake this remarkable Master in Science Course.

iii

PENDEKATAN MENGUJI KUALITI PEMACU

PERISIAN PXI CESI

ABSTRAK

Cesi PXI merupakan suatu produk yang boleh beroperasi dengan pelbagai vendor peranti dan

boleh disambungkan dengan pelbagai jenis cesi, modul dan komputer. Satu siri ujian yang

rumit perlu dijalankan untuk memastikan pemandu peranti dapat berfungsi dalam konfigurasi

yang tertentu. Proses ujian untuk menguji perisian pemacu PXI sangat kompleks kerana ia

perlu melibatkan berbilang konfigurasi untuk satu pemandu. Ujian ini menghadapi masalah

kerana kebanyakan sistem ujian automatik masa kini hanya melaksanakan ujian dengan tanpa

menyemak sama ada kelengkapannya telah dipenuhi ataupun tidak. Tambahan pula, trend

ujian automatik sekarang hanya dapat membenarkan ujian dilaksanakan pada satu konfugursi

sahaja. Justeru, tempoh masa yang panjang diperlukan untuk menyempurnakan ujian tersebut.

Untuk memudahkan dan memendekkan tempoh masa ujian untuk cesi PXI pemandu IVI

dalam berbilang sistem ujian, satu alat perisian automatik telah diciptakan. Dalam usaha

mencipta alat ini, konsep pelayan-pelanggan diguna pakai. Konsep pelayan-pelanggan

mempunyai kelebihan yang dapat memusatkan ujian apabila berbilang sistem ujian perlu

dijalankan. Pelanggan-perisian akan mula melaksanakan tugasnya sebaik sahaja memasuki

sistem operasi sepenuhnya, sistem ujian akan menyambung ke pelayan dan menunggu

tindakan selanjutnya daripada pelayan. Apabila pelayan mengesan sambungan daripada

pelanggan, ia akan memeriksa secara automatik dan menetapkan kelengkapannya. Jika

pelanggan memenuhi kelengkapan ujian suite, ia akan mula melaksanakan ujian tersebut.

Ringkasan semua hasil ujian , pelanggan akan memaklumkan kepada pelayan. Keputusan

menunjukkan ujian yang dijalankan menggunakan perisian automatik dapat mengurangkan

tempoh ujian sebanyak purata 17.1% dan keputusan ujian juga mencadangkan penurunan masa

ujian juga berlaku jika komputer berprestasi tinggi digunakan.

iv

AN AUTOMATED TESTING APPROACH FOR PXI

CHASSIS SOFTWARE DRIVER

ABSTRACT

PXI chassis is a multi-vendor interoperable device, it can interconnect with many chassis,

module and computer type. To make sure the device driver is able to function in specific

configuration it must go through a series of testing. The complexity of PXI software testing

has increased when it need to cover multiple configuration for single driver. Majority of the

automated test system will execute test without have a mechanism to verify the test

environment. The current trend of automated software test only execute on single test

configuration, to improve the PXI chassis IVI driver test duration a test software with the

capability of execute multi test configuration is developed. In order to develop this tool, a

server-client concept is adopted. The advantage of server-client is to centralize the testing

when multiple test system perform test at same time. The software tool client will start once

completely boot in to operating system, the test system will connect to server and wait for

further action from server. When server detected incoming client connection it will

automatically verify and fix the testing environment, if the client fulfilled the test suite

requirement it will start execute test. All clients test summary result will be feedbacked to

server. The results show an average of 17.1% test duration reduction on the planned test

configuration when the automated software tool applied on testing. Besides that the results

suggest that execute the test on higher controller hardware performance can reduce the test

duration as well.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii
ABSTRAK ... iii
ABSTRACT ... iv
TABLE OF CONTENTS .. v
LIST OF TABLES ... vii
LIST OF FIGURES .. viii
LIST OF ABBREVIATIONS ... x

CHAPTER 1. INTRODUCTION ...1

1.1 Background .. 1

1.2 Problem Statements .. 2

1.3 Research Objectives ... 3

1.4 Research Scope... 3

1.5 Research Contribution .. 3

1.6 Thesis Outline... 4

CHAPTER 2. LITERATURE REVIEW ...5

2.1 Introduction .. 5

2.2 Unit and Functional Tests ... 5

2.3 PXI requirement ... 6

2.4 Interchangeable Virtual Instruments (IVI) driver ... 7

2.5 Software Test and Quality .. 10

2.6 Test Automation ... 13

2.7 Controller and chassis for PXI ... 14

2.8 Summary .. 18

CHAPTER 3. METHODOLOGY ..19

3.1 Introduction .. 19

3.2 Overall method ... 19

3.3 Automated software tool application.. 20

3.3.1 Server and client concept ... 24

3.3.2 Server operation flow ... 25

3.3.3 Client operation flow ... 31

3.4 Function invoke .. 34

3.5 Instrument configuration for Software under test (SUT) 35

3.5.1 External controller configuration ... 36

3.5.2 Embedded controller configuration ... 39

Page

vi

3.6 Test Fixtures ... 40

3.7 Software and test files requirement .. 42

3.8 Test system hardware setup .. 43

3.9 Summary .. 47

CHAPTER 4. RESULTS AND DISCUSSIONS ...49

4.1 Introduction .. 49

4.2 Automated test execution ... 49

4.3 KtMPxiChassis and KtMTrig IVI driver testings .. 52

4.4 Manual test execution ... 55

4.5 Comparison between manual and automated ... 57

4.6 Automated test on Window 10 and Windows Embedded Standard 7 test duration

comparison ... 58

4.7 Advantages of automated test software tool ... 59

4.8 Summary .. 60

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS ..61

5.1 Conclusions .. 61

5.2 Future Works .. 62

BIBLIOGRAPHY ...64

vii

LIST OF TABLES

Table 4-1 Automated test time for M9037A and Z440 .. 50

Table 4-2 KtMPxiChassis IVI testing on M9019A with Z440 external controller 52

Table 4-3 KtMTrig IVI testing on M9019A with Z440 external controller 54

Table 4-4 Manual setup and test time .. 55

Table 4-5 Total test time for M9037 (WES 7) and Z440 (Windows 10) 58

Page

viii

LIST OF FIGURES

Figure 2-1 Modular system software architecture [4] .. 8

Figure 2-2 Relationship between driver types ... 9

Figure 2-3 Software Process Management Flow ... 11

Figure 2-4 M9018B backplane configuration and triggering system [19] 15

Figure 2-5 M9019A backplane configuration and triggering system [19] 16

Figure 2-6 M9010A backplane configuration and triggering system [20] 17

Figure 3-1 Overall test flow .. 20

Figure 3-2 Test Executive Server without client connected ... 21

Figure 3-3 Test Executive Server Diagnostic Tools ... 22

Figure 3-4 Test Executive Client console ... 23

Figure 3-5 Test Executive Client Diagnostic UI ... 24

Figure 3-6 Software Tool Server-Client interconnect ... 25

Figure 3-7 Code Snippet on start a new detect client .. 26

Figure 3-8 Multi-client thread ... 27

Figure 3-9 Network architecture where the application take place 28

Figure 3-10 Server socket communication handle .. 29

Figure 3-11 Prepare client to run test .. 30

Figure 3-12 Client sending and receiving ... 31

Figure 3-13 Interpret and validating received message and enqueue into execution queue

 ... 33

Figure 3-14 Invoke method during runtime .. 34

Figure 3-15 Type of controller .. 36

Figure 3-16 A complete external controller hardware SUT configuration 37

Figure 3-17 PCIe High Performance Host Adapter (M9049A) 38

Page

file:///E:/master_writing/correction_2017august1/AN%20AUTOMATED%20TESTING%20APPROACH%20FOR%20PXI%20CHASSIS%20SOFTWARE%20DRIVER.docx%23_Toc489361531

ix

Figure 3-18 PXIe High Performance System Module (M9023A) 39

Figure 3-19 Embedded controller hardware SUT configuration 40

Figure 3-20 PXI Trig stimulus and response custom-made module 41

Figure 3-21 Clock Switching custom-made module ... 42

Figure 3-22 A complete M9018A chassis setup with embedded controller and test

fixture ... 44

Figure 3-23 A complete M9010A chassis setup with external controller HP Z440 and

test fixture... 45

Figure 3-24 Keysight PXIe Chassis M9019A with test fixtures 46

Figure 3-25 Keysight PXIe Chassis M9018B with test fixture 46

Figure 3-26 Keysight PXIe Chassis M9018A with test fixtures 47

Figure 3-27 Keysight PXIe Chassis M9010A with Clock Switching module in slot 6 .. 47

Figure 4-1 Test Executive Server running test suite ... 49

Figure 4-2 Automated testing time for each configuration ... 51

Figure 4-3 M9019A test with preinstalled Window10 ... 53

Figure 4-4 KtMTrig IVI test with M9019A test with preinstalled Windoows10 54

Figure 4-5 Accumulated mannual test time for each configuration 56

Figure 4-6 Manual and automated test duration comparison for each configuration ... 57

Figure 4-7 Comparison of overall test time between M9037A and Z440 controller 59

x

LIST OF ABBREVIATIONS

ANSI-C American National Standard Institute C programming language

COM Component Object Model

COTS Commercial Off-The Shelf

CPU Central Processing Unit

DP Display Port

DLL Dynamic-link library

HID Human Interface Device

IVI Interchangeable Virtual Instruments

LAN Local-Area Network

MMIO Memory-mapped I/O

OS Operating System

PPM Parts Per Million

PXI Peripheral Component Interconnect extensions for instrumentation

PXIe Peripheral Component Interconnect extensions

SUT Software Under Test

1

CHAPTER 1

CHAPTER 1. INTRODUCTION

1.1 Background

A hardware device operates on an operating system need a software driver to configure the

device so that the operating system able to recognize the device properly. The device driver

provides libraries of configuration parameter and kernel module during the operating system

startup. A device driver not only limited to provide a correct configuration to operating system

it also safely exposure function, support application and help reference document for end user.

To produce and make sure a device driver in high-quality state the software must go

through a comprehensive testing phase. Test and measurement equipment driver provides user

application programming and software application as part of driver package. This piece of

software support different platform and hardware configuration because of the flexibility and

complexity of the instrument device driver it is important the testing phase to have an essential

multiple testing methods and tools during this phase.

Peripheral Component Interconnect extensions for instrumentation (PXI) is a PC-based

architecture that profoundly utilized PCI and PCIe electrical-bus features. Most of the

industrial test, manufacturing test, military, aerospace, automotive and machine monitoring is

using this standard since the platform is scalable and meet most of the solution requirement.

The PXI Systems Alliance promotes and maintains it PXI standard include software and

hardware specification.

The device driver package for PXI is growing more complex the number of modern

environment and operating system platform to support the PXI is increasing. All this changes

INTRODUCTION

2

is to improve usability and stability of the devices. With all this changes the software testing

become more challenging since the area of coverage keep increasing and software quality need

to be achieved. Each of the feature provided to end user have its own criteria to get the test

passed. All the driver feature must go through a specific testing with different configuration

and platform.

PXI interconnected uplink and downlink on each test system is not fixed, this adding

more complex to the testing when hardware configurations affect the actual driver and

application function. The hardware itself have upgradable firmware and to make testing more

complex this firmware will directly affect the Interchangeable Virtual Instruments (IVI) driver

work since the IVI driver will query information place by the FPGA on the same Memory-

mapped I/O (MMIO)

1.2 Problem Statements

Most of the papers in the past discussed about the strategies and test suite generation of

software testing. The previous work lacks of mentioning the hardware and software

configuration affect the testing strategies. The SUT has become complex because of the built-

in firmware that allow to upgraded or changed by the user. When planning a test suites those

critical parameter that might affect the functionality need to include.

Software developer and end user affected if an undiscovered defect hidden. A software

defect cost less to fix in the beginning of the software development stage rather than near end

release stage. If a defect found after release for consumption, it will cause the organization

reputation damage in term of product quality. It is important the software is tested with all

supported configurations in early stage to reduce the cost and reputation damage to the

organization.

The task to test the correctness of IVI driver and validate the product design based on

allowed hardware configuration need to be systematic. The traditional testing method is not

3

efficient and not able to sustain the increasing of test coverage. An automated method specific

on PXI is needed to speed up the existing testing and provide a quantitative measurement based

on generated test suite.

1.3 Research Objectives

The objectives of this research project are as following;

1) To reduce test time by develop an automated test execution for PXI chassis IVI driver

testing.

2) To run test suite when test system meets the test requirement.

3) To investigate and compare the testing duration between different configuration.

1.4 Research Scope

The scope of this work will cover the PXI chassis driver testing. This testing activity is a part

of the software qualification prior to package release. The test execution is based on Windows

operating system software driver with Keysight PXI chassis with embedded and external

controller. The method implement hope to improve testing time by easing the test flow.

1.5 Research Contribution

This work is important because software testing activity should start as soon as the software

development started. The software tool will keep developer actively test their work and

quantify the software quality to a specific configuration. This software tool can actively deploy

test suite to any idle test system without much manual interaction. An automated test system

is developed to facilitate the testing on PXI chassis IVI driver.

4

1.6 Thesis Outline

Considering the detail, this work contains overall five chapters with the following detail

discussed as below. Chapter 1 consist of introduction to the background on this thesis,

objective of the thesis had been discussed and research contribution in this thesis. Following

is Chapter 2, software testing on unit and functional test, PXI requirement, introduction to IVI

driver, software test and quality mean, test automation, and PXI controller and chassis for this

work setup. Chapter 3 will explain the concept used in developing automated software

application in this thesis, detail on how server and client operation flows, method to invoke a

function, instrument for the testing including external and embedded controller configuration,

fixture used in testing, software and other test file required for the tests to execute and final

test system setup. The result and discussion are discussed in Chapter 4, covering automated

test execution result, two driver tests include KtMPxiChassis and KtMTrig IVI execution,

manual test execution, comparison between manual and automated, Win 10 and WES 7 result

comparison and advantage of the developed software tool. The last chapter on this thesis is

Chapter 5 discussion on conclusion.

5

CHAPTER 2

CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

This chapter will review the past research done mainly on software testing, IVI and PXI. The

highlighted subtopic includes Unit and Functional testing, PCI eXtentions for Instrumentation

(PXI) requirement, Interchangeable Virtual Instruments (IVI) requirement, software test and

quality, test automation, controller and chassis for PXI.

2.2 Unit and Functional Tests

Unit testing is a testing on an individual unit code, this includes method and properties in a

class with all it dependencies mocked up. Each unit test performed to validate the method

produces an expected output with a known input the input can be in the method bound or out

of the bound. Unit test provides a fundamental health of the device driver code and gives an

indication that the code is having the correct logic. Unit testing is an effective technique to

improve software quality, flexibility and time-to-market. The main concept is that each piece

of code needs a test case. It is preferred developer himself develop the unit test but most of the

time manually written unit is not sensible as it is too costly since the unit tests need maintained.

Some developers do not have enough experience to write a good unit test, the outcome of the

unit test does not improve the software quality. As a result, lack of experience and to keep the

effort low, developer will seek for automated test generation tools to complete the unit testing

[1].

LITERATURE REVIEW

6

Functional test is a testing on the sub-system functionality, it will test on methods or

use cases function, most of the test will set and get feedback from the device. Functional test

is focusing on feature offered to end users where the intended functions are created and used

at system level. It is almost impossible to create functional test that cover each of the

requirements and interactions among the test cases therefore to improve the test quality an

automatically generate functional test cases that cover entire requirement in a complex

software. The functional test case generation needs to be effective and efficient. The automated

functional software tests applied need to be maintainable to support feature improvement on

the test cases requirements. The automated functional test needs to adapt software

development life-cycle models so that it will have a proper development step. The automated

software test development infrastructure is derived by the product software’s feature

specifications so that it perfectly supports the need of the SUT [2].

2.3 PXI requirement

PXI is a short form for PCI extensions for instrument where the technology inheriting and

makes use the benefit of PCI architecture thus the architecture, performance, industry adoption

and Commercial Off-The Shelf (COTS) are compliant with PCI. By using the new Peripheral

Component Interconnect Express(PCIe) standard with a shared switch allows each device its

own direct access to the bus. PCIe provides each device with dedicated data pipeline and data

sent through serially in packets using pairs of transmit and receive signal lanes. Multiple lanes

can be grouped together to increase bandwidth. In PXI Hardware Specification all chassis

configuration contains a system controller to setup a basic system. A controller can be

embedded or external controller as a system where user can define instructions, execute

application and store necessary instructions or data.

The PXI specification is to allow vendor device to be interoperable. PXI instrument is

widely adopted into test instrument thus instrument designer is encouraged to follow the

specification. The benefit of following the specification is that vendor’s device will able to

7

integrate with other vendor device. The interoperability can be achieved by adopting the same

technology and specification to reduce issues during the design and implementation. The

specification also defines the frameworks and incorporates the existing test and measurement

standards include Microsoft Windows and IVI Foundation as the main driver interface

standard [3].

2.4 Interchangeable Virtual Instruments (IVI) driver

IVI Foundation is an open consortium that guard IVI standard and currently it has three

interface technologies: Component Object Model (COM), American National Standard

Institute C programming language (ANSI-C) and .NET framework. Instrument developer will

need to conform to one or more of the standard technologies. Developer will choose which

architectures to support based on the needs of customer.

IVI-COM instrument driver use COM technology. IVI-COM has a COM API and

distributed on Windows to users in the form of a Win32-DLL. The current measurement

industrial is using IVI-COM to design application by using Visual C++, LabWindows/CVI,

LabVIEW and Agilent VEE support calling into COM object. IVI-COM is interchangeable

with an IVI-COM class-compliant specific driver and to make use of this it need to make a

call to the IVI-COM Session Factory where this software component is defined by the IVI

Foundation.

IVI-C is a driver with a C API distributed on Windows in the form of a Win32-DLL.

The IVI-C also shares the same user as mentioned in IVI-COM. The IVI-NET driver is a .NET

API and the driver is export as .NET API by distribute on the form of a .NET assembly.

Common used application development environment such as C# and VB.NET calling into

.NET assembly.

Figure 2-1 shows the application specific software layer interacting with instrument

modules hardware need to go through a series of software layer. Most of the modules offer

8

more than one software combination options to choose when communicating with the devices.

Is important to choose which combination is suitable when developing an application. Users

may access through different layers and combinations to communicate with the hardware

instrument. Software development environments is a development platform provide by the

hardware vendor itself or other third party vendor when writing a test program. Besides

providing a layer to accessing instrument drivers this software development application

provides an abstraction to engineers to manage linking with the instrument driver. IVI driver

normally is supplied by PXI module manufacturers it provides a programming interface to the

specific device module. VISA is a communication protocol that talks to many interfaces

including GPIB, RS-232, USB, Ethernet and PXI. Developer can access this layer to controller

the device but it requires a certain set of commands that is usually not provided directly by

device manufacturer. The best method to access the device module is by using the IVI driver

provided by manufacturer. The lowest layer before the instruction reach the device it must go

through the specialized kernel driver, this layer provides an interface between instrument and

the PCIe bus [4].

Figure 2-1 Modular system software architecture [4]

9

Figure 2-2 is a Venn diagram showing the common and specific driver that developers

can choose the type of driver to match the applications needs. IVI driver is an instrument driver

that inherent capabilities, it can directly communicate with instrument hardware or act as a

pass-through layer to other IVI drivers. Developers need to choose an IVI driver as a specific

driver or an IVI class driver. IVI specific driver is a driver that controls a specific instrument

and directly communicates with the instrument hardware it can be class-compliant with other

instrument interchangeability or not compliant with defined IVI class specification since is a

custom API for specialized instrument. IVI class driver is interchange instrument since it uses

IVI class-compliant specific drivers. This class driver exports an API complying with defines

IVI class specifications. IVI class driver are interchangeable when IVI-C and IVI-COM class-

compliant specific drivers are used [5].

Figure 2-2 Relationship between driver types

IVI Driver

IVI Specific

Driver

IVI Class-

Compliant

Specific

Driver

IVI Custom

Specific

Driver

IVI Class

Driver

10

IVI Foundation promotes the programming standard for test instrument. It is important that a

vendor build on an existing industry standard that allows interchanging instruments and

provides and maintains high-performance software [6].

In most tests and measurement equipment there is a hardware and software interface

to control, set and query. A complex measurement needs a series of setting, feedback from

equipment before the final measurement can be achieve. A large test measurement system

requires a mechanism to manage and organize those data. The current trend is automating the

measurement process by using programming and user interface (UI). This application is based

on IVI driver since it is a widely-used interface. Currently there are 3 flavors of IVI driver

available IVI-C and IVI-COM and IVI.NET is the latest interface when make use of .NET

technologies. The IVI.NET provides simpler source code thus provide IVI.NET easier to

develop [7].

2.5 Software Test and Quality

Nowadays software products are largely used by industry and domestic in various aspect to

perform routine tasks. The software that applied today is become large and increasing in

complexity. All this is because the computer processing power is continuing to increase so as

other hardware component to increase software capability to handle more tasks. The increasing

of software complexity gained attention how to ensure the software quality assurance. Many

parties have tried to introduce a complete quality assurance to manage the whole software

testing process. Thus, the quality of testing can be visualized and standardized through

measurement. Figure 2-3 shows an effective flow for testing management, where the flow

includes measuring the testing process and most important what is the control process as a

close loop check [8].

11

Figure 2-3 Software Process Management Flow

The software quality definition from the user is expectations is the software system

able to perform useful functions as specified, this include performing right functions as

specified that might fit the user’s needs and performing the specified functions correctly over

repeated use or over a long period i.e. the system performs its functions reliably. From the

programmer’s perspective, the software quality mean the system software is conformed to the

product specification.

ISO-9126 is a widely-used quality framework and is define well each of the quality

characteristics. There are 6 main characteristics defined in ISO-9126 which are functionality,

reliability, usability, efficiency, maintainability and portability [9].

 Software testing is to evaluate the software product capability whether it meets the

expected results. Software testing normally consists of test case planned in test flow according

to the design requirement. Test strategies give an overview guide to the testing flow on how

the test activities execute more efficiently and effectively. The common test strategies practice

is reviewing the testing requirement and flow to reduce error testing planning. Software testing

usually starts with basic functions testing such as unit test, followed by integration, system and

accepting testing. This early stage testing is conducted by the developer with each of the test

case has it very technique and specific purpose. If the testing finds any abnormality, then the

Improve Process

Control Process Measure Process Define Process

Execute Process

12

developer needs to initiate debugging activity to simplify the testing when there is an issue

found and it need more investigation to rectify the issues. The software quality of a product

will be improved after going through a planned test. Early detection of an error can save cost

and time of the project. It is important the software testing should be applied to all stages in

the development cycle [10].

 The importance of software testing should concentrate on user-focus it is important

the usability of the driver. Previous paper also stress that IVI drive need a testing and validation

strategy to make sure the driver is conformant to IVI specifications and are easy to use. Some

of the common and important item to check are API interfaces, properties and methods,

simulation mode, usable development environment, installation, uninstallation and repair [11].

To achieve a level of reliability and confidence on software is through testing.

Statistical sampling test case is a method way to assess this process in unbiased and efficient

in convention way this usually requires a large number of test cases to reach statically

confident. An adaptive sampling test case is much more efficient since it uses more reliable

feedback from previous test results, this method is useful when testing on subsequence cycle

or release. The test cases allocation depends on the software feature further critical analysis

need to consider are test historical/design data or optimized based on previous test suite model

[12].

 The current soft panel design trend is using WPF which is a subset of .NET framework

and must use a .NET Framework programming language such as C# and Visual Basic and

both of these languages are classified as a managed language. .Net Framework compiled into

intermediate language while later compile into machine language before running in common

language runtime (CLR). Some of the low-level VISA library is written using unmanaged C

language when use on soft panel design it need a wrapper to import the Dynamic Link Library

(Dll) [13].

13

The current software trend has grown to a stage of high complexity and the quality

assurance of the software increased in demand since some of the software will be used by

critical and crucial applications. There are a few challenges to make sure the software delivered

is in a good quality such as testing a large system with a diversity of individual components as

a whole, it is hard to organize all the running tests since the software is distributed and difficult

to justify when testing each component since a single component usually needs other

dependencies [14].

2.6 Test Automation

The automated testing is a test execution with test tools on computer without human

intervention and manual test defined as test case execution without any tool [15]. Previous

paper also mentioned that a particular testing should start with low level test and moving

upward followed by integration testing and finally system testing. A comprehensive set of

testing will can reduce development cost and produce end user is satisfaction. Regression test

is a way that a software test case is retained and reused for other test. The regression tester is

important to make sure the continuously software improvement does not break or affect other

existing functionalities [15].

Software tools are used to automate some of the manual tasks because manual testing

is tedious, error-prone and resource consuming. Theoretically there is no fully automated

testing possible since there are some activities, such as result checking and some physical

configuration are needed. Nonetheless, some degree of automation is needed to sustain the test

and individual activities. Commercial software tools are used to reduce the test deployment

time. However, some large organizations can develop their own tools. The main objective is

to reduce testing time and increase productivity without involving human on tedious and

repetitive tasks that is possibly done by using software tools. In some cases, planning for test

automation is not simple since every product is different and regular commercial software

tools might not fully support the need on specific product test automation. Some of the points

14

to consider when planning test automation include specific needs, potential test for automation,

consideration of existing testing tools, cost to build test automation tools, user training and

impact on schedule of project [9].

The automated test requirements are derived from the software feature specifications.

The test cases are then written according to specific functional part of the SUT. In order to

make sure every test cases are applicable each test feature should have a precise description

on purpose, input processing, outputs and method to handle error. The feature offered in SUT

should be testable and some of the features are dependent or aggregation relation between

them.

2.7 Controller and chassis for PXI

PXI embedded controller consists of complicated interactive interface buses which has raised

the concern on the software quality assurance. Embedded system is ready with network and

with this feature, the testing method has changed to networked embedded software testing

platform. With network connected the controller test data and a terminal server can be

integrated as a framework to fulfill more complex test systems [16].

Testing and measurement systems have incorporated field programmable gate arrays

(FPGAs) to instrument and allowing user to access and customize the firmware or upgrade the

firmware version. The main concern of this FPGA-enabled instrument is the API such as IVI

driver need to function without breaking the software API compatibility. The firmware of the

instrument becomes an important component to consider when planning a test suits. Testing

the IVI driver become more complex and it need a different firmware version or setting to

verify the same software driver [17].

PXI system is a flexible platform that can be derived from one primary host and connected

with one or more sub-systems with processing devices. For example, two PXI system can be

15

communicated through the endpoints by a non-transparent bridge that allows PCI traffic

between memory spaces [18].

 Keysight has PXI product since the first chassis M9018A in 2011. M9018A is PXIe

chassis with a total of 18 slots including the PXIe controller and timing module slots. M9018A

has 16 PXIe hybrid slots that can accept PXIe, 32-bit CompactPCI and Hybrid Slot-

Compatible Module, this chassis can deliver 867.5 W of DC power. M9018A is compatible

with PCIe Gen2 speed and it provides twelve PXIe peripheral slots of x4 that provide

maximum data bandwidth of 2 GB/s and four PXIe x8 links providing a maximum data

bandwidth of 4 GB/s. The system slot has a PCIe switch fabric that can configure as 2-link

(2x8) or 4-link (4x4) configuration. The chassis backplane speeds capable up to 4 GB/s data

rate speed with external controller to PXIe module slots configuration. The latest model of

M9018A is M9018B that offer the same capability with an addition front panel trigger ports

[19].

Figure 2-4 M9018B backplane configuration and triggering system [19]

16

Keysight also provides ultra-high performance PCIe switch fabric that operates at Gen 3

speeds, 18 slots for PXIe product performance through its new chassis M9019A. It has a two-

link system slot (x8, x16) that can generate maximum data bandwidth of 24 GB/s by utilizing

it 24 PCIe lanes. When this chassis used with system module M9023A and M9049A PCIe

adapter on external PC, it can generate data bandwidth of 16 GB/s between slots [19].

Figure 2-5 M9019A backplane configuration and triggering system [19]

Another PXIe chassis that can deliver Gen 3 speed form Keysight is M9010A that

comes with 10 slots. The good thing from this model is that it has the same performance while

in a smaller form-factor. The chassis has eight PXIe hybrid slots, one PXIe timing slot and one

PXIe system slot that has the capability to deliver up to 24 GB/s data bandwidths. This chassis

delivers up to 16GB/s data bandwidth between PC and the PXIe chassis [20].

17

Figure 2-6 M9010A backplane configuration and triggering system [20]

Keysight publishes its tested computer this which includes the capability of personal

computer and embedded PC controller with PXI/AXIe [21]. This is important so that the end

user never bought PC which did not fully function on PXI. Most of the tested computers have

the capability to do enumeration on many PCI devices. The computer BIOS allows and passes

the number of PCI devices detected to the OS so that the following enumeration done by OS

and processor are correctly mapped into the address space of the computer system. If the

enumeration process failed, the OS or application will never get to communicate with the PXI

module since most of the read/write instructions and device configurations need to go through

a specific address space that the device is mapped.

18

2.8 Summary

There is a vast amount of literature on software quality and test automation it gives a clear

definition on software quality, testing process and software automation but there has been lack

of work done in IVI driver test on PXI instrument. This typical software and hardware need a

special attention due to its complex operation environment. PXI devices have the

interoperability function and IVI provides the access to the hardware by shared library or

custom functions. The process to verify this software driver needs to be flexible yet it needs

some degree to reduce the hardware change over test duration.

19

CHAPTER 3

CHAPTER 3. METHODOLOGY

3.1 Introduction

This section will reveal the software tool for automating the test for PXI chassis driver in a

systematic way. The sub topics discussed below include structure of the automated software

tool function and layout, server-client concept, the server and client application process flow,

the idea of invoking a function, testing configuration, test fixture, file setup and the last sub

section is the final hardware setup.

3.2 Overall method

The method introduces in this work start to take place when SUT hardware is done setup.

Figure 3-1 shows Test Executive Server and Test Executive Client started communicate.

Before the test can be start, the test system must get to know the client hardware and software

setup information. After the test system done identify the client configuration and make

necessary installation on the client, the server will start load test into client.

 The client will start the test after it received command from the server in sequence

order. In this work the PXI Family Chassis Driver consist of two categories of driver,

KtMPxiChassis and KtMTrig. Each driver categories will have 12 set of tests that are

combination of IVI-C, IVI-NET, x86 and x64 platform.

METHODOLOGY

20

Figure 3-1 Overall test flow

3.3 Automated software tool application

The automated software tool developed in this thesis is to enhance the PXI chassis IVI driver

testing. It helps reduce the total testing duration and support easy test configuration and

deployment. This automated software tool is divided into two parts, namely Test Executive

Server and Test Executive Client. Consider in a normal dynamic Internet Protocol (IP)

environment scenario, the server application will be executing first to allow the server IP

recorded in a shared file, the server application will wait for the client to come alive. In a static

IP address environment, either server or client can be executing without sequence because the

IP on server is recorded and it will never change.

KtMPxiChassis Test

Assemblies

IVI-NET (x64)

IVI-C (x64)

IVI-NET (x86)

IVI-C (x86)

•Unit Test

•Functional Test

•Fixture Functional Test

Test Executive Server

Test Executive Client

Installer

KtMTrig Test Assemblies

IVI-NET (x64)

IVI-C (x64)

IVI-NET (x86)

IVI-C (x86)

•Unit Test
•Functional Test
•Fixture Functional Test

21

There are two option to start the Test Executive Client. The first option is, in a dynamic

IP address system the server application will be execute first before the client application get

execute, while second option is, the client connects with the server by providing the server IP

address as argument when executing client application. The server application has no issues if

the client connection suddenly drops-out or trying to restart the client, the server will

automatically reconnect the client once it detects the incoming socket connection.

Figure 3-2 presents the Test Executive Server in Test Suites tab. The server application

has a data grid view on top section to shows the active clients currently connected. The data

grid view shows the detail of each client parameter, this include the last record client send

alive message, record executed test suite, installed chassis driver version, Fusion version,

IOLS version and other fixture module driver version. The client information will be added up

in the data grid view when a new active client is connected to the server. The server application

will delete inactive client in the data grid view when it is not able to detect client

acknowledgement message. The bottom of the UI application shows a multi tab control

window. The first tab consists of test suite function where the main function of this tab is to

load and start the test suite, this function can be seen on the bottom-left. The bottom-right list

box will show the summary test result returned from client application when running the test.

Figure 3-2 Test Executive Server without client connected

22

Figure 3-3 shows the diagnostic tool on the second tab bottom of Test Executive server. The

main function in this tab is to manually send individual command to dedicated client. This

diagnostic function is useful when the need to run a single test group or installation or query

for client detail.

Figure 3-3 Test Executive Server Diagnostic Tools

Figure 3-4 illustrates the Test Executive Client console, this console will start all the necessary

threads when it has received command from the server. This client application will

automatically start as soon as the Windows operating system completes boot into desktop.

Figure 3-5 shows the diagnostic interface for the client application, this UI have two function,

to send a simulate command to server and execute command by injecting a command into

receive queue.

23

Figure 3-4 Test Executive Client console

24

Figure 3-5 Test Executive Client Diagnostic UI

3.3.1 Server and client concept

The server-client concept in Figure 3-6 was chosen in this work because it is one of the most

feasible ways to manage multiple controllers by using a single computer. To fulfill all the test

coverage the software and hardware on the client will always change after complete a specific

test. The Test Executive Server application has the capability to detect if there is a client alive

and return the information for further action. The Test Executive Server will interactively send

command and receive information from the client. The Test Executive Server will start with

query the client status including existing hardware and software currently available on client

side, once it finishes the query it will continue to check and compare the test requirement if it

meet the loaded test suite. If the software requirement does not meet it will try to install the

needed software. The Test Executive Server will continue verify and download necessary test

files from the shared file server. After complete verify the file needed it will continue to load

