
RTL IMPLEMENTATION OF SECURE HASH

ALGORITHM 3 (SHA-3) TOWARDS SMALLER AREA

LIM YEN RUEN

UNIVERSITI SAINS MALAYSIA

2017

RTL IMPLEMENTATION OF SECURE HASH

ALGORITHM 3 (SHA-3) TOWARDS SMALLER AREA

by

LIM YEN RUEN

A Dissertation submitted for partial fulfilment of the requirement

for the degree of Master of Science

(Microelectronic Engineering)

August 2017

II

ACKNOWLEDGEMENT

This dissertation is dedicated to everyone in the field of microelectronic design

who embarks the journey of expanding the collection of knowledge and transcendent

passion for improving the hash system.

My uttermost gratitude goes to Assc. Prof. Dr. Bakhtiar Affendi Bin Rosdi, my

thesis advisor and project supervisor, for his invaluable support and guidance that were

crucial for the completion of this project. Dr. Bakhtiar has been supportive during the

process of brainstorming. His generous opinion and practical experience has been very

helpful in the progress of this project.

Extensive acknowledgement need to be paid to my friends and family, whom have

truly support and make the project possible. Thanks for the unlimited love and motivation

during my ups and downs throughout the attempts.

Last but not least, I wish to record my sincere appreciation and thanks to all my

friends for their invaluable supports and encouragements.

III

TABLE OF CONTENTS

ACKNOWLEDGEMENTS II

TABLE OF CONTENTS III

LIST OF FIGURES VI

LIST OF TABLES VIII

LIST OF ABBREVIATIONS IX

ABSTRAK X

ABSTRACT XI

CHAPTER 1 - INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Research Objectives 4

1.4 Scope of the Research 4

1.5 Thesis Outline 5

CHAPTER 2 – LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Cryptographic Hash Function 6

2.3 Secure Hash Algorithm 3 9

2.3.1 KECCAK-p Permutations 11

2.3.2 State 11

2.3.3 KECCAK-p[b, 𝑛𝑟](S) 13

IV

2.3.4 Round function 14

2.3.5 Step Mappings 14

2.3.6 Sponge Construction 21

2.4 Hardware implementation of Secure Hash Algorithm 3 22

2.4.1 64 LUT_6 SHA-3 25

2.4.2 Clock gated pipelined SHA-3 32

2.4.3 SHA-3 architecture design of Intel Microelectronic Sdn. Bhd. 37

2.5 Summary 41

CHAPTER 3 - METHODOLOGY 44

3.1 Introduction 44

3.2 Analysis of Intel Microelectronic SHA-3 46

3.2.1 Analysis of Intel Microelectronic SHA-3 keccak_f module 47

3.3 Proposed SHA-3 architecture 51

3.3.1 Modification of keccak_function module 53

3.3.2 Logically combined step mapping function 54

3.3.3 Block diagram of step mapping function 62

3.4 Performance evaluation 63

3.4.1 Functionality verification 63

3.4.2 Synthesis analysis 64

3.5 Summary 64

CHAPTER 4 – RESULTS AND DISCUSSION 66

V

4.1 Introduction 66

4.2 Results and discussions for functionality verification 66

4.3 Results and discussion for synthesis analysis 72

4.3.1 Comparison of results with Intel Microelectronic SHA-3 design 72

4.3.2 Comparison of results with previous SHA-3 design 75

4.4 Summary 77

CHAPTER 5 - CONCLUSION 79

5.1 Conclusion 79

5.2 Limitations and Future Works 80

REFERENCES 81

APPENDICES 85

Appendix A – Top Level Source Code 86

A.1 Top level module instantiation 86

VI

LIST OF FIGURES

Figure 2.1 Generation and comparison of hash value (HMAC) [13] 9

Figure 2.2 The detailed elements in a state matrix [12] 12

Figure 2.3 The x, y, and z coordination for the elements in a state matrix [12] 13

Figure 2.4 Implementation of θ on a single bit [12] 15

Figure 2.5 Implementation of ρ for the case b=200 and w=8 [12] 17

Figure 2.6 Implementation of π on a slice [12] 18

Figure 2.7 Implementation of χ on a row [12] 19

Figure 2.8 The architecture for sponge construction [25] 21

Figure 2.9 State Matrix of Secure Hash Algorithm 3 [13] 23

Figure 2.10 LUT_6 Primitive [13] 26

Figure 2.11 64 LUT_6 architecture as fundamental of SHA-3 Core [13] 28

Figure 2.12 Implementation of Equation 2.20 in Theta function 29

Figure 2.13 Implementation of Equation 2.21 in Theta function 30

Figure 2.14 Implementation of Equation 2.25 in Iota function 31

Figure 2.15 Combinational SHA-3 architecture design [17] 33

Figure 2.16 Propagation delay in Combinational SHA-3 architecture design [17] 34

Figure 2.17 Pipelined SHA-3 architecture design [17] 35

Figure 2.18 Intel Microelectronic SHA-3 design 37

Figure 2.19 Pseudo flowchart for Keccak SHA-3 design 39

Figure 2.20 Timing diagram for two round functions’ execution 40

Figure 3.1 Project Flowchart 45

Figure 3.2 Intel Microelectronic SHA-3 block diagram 46

Figure 3.3 Area report of Intel Microelectronic SHA-3 47

Figure 3.4 Intel Microelectronic SHA-3 keccak_f module 48

VII

Figure 3.5 keccak_function sub-module in keccak_f module 49

Figure 3.6 Area report of modularized Intel Microelectronic SHA-3 50

Figure 3.7 Proposed SHA-3 architecture 52

Figure 3.8 Proposed keccak_f module 53

Figure 3.9 (a) Proposed keccak_function module (b) Previous keccak_function module

 54

Figure 3.10 Step mapping function block diagram for lane 0≤x<5, 0≤y<5, x≠0 and

y≠0 62

Figure 3.11 Step mapping function block diagram for lane x=0 and y=0 63

Figure 4.1 State array values for first complete squeezing phase for input message

0x3286B7A6 [31] 67

Figure 4.2 State array values for second complete squeezing phase for input message

0x3286B7A6 [31] 68

Figure 4.3 The input message is “absorbed” into the state array when start signal asserts

 69

Figure 4.4 The first squeezing phase is done as indicated by the red box 70

Figure 4.5 Completion of second squeezing phase and hash output is generated 71

Figure 4.6 Area report of proposed SHA-3 design 72

Figure 4.7 Area report of Intel Microelectronic SHA-3 design 73

Figure 4.8 Cell count report of proposed SHA-3 design 73

Figure 4.9 Cell count report of Intel Microelectronic SHA-3 design 74

Figure 4.10 Critical path length report of proposed SHA-3 design 74

Figure 4.11 Critical path length report of Intel Microelectronic SHA-3 design 75

VIII

LIST OF TABLES

Table 2.1 KECCAK-p permutation variables’ relationship [12] 12

Table 2.2 Implementation Results on Xilinx FPGAs [13] 31

Table 2.3 Comparison of the performance of all the design [17] 36

Table 2.4 Performance of Intel Microelectronic SHA-3 design 41

Table 2.5 Comparison of performance results for different proposed SHA-3 architecture

 43

Table 3.1 Description for the signals in top module of proposed SHA-3 architecture 52

Table 3.2 Rotation offset for Rho operation according to x and y coordinates 56

Table 3.3 Round constant value for each iteration of step mapping function 61

Table 4.1 Verification of hash/digest output 71

Table 4.2 Performance results comparison between proposed SHA-3 and Intel

Microelectronic SHA-3 75

Table 4.3 Comparison of performance results for all SHA-3 design 77

IX

 LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

DMUX Demultiplexer

FIPS Federal Information Processing Standard

FPGA Field-Programmable Gate Array

HMAC Hashed Message Authentication Code

IoT Internet of Things

LUT Look Up Table

MAC Message Authentication Code

MD Message Digest

MUX Multiplexer

NIST National Institute Standards and Technology

PISO Parallel-In Serial-Out

ROM Read-Only Memory

RTL Register Transfer Language

SHA Secure Hash Algorithm

VCS Synopsys Verilog Compiler Simulator

XOF Extendable-Output Function

X

PELAKSANAAN RTL UNTUK ALGORITMA CINCANGAN SELAMAT KE

ARAH SAIZ YANG LEBIH KECIL

ABSTRAK

Pemindahan data dengan selamat merupakan tugas yang paling mencabar bagi Objek

Rangkaian Internet (IoT). Keutuhan data perlu dipastikan sebelum dan selepas

penghantaran data. Fungsi cincangan kriptografi secara amnya digunakan untuk

pengesahan integriti data. Fungsi cincangan kriptografi adalah asas kepada rangkaian

internet dan menjalankan proses seperti pengesahan identiti, pemeriksaan integriti fail,

penghantaran kod, dan kawalan versi kod sumber. Antara semua cincangan kriptografi,

Algoritma Cincangan Selamat (SHA-3) adalah cincangan kriptografi terbaru dan selamat

untuk digunakan dalam bidang elektronik. Saiz Intel Microelectronic SHA-3 besar

disebabkan banyak logika pertengahan algoritma. Objektif projek ini adalah untuk

mereka bentuk SHA-3 dengan 256-bit keluaran dan 1600-bit matriks dengan saiz yang

lebih kecil berbanding dengan seni bina Intel Microelectronic SHA-3. Penyelidikan ini

melaksanakan SHA-3 dengan mengabungkan semua algoritma SHA-3 secara logik dan

hanya menggunakan input lorong matriks bagi menghapuskan logika pertengahan untuk

mengurangkan saiz reka bentuk. Kes ujian daripada Institut Piawaian dan Teknologi

Kebangsaan (NIST) digunakan untuk pengesahan fungsi. Reka bentuk akhir SHA-3

dalam kajian ini boleh mencapai pengurangan saiz sebanyak 12.57%, pengurangan

bilangan get sebanyak 24.35%, pengurangan kritikal panjang sebanyak 18.84%, dan

pengurangan kitaran jam yang diperlukan untuk menjana keluaran cincangan sebanyak

75%. Kesimpulannya, SHA-3 yang lebih kecil dan prestasi yang lebih tinggi telah

direkabentuk dan berkemungkinan boleh digunakan untuk memenuhi keperluan IoT.

XI

RTL IMPLEMENTATION OF SECURE HASH ALGORITHM 3 (SHA-3)

TOWARDS SMALLER AREA

ABSTRACT

Secure data transfer has been the most challenging task for Internet of Things (IoT)

devices. Data integrity must be ensured before and after the data transmission.

Cryptographic hash functions are generally the basis of a secure network and used for

data integrity verification. Cryptographic hash functions carried out processes such as

identity verification, file integrity checking, secure key passing, and source code version

control. Among all of the cryptography measures, Secure Hash Algorithm 3 (SHA-3) is

the newest and secure cryptographic hash algorithm in the current electronic industry. In

the previous Intel Microelectronic SHA-3 design, the synthesized area of the design is

large due to many intermediate states and logics of the step mapping functions. The

objective of this project is to design a synthesizable SHA-3 with 256-bits hash output and

1600-bits state array with lower area compared to Intel Microelectronic SHA-3. This

research implements the SHA-3 in ways such that all the step mapping algorithms are

logically combined to only use the input lanes of the state array to eliminate the

intermediate logics and reduces the area size. Functionality verification is done using the

test case provided by National Institute Standards and Technology (NIST). Two

squeezing phases are tested to ensure the functionality of design. Final design of SHA-3

in this research can achieve area reduction by 12.57%, the cell count reduction by 24.35%,

the critical path length reduction by 18.84%, and reduction of the clock cycles needed to

generate the hash output by 75%. In conclusion, the SHA-3 with smaller area and higher

performance has been designed and is possible to cater the needs of IoT application.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Secure data transfer has been the most challenging task for Internet of Things (IoT)

devices. Important data must be encrypted before ready to transfer. Although data is

encrypted for security, the encrypted data may still be altered on the network.

Cryptographic hash functions are generally the basis of a secure network and mainly used

for data integrity verification [1]. Cryptographic hash functions carried out processes such

as identity verification, file integrity checking, secure key passing, and source code

version control [2]. These cryptographic hash functions are widely used as sole

cryptographic modules or incorporated in hash-based authentication mechanisms like the

Hashed Message Authentication Code [3]. Additionally, applications that employs hash

functions include the Secure Electronic Transaction [4], Internet Security Protocol [5]

that is a mandatory feature of the Internet Protocol version 6 (IPv6) and the Public Key

Infrastructure [6].

There are several Hash functions such as SHA-1, SHA-256, SHA-512, MD4 and

MD5. The most-widely used hash function recently was the Secure Hash Algorithm 2

(SHA-2) and Message Digest 5 (MD5) [7, 8]. Recent advances in the cryptanalysis of

these commonly used standard hash functions reported some collisions and serious

vulnerabilities in these algorithms [9-11]. Although no assaults have yet been accounted

for on the SHA-2 variations, but because of hardware likenesses to SHA-1 there are fears

2

that SHA-2 could likewise be broken sooner rather than later. SHA-3 is introduced as a

more secure hash function in a competition organized by NIST [12]. Among all of the

cryptography measures, Secure Hash Algorithm 3 (SHA-3) is the newest and secure

cryptographic hash algorithm and had not been used in practice.

 SHA-3 is an efficient scheme for both hardware and software implementation.

Although SHA-3 can be implemented at software level, it is slower and less efficient

compared to hardware implementation where parallel operation is possible [13]. For some

Internet of Things (IoT) devices, cryptographic hash functions hardware is needed to

provide data integrity verification in real time. Due to the demanded high security level,

the need for high performance is a significant factor for the choice of security

implementation. Thus, for securities issue, hardware implementation is far more suitable

compared to the corresponding software implementations. Whereas the hardware

implementations of cryptographic hash functions should be low in gate counts to cater

the needs of smaller chips in IoT devices. The objective of this project is to design a

hardware efficient SHA-3 with lower area compared to previous architecture. The final

outcome of this project is a SHA-3 architecture design with small synthesized area.

1.2 Problem Statement

Implementation of cryptographic hash function in IoT devices has to be secured

to give extraordinary properties, for example, collision and preimage resistance, which

are critical for some applications in data security [14]. Although data is encrypted for

security, the encrypted data may still be altered on the network. The modified data can be

disastrous for the applications executed at the destination node and can prompt off

3

undesired responses. Thus, hash function in hardware devices is needed for a more secure

of data transmission. However, the commonly used standard hash functions such as SHA-

1 and MD5 had been reported for some collisions and serious vulnerabilities [9-11]. To

prevent the possibility of SHA-2 to be cracked in the near future due to hardware

similarity, SHA-3 is introduced to provide a more secure hash function capability. It was

introduced in a competition organized by NIST [14]. Thus, it is importance to move the

current security hash function from SHA-2 to SHA-3 in the industry application.

The implementation of hash function hardware has to be area efficient since

majority of Internet of Things (IoT) devices are embedded system where power and area

is limited. As an emerging technology, promising solutions to transform the operation

and role of many existing industrial system can be offered by IoT devices [15]. Since

cryptographic hash function is applicable to most of the device in communication and the

developed design will be reused for different hardware implementation, the hash function

hardware has to be as smallest as possible. This will result in cost saving as well as smaller

IoT devices. However, from the previous architecture, the area of the hardware

implementations are large due to the implementation of Secure Hash Algorithm 3 without

utilizing the resource correctly [16, 17]. By using hardware efficiently, such as reusing

resources, or by analysing the algorithm of cryptographic hash function and reducing the

unnecessary logic in the function, less hardware will be used and results in smaller area.

4

1.3 Research Objectives

The objectives of this project are:

1. To reduce the area of Secure Hash Algorithm-3 (SHA-3) in the previous

implemented hardware design by logically combined the step mapping algorithms.

2. To compare the performance of the proposed architecture and the previous

implemented design in term of area, cell counts, critical path length, and speed.

1.4 Scope of the Research

The focus of this project is to determine the method to develop the Secure Hash

Algorithm 3 (SHA-3) cryptographic hash function over the hardware approach by

Register-Transfer Level (RTL) implementation. The design architecture is to feed the

usage purpose of Intel Microelectronic Sdn. Bhd. Based on the specification, the previous

SHA-3 hardware design of Intel Microelectronic Sdn. Bhd. is implemented and

synthesized. System Verilog will be used to develop the cryptographic hash algorithm.

The hardware section that contributes to the most percentage of total area is determined

and analysed for suitable method to reduce the area. Then, the proposed design is

developed to reduce the area of SHA-3 hardware implementation. Simulation will be

performed on the test bench using Synopsys Verilog Compiler Simulator (VCS). After

verified the functionality of the proposed design, the SHA-3 algorithm are then

synthesised into logic gates and netlist using Design Compiler. This project will be

focusing on area reduction by RTL implementation, the backend design is not covered.

 The area report of the proposed design is then analysed for further improvement.

The primary focus of this project is to reduce the area used in synthesis of the previous

5

SHA-3 hardware design. The specification of the SHA-3 are 256-bit hash output with

1600-bits state of SHA-3 consists of 5x5 state matrix of 64-bit words.

1.5 Thesis Outline

This thesis is organized as follows:

Chapter two will summarize the research information which is based on the

previous work of cryptographic hash function. It explains different types of methods used

in develop the cryptographic hash function over the hardware implementation. The details

of Secure Hash Algorithm 3, its previous hardware implementation and their performance

analysis especially on area size will be explained here.

Chapter three will be on the discussion of the method to be applied to implement

the SHA-3 cryptographic hash function over the hardware approach. The flow charts,

block diagrams and operational methods will be explained in this chapter. Method to

further reduce the area of the previous architecture design will also be discussed in this

chapter.

Chapter four focuses on the simulation and performance analysis of the results of

the implementation approach. The discussion will be made based on the area efficiency

performance of the system.

Chapter five concludes the project starting from the planning stage until the stage

of implementation. The limitations found in this project will also be concluded in this

chapter. Future works which might help in enhancing this project will be suggested here.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is about the study of cryptographic hash function and the research

done previously about the hardware implementation methods of the selected

cryptographic hash function (i.e., Secure Hash Algorithm 3). The SHA-3 cryptographic

hash function comprises of five step mapping functions. The five step mapping functions

comprise a round of KECCAK-p [b, nr] process. These five step mappings are denoted

by θ, ρ, π, χ, and ι. These five different step mappings sections will be discussed here.

The previous implemented hardware architecture of SHA-3 cryptographic hash function

will also be discussed here. Since smaller area is needed to cater the needs in smaller IoT

devices, the performance of area in the previous architecture will be explored.

2.2 Cryptographic Hash Function

A Hash function is a function that takes any amount of input and produces an

output of fixed size [18]. Hash functions mainly used for data integrity verification. Hash

functions can be utilized to build the security of a system network. When hash function

is used correctly, they can be utilized to confirm the trustworthiness of the network packet

source. Since a message that has been randomized by hash function is unique and cannot

be converted back to the original message, it can be used to verify that the message has

not been altered if the hash output of the message at the transmitter and the receiver side

7

are same [19]. Several types of hash functions are currently in used in the industry today,

such as SHA-2 and MD5 [7, 8]. By analyse the usefulness and the security accessible in

each function, the user can figure out which algorithm is most appropriate for their

application.

The most crucial part of any secure system is the data integrity. Cryptographic

hash function can detect unauthorized changes in files by using the generated message

digests. This is imperative in shielding the essentially sensitive databases [18]. Hash

functions are different from other encryption cryptographic method such as Advanced

Encryption Standard (AES) [20]. The generated message digest using hash cryptographic

function is non-reversible, whereas the output message (i.e., encrypted and decrypted

message) generated using AES is reversible. Hash functions are implemented due to their

uniqueness and they cannot be reverted [21]. Hash functions can be combined with

encryption to produce special message digests (i.e., Message Authentication Codes) that

identify the source of the data. The standard algorithm used today is called Hashed

Message Authentication Code [3] which gives confirmation of the data source, and

furthermore anticipates against security assaults. HMAC uses a secret in the process to

generate the hash, thus nobody is able to foresee the exact digest without the secret value

and furthermore the hashed data content cannot be resolved from the hash digest.

The input for hash function is known as the message, whereas the output is known

as the digest value. The message length can be varied whereas the digest length is fixed

based on the desired digest length. A message digest can be illustrated as the “fingerprint”

of the data. For example, there will be no more than one data with the same fingerprint.

No same output can be derived from multiple set of different input. A cryptographic hash

8

function is intended to give extraordinary properties, such as collision and preimage

resistance, that are imperative for most of the applications data security [14]. For instance,

during a fund transfer transaction, if there is a hacker intended to alter irregular bits of

information, this may prompt to wrong finance being exchanged, or perhaps exchange to

a wrong account. Under this situation, the hash function can provide the collision

resistance which assures that the original message could not have been modified to an

alternate message with a similar digest value, or a similar signature. This is a one-way

deterministic procedure, which makes the hash function a one-way procedure [13].

One of the most important applications of hash functions is to the construction of

MACs (Message Authentication Codes). MACs are cryptographic schemes designed to

prevent an adversary from impersonating a legitimate user and from modifying a message

without the legitimate users noticing it. The hash value of the data is figured and then

affixed to the data. During the message retrieval at the destination, the hash value is

refigured from the retrieved data. The refigured hash value is compared to the hash value

that was appended to the original data. In the event that both the hash values do not match,

it implies that the data has been changed. Figure 2.1 shows the generation and comparison

of HMAC utilizing a shared secret K [13]. The secret K is utilized in the hash generation

process of HMAC so that without knowing the exact secret K, nobody can foresee the

exact digest value of the data. The H block in Figure 2.1 is simply the message attached

with the secret K. The figure shows the hash output generated in the transmitter side is

compared to the hash output generated in the receiver side.

9

Figure 2.1 Generation and comparison of hash value (HMAC) [13]

Hash functions which are normally used in industry are SHA-1, SHA-256, SHA-

512, MD4 and MD5. Recent advances in the cryptanalysis of commonly used standard

hash functions reported some collisions and serious vulnerabilities in these algorithms [9-

11]. Although no assaults have yet been accounted for on the SHA-2 variations, but

because of hardware likenesses to SHA-1 there are fears that SHA-2 could likewise be

broken sooner rather than later [22]. To counter the possibility of SHA-2 to be cracked in

future, SHA-3 is introduced as a more secure hash function in a competition organized

by NIST [14].

2.3 Secure Hash Algorithm 3

This section will explain the details of Secure Hash Algorithm 3. The current

Secure Hash Algorithm used in industry is SHA-1 and the SHA-2 family of hash

functions specified in Federal Information Processing Standard (FIPS) 180-4 [23]. Secure

Hash Algorithm 3 (SHA-3) is a newly formed function that will replace the SHA-1 and

SHA-2 family in future. SHA-3 is based on KECCAK [24], which is the algorithm that

NIST selected as the winner of the public SHA-3 Cryptographic Hash Algorithm

Competition.

10

The SHA-3 is a hash function, where the input is a binary data or string and the

output is a fixed length binary data or string. The SHA-3 input is known as the message,

whereas the output is known as the hash or digest value. The SHA-3 family consists of

four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384, and SHA3-

512, and two extendable-output functions (XOFs), called SHAKE128 and SHAKE256

[12, 14]. The addition after the dash shows the fixed digest length (e.g., SHA3-512 yields

a 512-bit digest). Since SHA-3 provides a similar arrangement of digest lengths with

SHA-2, the SHA-3 can be actualized as other options to the SHA-2.

The extendable-output functions XOFs (i.e., SHAKE128 and SHAKE256) are

different from hash functions but, as stated in SHA-3 Standard, XOFs are conceivable to

be utilized in the same ways, with the adaptability to be adjusted specifically to the

prerequisites of individual applications, subject to extra security contemplations. The

output of XOFs is adjustable to the desired output length. The suffixes “128” and “256”

of the function names indicate the supported security strength [12, 14]. For the hash

function to be cryptographically useful it is then a basic requirement that the function be

collision resistant, in the sense that it should be infeasible for an adversary to generate a

collision (i.e., two different messages with the same hash), since hashes have a short fixed

length, there will be many messages which have the same hash value, so the hash function

is far from being injective but it should look like that to an adversary.

11

2.3.1 KECCAK-p Permutations

All of the SHA-3 functions utilize the same basic permutation and are methods or

modes of operation of the permutation. The permutation is stated in the Federal

Information Processing Standards Publication (FIPS PUB 202) as a newly formed family

of permutations, the given permutation name is known as KECCAK-p [12]. The purpose

of this specification is to give the adaptability to alter the security and size parameters in

the advancement of any extra operation modes in future documents.

There are two parameters in KECCAK-p permutations, which are the number of

iterations of step mapping functions, known as a round and the fixed length of strings that

undergo permutation, known as the permutation width. The number of rounds is indicated

by 𝑛𝑟, whereas the width is indicated by b. The b range is in (25, 50, 100, 200, 400, 800,

1600) and the 𝑛𝑟 is any positive integer. For instance, a KECCAK-p permutation which

undergoes 𝑛𝑟 rounds of step mapping iteration with permutation width b is indicated by

KECCAK-p[b, 𝑛𝑟]. One round of KECCAK-p permutation, which indicated by Rnd,

comprises of a group of five transformations known as step mapping functions. An array

of values for b bits, known as the state, is repeatedly updated in the permutation. The

input data of the permutation is used to initialize the initial value of the state array[12].

2.3.2 State

The KECCAK-p[b, 𝑛𝑟] permutation consists of b bits, 𝑤 and 𝑙, where 𝑤 is b/25

and 𝑙 is 𝑙𝑜𝑔2(
𝑏

25
). The relationship between these variables are given in the Table 2.1.

12

Table 2.1 KECCAK-p permutation variables’ relationship [12]

b 25 50 100 200 400 800 1600

w 1 2 4 8 16 32 64

l 0 1 2 3 4 5 6

 The state array of KECCAK-p[b, 𝑛𝑟] can be represented by A[x, y, z], a 5-by-5-

by- 𝑤 state matrix, where 0 ≤ 𝑥 < 5, 0 ≤ 𝑦 < 5, and 0 ≤ 𝑧 < 𝑤. The detailed elements

in a state matrix are shown in Figure 2.2, whereas the labeling convention of the

coordination for the state matrix is shown in Figure 2.3.

Figure 2.2 The detailed elements in a state matrix [12]

13

Figure 2.3 The x, y, and z coordination for the elements in a state matrix [12]

2.3.3 KECCAK-p[b, 𝒏𝒓](S)

The final output from KECCAK-p[b, 𝑛𝑟](S) permutation given an input string S

and b bits, consists of 𝑛𝑟 iterations of Round Function Rnd, as shown in the following

steps. For example, a string S with 1600-bits, from the Table 2.1, l will be 6. Thus, 𝑛𝑟

will be equal to 24. The string S will first be converted to state array A. Then the state

array A will undergo 24 times of Round Function. After that, the state array A′ will be

converted back to string S’ with length b.

Algorithm to calculate KECCAK-p[b, 𝒏𝒓](S):

1. Convert S into a state array, A

2. For 𝑖𝑟 from 12 + 2l - 𝑛𝑟 to 12 + 2l – 1, let A′ = 𝑅𝑛𝑑(𝐴, 𝑖𝑟)

3. Convert A′ into a string S’ of length b

4. Return S’

14

2.3.4 Round function

A complete Round Function, Rnd consists of five step mapping function, which

are Theta (θ), Rho (ρ), Pi (π), Chi (χ), and Iota (ι). The Round Function given a state

matrix A and a round index 𝑖𝑟 is shown in the Equation 2.1. The details of five step

mapping function will be explained in the next section.

𝑅𝑛𝑑(𝐴, 𝑖𝑟) = ι(χ (π (ρ (θ(A)))) , 𝑖𝑟) (2.1)

2.3.5 Step Mappings

In this section, the five step mapping functions that result in one round of

KECCAK-p[b, 𝑛𝑟], which are Theta θ, Rho ρ, Pi π, Chi χ, and Iota ι, will be explained

here based on the SHA-3 specification [12]. Each step mapping function consists of the

algorithm where the input is the state matrix A, whereas the output is the updated state

matrix A’. The b parameter specifies the size of the state matrix. The operation algorithms

of θ, χ and ι consisted of XOR operations with the bits in the state, whereas the operation

algorithms of ρ and π consisted of rearrangement of bit position by rotation of the bits in

x, y or z coordinates of the lane.

Specification of θ(A)

The effect of θ is to perform XOR operation in each bit of the state matrix with

the parities of two columns in the state matrix as shown in Figure 2.4. In the illustration

in Figure 2.4, the parity or the XOR operation of all the bits in the specified column is

indicated by the summation symbol, ∑. For a single bit A[x, y, z], the x-coordinate of the

first column is (x+1) mod 5, and the z-coordinate is z, whereas the x-coordinate of the

15

second columns is (x-1) mod 5, and the z-coordinate is (z-1) mod w. The algorithm for θ

is shown in the Equations 2.2 – 2.4.

Figure 2.4 Implementation of θ on a single bit [12]

Algorithm to calculate Theta, θ(A):

Input: State Matrix 𝑨

Output: State Matrix 𝑨′

1. For 0≤x<5 and 0≤z<w, let

𝐶[𝑥, 𝑧] = 𝑨[𝑥, 0, 𝑧] ⊕ 𝑨[𝑥, 1, 𝑧] ⊕ 𝑨[𝑥, 2, 𝑧] ⊕ 𝑨[𝑥, 3, 𝑧] ⊕ 𝑨[𝑥, 4, 𝑧] (2.2)

2. For 0≤x<5 and 0≤z<w let

𝐷[𝑥, 𝑧] = 𝐶[(𝑥1) 𝑚𝑜𝑑 5, 𝑧] ⊕ 𝐶[(𝑥 + 1) 𝑚𝑜𝑑 5, (𝑧 – 1) 𝑚𝑜𝑑 𝑤] (2.3)

3. For 0≤x<5, 0≤y<5, and 0≤z<w, let

𝑨′[𝑥, 𝑦, 𝑧] = 𝑨[𝑥, 𝑦, 𝑧] ⊕ 𝐷[𝑥, 𝑧] (2.4)

16

Specification of ρ(A)

The effect of ρ is to perform rotation of bits in each lane by an offset, depending

on the x and y lane coordination. The z-coordinate of each bit in the lane is moved by a

calculated offset. Modulus is used to prevent z-coordinate that larger than the lane size.

The algorithm is shown in the Equations 2.5 – 2.6.

Algorithm to calculate Rho, ρ(A):

Input: State Matrix 𝑨

Output: State Matrix 𝑨′

1. For 0≤z<w, let A′ [0, 0, z] = A[0, 0, z]

2. Let x = 1 and y = 0

3. For t from 0 to 23, for 0≤z<w, let

𝑨′[𝑥, 𝑦, 𝑧] = 𝑨[𝑥, 𝑦, (𝑧– (𝑡 + 1)(𝑡 + 2)/2) 𝑚𝑜𝑑 𝑤] (2.5)

(𝑥, 𝑦) = (𝑦, (2𝑥 + 3𝑦)𝑚𝑜𝑑 5) (2.6)

4. Output A′

Figure 2.5 shows the implementation of ρ when w = 8 and b = 200. The x and y

coordination labelling is stated in Figure 2.2 and 2.3. The black dot shows the bit with 0

z-coordination, whereas the grey cube shows the final position of the corresponding bit

after shifted by the calculated offset from the ρ algorithm. All the other bits of the lane

will be shifted circularly by the similar offset. If the final z-coordinate is larger than the

lane size, the offset is reduced by modulus the lane size. For example, the offset for the

lane A[3, 2], which located at the top left corner, has an offset of 1 bit (i.e., 153 mod 8 =

1), therefore in this case, the last bit (i.e., z coordinate of 7) is shifted to the front bit (i.e.,

z coordinate of 0).

17

Figure 2.5 Implementation of ρ for the case b=200 and w=8 [12]

Specification of π(A)

The implementation of π is to remap the lane positions as shown in Figure 2.6.

The x and y coordination labelling is stated in Figure 2.2 and 2.3. For example, the center

of the slice is corresponding to the bit with coordinates A[0, 0]. The algorithm is shown

in the Equation 2.7.

Algorithm to calculate Pi, π(A):

Input: State Matrix 𝑨

Output: State Matrix 𝑨′

1. For 0≤x<5, 0≤y<5, and 0≤z<w, let

𝐴′[𝑥, 𝑦, 𝑧] = 𝐴[(𝑥 + 3𝑦) 𝑚𝑜𝑑 5, 𝑥, 𝑧] (2.7)

2. Output A′

18

Figure 2.6 Implementation of π on a slice [12]

Specification of χ (A)

The implementation of χ is to perform XOR operation on each bit with two other

bits in the same row by using non-linear function as shown in Figure 2.7. The algorithm

is shown in the Equation 2.8. The dot in the Equation 2.8 is a multiplication, which is also

similar to the Boolean “AND” operation in this case.

Algorithm to calculate Chi, χ (A):

Input: State Matrix 𝑨

Output: State Matrix 𝑨′

1. For 0≤x<5, 0≤y<5, and 0≤z<w, let

𝐀′[𝑥, 𝑦, 𝑧] = 𝐀[𝑥, 𝑦, 𝑧] ⊕ ((𝐀[(𝑥 + 1) mod 5, 𝑦, 𝑧] ⊕ 1) ⋅ 𝐀[(𝑥 + 2) mod 5, 𝑦, 𝑧])

 (2.8)

2. Output A′

19

Figure 2.7 Implementation of χ on a row [12]

Specification of ι(A, 𝒊𝒓)

The implementation of ι is to alter part of the bits in Lane (0, 0) depending on the

round index 𝑖𝑟. Any other 24 lanes will not be affected by ι. The round index values are

specified in the second step of the KECCAK-p[b, 𝑛𝑟](S) in section 2.3.3. There is a

parameter in specification of ι called round constant RC, which is dependent on the

algorithm rc(t). The algorithm for rc(t) is shown in the Equations 2.9 – 2.14.

Algorithm to calculate Round Constant, rc(t):

Input: Integer 𝒕

Output: Round Constant rc(t)

1. If t mod 255 = 0, return 1

2. Let C = 10000000

3. For i from 1 to t mod 255, let

20

𝐶 = 0||𝐶 (2.9)

𝐶[0] = 𝐶[0] ⊕ 𝐶[8] (2.10)

𝐶[4] = 𝐶[4] ⊕ 𝐶[8] (2.11)

𝐶[5] = 𝐶[5] ⊕ 𝐶[8] (2.12)

𝐶[6] = 𝐶[6] ⊕ 𝐶[8] (2.13)

𝐶 = 𝑇𝑟𝑢𝑛𝑐8[𝐶] (2.14)

4. Output 𝐶[0]

The algorithm for the specification ι takes in the input state A and the round index

𝑖𝑟. The round constant RC is generated from the rc(t) function above. The steps for the

specification ι is shown in the Equations 2.15 – 2.16.

Algorithm to calculate Iota, ι(A, 𝒊𝒓):

Input: State Matrix 𝑨, Round Constant rc(t), Round Index 𝑖𝑟

Output: State Matrix 𝑨′

1. For 0≤x<5, 0≤y<5, and 0≤z<w, let A′ [x, y, z] = A[x, y, z]

2. Let RC = 0𝑤

3. For 0≤j < l, let

𝑅𝐶[2𝑗 − 1] = 𝑟𝑐(𝑗 + 7𝑖𝑟) (2.15)

4. For 0≤z<w, let

𝐀′ [0, 0, 𝑧] = 𝐀′ [0, 0, 𝑧] ⊕ 𝑅𝐶 [z] (2.16)

5. Output A′

21

2.3.6 Sponge Construction

The sponge construction is indicated by SPONGE[f, pad, r](N, d). Sponge

construction is a framework for specification of KECCAK-p[b, 𝑛𝑟](S) [12]. Sponge

function permits to simplify methods of use where dedicated constructions would be

needed for fixed-output-length. Figure 2.8 shows the general sponge construction

framework [25]. Given a function f, a rate r, a padding rule pad, and an input string N

with d bits, the sponge construction will give a truncated output z. Function f is a function

operates on fixed length b-bits state. Rate r is a positive whole number where r < b,

whereas capacity c is a positive whole number where c = b – r. The padding rule pad is

used to produce padding (i.e., a bit string with a suitable length to attach to another bit

string). The padded input data are first “absorbed” into the state matrix of the function,

then processed state matrix are then “squeezed” out and then truncated to become z output.

The detailed explanation of sponge construction framework is discussed in [25].

Figure 2.8 The architecture for sponge construction [25]

 For instance, the implementation of KECCAK Secure Hash Algorithm 3 in

sponge construction with 1600-bits (i.e., b-bits) state array, 24 (i.e., 𝑛𝑟) iteration of round

function, 256 (i.e., c) capacity, 1344 (i.e., r) rate, and S input string is specified in

22

Equation 2.17. The choices of capacity c can be chosen based on the number of b-bits.

The padding rule used in sponge construction for KECCAK SHA-3 is pad10*1, where

the algorithm is explained in the Equations 2.18 – 2.19. The asterisk in “pad10*1” shows

that the bit “0” is either discarded or repeated to yield an output bit string with desired

length that will be appended to the string S.

KECCAK[256] = SPONGE[KECCAK-p[1600, 24](S), pad10*1, 1344] (2.17)

Algorithm to produce padding pad10*1(x, y):

Input: Positive integer for desired length y, positive integer for current length x

Output: String D such that x + length(D) is the multiple of y

1. 𝐿𝑒𝑡 𝑖 = (−𝑥 − 2) mod y (2.18)

2. Output 𝐷 = 1 || 0𝑖 || 1 (2.19)

The operation flow of for the equation of KECCAK[c] start with appending the

input S string to 1600-bits by using the padding rule pad10*1. The appended string is then

“absorbed” into the state array A and undergo 24 iterations of round function as explained

in section 2.7. After 24 iterations of round function, the output is then “squeezed” out and

truncated as a digest output with desired length (e.g., 256-bits digest output).

2.4 Hardware implementation of Secure Hash Algorithm 3

Several previous works had been done on the hardware implementation of SHA-

3 algorithm [13, 16, 17, 26-28]. Their works can be summarized with the following

procedure. SHA-3 belongs to a sponge function which consists of two main parameters,

which are capacity c and bit rate r as explained in Section 2.3.6. The b bits is the sum of

bit rate r and capacity c which determine the SHA-3 width used in the permutation. The

23

maximum value of b bits is 1600-bits. Depending on the required length for digest output,

suitable c and r can be chosen [13, 27].

Figure 2.9 State Matrix of Secure Hash Algorithm 3 [13]

The SHA-3 process comprises of three main phases, which are initialization,

absorbing and squeezing. Firstly, the state array of SHA-3 is initialized with all zeros.

During the absorbing phase, XOR operation is performed between the message with r-

bits block and the current state array, then 24 iterations of the round functions (as

explained in Section 2.3.5) are executed. Finally, the state array is truncated as a digest

output with desired length in the squeezing phase. A total of 24 iterations of step mapping

function of SHA-3 will be carried out. Each iteration of step mapping function comprises

of 5 stages, which are Theta θ, Rho ρ, Pi π, Chi χ and Iota i. The general equations used

for the step mapping function are shown in Equations 2.20 - 2.25 [13, 27]. The Equations

2.20 – 2.25 are based on the lane of the state array, whereas the equations of SHA-3 in

Section 2.3.5 are based on the bit of the state array. The initialization and squeezing phase

are similar for the previous works. The main difference is on the hardware architecture

implementation for the absorbing phase, which will led to different results in hardware

24

performance in term of throughput and area. Some of the hardware architecture of

previous works will be discussed here.

Theta (θ) Stage, for 0 ≤ x <5and 0 ≤ y <5:

𝐶[𝑥] = 𝐴[𝑥, 0] ⊕ 𝐴[𝑥, 1] ⊕ 𝐴[𝑥, 2] ⊕ 𝐴[𝑥, 3] ⊕ 𝐴[𝑥, 4] (2.20)

𝐷[𝑥] = 𝐶[𝑥 − 1] ⊕ 𝑅𝑂𝑇(𝐶[𝑥 + 1], 1) (2.21)

𝐴′[𝑥, 𝑦] = 𝐴[𝑥, 𝑦] ⊕ 𝐷[𝑥] (2.22)

Where ROT is the cyclic shift function, A is the input state matrix, C and D are the

intermediate state matrixes, and 𝐴′ is the output state matrix.

Rho (ρ) and Pi (π) Stage, for 0 ≤ x <5and 0 ≤ y <5:

𝐵[𝑦, 2𝑥 + 3𝑦] = 𝑅𝑂𝑇(𝐴[𝑥, 𝑦], 𝑟[𝑥, 𝑦]) (2.23)

Where ROT is the cyclic shift function, r [x, y] is the cyclic shift offset, A is the input

state matrix, and 𝐵 is the output state matrix.

Chi (χ) Stage, for 0 ≤ x <5and 0 ≤ y <5:

𝐴[𝑥, 𝑦] = 𝐵[𝑥, 𝑦] ⊕ ((𝑁𝑂𝑇 𝐵[𝑥 + 1, 𝑦])𝐴𝑁𝐷 𝐵[𝑥 + 2, 𝑦]) (2.24)

Where 𝐵 is the input state matrix, and 𝐴 is the output state matrix.

Iota (i) Stage:

𝐴′[0,0] = 𝐴[0,0] ⊕ 𝑅𝐶 (2.25)

Where RC is the round constant, A is the input state matrix, and 𝐴′ is the output state

matrix.

