
i

OPTIMIZING RAM TESTING METHOD FOR TEST TIME

SAVING USING AUTOMATIC TEST EQUIPMENT

By

PREMKUMAR A/L KESAVAN PRABAGARAN

A Dissertation submitted for partial fulfilment of the requirement

for the degree of Master of Science (Electronic Systems Design

Engineering)

August 2017

ii

Acknowledgment

As a matter of first importance, I might want to thank my supervisor, Dr. Aeizaal

Azman Abd Wahab for his direction and guidance all through the entire research. He

has given me a ton of helpful data which I can use to finish my thesis. I truly value his

understanding, proposal, and energy amid a few meetings that we had. His productive

and profitable advice have been helped a ton in creating thoughts for my research.

Moreover, I might want to thank my immediate manager, Mr. Vincent Lee for

his persistent support and understanding which urge me to completely use my time

for both working undertaking and research.

Then again, I might want to thank my mentor, Mr. Tan Tze Sin for his

recommendation and remark on helping me to create a quality outcome in my research.

His readiness to share his experience on this research has contributed in improving

the general procedure of test methodology development.

Lastly, I might want to thank my relatives particularly my parent who are

continually supporting me and keep me roused on finishing my research. Finally, I

might want to thank most my colleagues for their assistance and support amid this

research development.

iii

Table of Contents

List of Tables ... v

List of Figures and Illustrations .. vi

List of Abbreviations and Nomenclature ... vii

Abstract .. viii

Abstract ... ix

 ... 1

INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Problem Statements ... 2

1.3 Objectives .. 3

1.4 Project Scopes .. 4

1.5 Research Contribution ... 4

1.6 Thesis Organization ... 4

 ... 6

LITERATURE REVIEW .. 6

2.1 Overview .. 6

2.2 Functional Model of Memory .. 6

2.3 Memory Testing Methodology .. 7

2.4 Type of Memory Faults ... 9

2.4.1 Memory Cell Faults .. 10

2.4.2 Address Decoder Faults .. 10

2.4.3 Dynamic Faults ... 10

2.5 Memory Faults Detection Base on Algorithms ... 11

2.6 Test Time Base on Algorithm .. 12

2.7 Built-in Self-Test (BIST) for Memory ... 14

2.8 Test Time Reduction Method .. 16

2.8.1 Memory Test Time Reduction by Interconnecting Test Items 16

2.8.2 Remove the Ineffective Algorithm Base on Production Data 17

2.8.3 Remove the Redundant Algorithm in Production Flow............................ 17

2.9 Summary .. 18

 ... 21

iv

METHODOLOGY .. 21

3.1 Overview .. 21

3.2 Analysis and Calculation of DPM ... 24

3.3 Develop MBIST with Failure Report Capability ... 25

3.3.1 Reset and Clear Enable Sync block .. 27

3.3.2 Data and Control Generator .. 28

3.3.3 Address Generator ... 29

3.3.4 Error Latch .. 29

3.3.5 Control State Machine .. 30

3.4 Develop Test Program Flow .. 33

3.4.1 SOF Files Generation .. 33

3.4.2 Functional Vector Generation ... 34

3.5 Algorithm Selection ... 35

3.6 Trimming Methodology ... 36

3.7 Analysis Output Data ... 39

3.8 Summary .. 39

 ... 40

RESULTS AND DISCUSSION .. 40

4.1 Overview .. 40

4.2 Passing Result with MarchX Algorithm Simulation 41

4.3 Error Injection Simulation result ... 43

4.4 ATE Tester Results .. 43

4.5 Discussions .. 46

4.6 Summary .. 49

 ... 50

CONCLUSION .. 50

5.1 Overview .. 50

5.1 Future Recommendations ... 51

References .. 52

Appendix .. 54

v

List of Tables

Table 1.1. Test time as a function of memory size

Table 2.1. Algorithm notation

Table 2.2. Algorithms to Detecting Memory Faults

Table 2.3. Algorithm Cycles

Table 2.4. Comparison of Memory Test Time Reduction Method

Table 3.1. Different Type of Algorithm Breaking into State Machine

Table 3.2. MarchX Algorithm Sequence

Table 4.1. Units Result at ATE tester

Table 4.2. Hammer Read Notation and Description

Table 4.3: Failing count base Algorithm State

Table 4.4. Test Cycles Comparison

Table 4.5. Test Time Comparison

vi

List of Figures and Illustrations

Figure 2.1. Fault coverage of memory test algorithms

Figure 2.2. Memory Faults

Figure 2.3 Algorithm Cycles Count

Figure 2.4. Algorithm Test time.

Figure 2.5. Flow of algorithm state with Interconnecting

Figure 2.6. Faults coverage algorithm B is subtest of algorithm A

Figure 3.1. Methodology Flow Chart.

Figure 3.2. BIST architecture.

Figure 3.3. Multiple BIST’s with reset staging.

Figure 3.4 A 4-stage, 16 cycle apart reset generator

Figure 3.5 A 4-stage, 16 cycle apart reset waveform

Figure 3.6 BIST, Memory and Error Latch Interface

Figure 3.7. Error Latch Architecture

Figure 3.8. Main State Machine

Figure 3.9. Verilog Coding for Scan Algorithm

Figure 3.10. Error capture infrastructure.

Figure 3.11. Flow of the functional vector

Figure 3.12. Vector file format.

Figure 3.13. Number state versus algorithm cycles saving

Figure 3.14. Flow chart of memory testing algorithm trimming process

Figure 4.1. MarchX algorithm with normal condition.

Figure 4.2. Addressing sequence.

Figure 4.3 MarchX algorithm with failing condition

Figure 4.4. Error State Output

Figure 4.5. Test Time Comparison between Original and Trimmed algorithm

vii

List of Abbreviations and Nomenclature

Abbreviation Meaning

ATE Automate Test Equipment

SOC System on Chip

DFT Design for Testability

DPM Defect Per Million

FPGA Field Programable Gate Array

BIST Built-in Self-Test

BIRA Built-in Redundancy Repair

SAF Stuck-AT Fault

SOF Stuck Open Fault

TF Transition Fault

DRF Data Retention Fault

CF Coupling Fault

BF Bridging Fault

NPSF Neighbor Pattern Sensitive Fault

MBIST Memory Built-In Self-Test

TCL Tool Command Language

SRAM Static Random Access Memories

JTAG Joint Test Action Group

IJTAG Internal Joint Test Action Group

VCS Verilog Compiler Simulator

LSB Least Significant Bit

MSB Most Significant Bit

viii

OPTIMIZING RAM TESTING METHOD FOR TEST TIME SAVING

USING AUTOMATIC TEST EQUIPMENT

Abstract

 Oleh sebab saiz memori meningkat secara drastik dalam “Field-Programmable

Gate Array” (FPGA) atau peranti sistem-atas-cip (SOC), ia menjadi sukar untuk

memenuhi bajet kos ujian untuk produk peranti kos rendah. Salah satu faktor utama

penyumbang kos ujian adalah masa ujian. Bagi produk kos rendah, nombor toleransi

kecacatan setiap juta (DPM) adalah relatif tinggi berbanding produk kos tinggi.

Dengan kelebihan ini, kaedah ujian memori yang optimum dapat dilaksanakan untuk

meminimumkan masa ujian tanpa menjejaskan liputan ujian. Memori Built-in-Self-

test (BIST) direka dengan keupayaan untuk menangkap urutan algoritma yang gagal

dan dilaksanakan dalam aliran Alat Ujian Automatik (ATE) untuk skrin pengeluaran.

3 algoritma yang terpilih telah diuji pada 8 unit pengesan dalam aliran ATE untuk

membuktikan konsep kaedah ini. Urutan algoritma yang gagal telah dimasukkan ke

dalam pangkalan data dan dianalisis untuk pemangkasan algoritma. Lokasi

pemangkasan algoritma dan pengiraan penjimatan masa ujian telah ditunjukkan

dengan contoh yang tepat dalam kajian ini. Menurut contoh ini, anggaran 33%

pengurangan masa ujian telah diperhatikan untuk ujian memori 1Kbyte dengan

algoritma Hammer Head. Secara ringkasnya, penyelidikan ini telah mencadangkan

penjimatan masa ujian memori dengan mengoptimumkan algoritma ujian pada aliran

ATE.

ix

OPTIMIZING RAM TESTING METHOD FOR TEST TIME SAVING

USING AUTOMATIC TEST EQUIPMENT

Abstract

Due to the memory size increase drastically in the field programable gate array

(FPGA) or system on chip (SOC) device, it become hard to meet the tests cost budget

of the product especial for low-cost device. One of the major factor of test cost

contributed is the test time. For the low-cost product, the tolerance number of the

defects per million (DPM) are relative high compare to high cost product. By taking

this advantage, an optimizing memory testing method able to implement to minimize

the test time without jeopardize the test coverage. A memory Build-in Self-test (BIST)

design with capability of algorithm failing sequence capture have been developed to

implement in the Automate Test Equipment (ATE) flow for production screen. 3

selected algorithm have been tested on the 8 detect units in ATE flow to prove the

concept of this method. The failing algorithm sequence of the units have been logged

into database and analyzed for algorithm trimming. With the proper examples, the

algorithm trimming location and test time saving calculation have been shown in this

research. For this examples, approximate 33% of test time reduction observed for

1Kbyte memory testing with Hammer Head algorithm. In summary, this research has

proposed the memory test time saving by optimizing the tests algorithm on the ATE

flow.

1

INTRODUCTION

1.1 Overview

Looking at the current design of SOC or FPGA, the area of chip is mostly

covered by memory. The design complexity increase is proportional with increase of

memory size especially SRAM. A research estimate roughly at least 68% of System

on Chip (SOC) design will be occupied by memory by year 2017 as shown in Figure

1.1 [1]. The researcher believe that memory failure will be the big contribution to

yield loss [2]. Per the data presented by the International Technology Roadmap for

Semiconductors, the Static Random Access Memories (SRAM) will occupied a major

part in the high performance and highly integrated digital system [3].

Figure 1.1. Percent of Logic and Memory Area in SOC [1]

2

Due to size increase for memory, memory testing for defect required high test

time. This becomes serious problem for the test engineering to meet the testing cost

limitation.

Besides that, the shrink of the technology node increase the various type of fault

occur in memory. More effective and complex algorithm need to be introduced to give

good test coverage and meet defect per million (DPM) specifications. Since the

transistor are very close to each other, memory circuits suffer from a very high average

number of physical defects per unit chip area compared with other circuits. This fact

has motivated researchers to develop efficient memory test sequences that provide

good fault coverage within test cost budget.

1.2 Problem Statements

For current testing method for huge size memories, the algorithm taking

excessively high test time. For examples, GALPAT and WALKING [4] algorithms

required test times of order of N2 and N3/2 where N is the number depth or address of

the memories. At that rate, accepting a period duration of 100 ns, testing a 16Mbit

memories would require 500 hours for a N2 test and 860 seconds for a request N3/2

test. Other more established tests, for example, Zero-One and Checkerboard, are of

order of N, however they have poor fault coverage. Table 1 demonstrates the memory

testing time as a component of memory size [5].

3

Table 1.1. Test time as a function of memory size [5].

1.3 Objectives

The objectives of this research are as the following:

i. To develop a built-in self-test (BIST) design that able to capture the failure

sequence in the algorithms.

ii. To implement BIST design or tests in automatic test equipment (ATE) for data

logging on the failing sequence of the algorithms.

iii. To analyze the effectively way of algorithms trimming and the impacted to

tests time.

4

1.4 Project Scopes

This research scope will be focus on the developing of BIST design with error

state capture and implement the tests in ATE platform. This project will mainly

describe how algorithm trimming is done and impacted to the test time.

The research is limited to define the methodology of algorithm trimming and

BIST development. No production data of products is shared or discussed in this

research.

1.5 Research Contribution

This research is to develop an effective test solution for low cost device memory

by proper study on tests algorithm during production test using Automatic Test

Equipment (ATE). This research will help the Test Engineer to have a better

understanding on the algorithm used for memory testing and type of fallout occurs

during production testing. Outcome from this research will improve the memory

testing methodology and test time. Organization could benefit from test cost saving

and production cycle time to meet customer requirement.

1.6 Thesis Organization

In Chapter 2, the outcome of the literature review has been carry out. A study

on the implementation of the BIST, memory algorithm notation and fault coverage,

and some of memory test time saving methodology have reviewed and discussed. A

comparison has been done for the existing method with proposed method.

5

Chapter 3 discuss about the methodology used for developing the proposed

BIST and the test program for ATE. Besides that, the calculation and analysis method

for defects per million (DPM) value and tester data have been elaborate.

In Chapter 4, detail of simulation results of the BIST operation have been

shared and discussed. All the important signals of the design in different test case are

shared in the waveform for the verification of the BIST operation. Following by ATE

tester results on implementing the tests in tester platform. Few units have been

selected to tested with this BIST and results have shared in table. Finally, the chapter

is closed by discussion of the overall results.

Chapter 5 summarizes and concludes the results from the research on test time

saving with this methodology. Lastly, the future work for this project have been

suggested.

6

LITERATURE REVIEW

2.1 Overview

This chapter provides research study about memory testing and test time impact

to production cost of device. Add more, few type of test time saving in memory testing

briefly discussed and compared in this chapter. In section 2.2 covers the functional

model of memory. Section 2.3 explains the memory testing methodology and fault

coverage of testing algorithm. Section 2.4 describes the memory test time impact base

on algorithms. In section 2.5, the advantage of build-in Self-test (BIST) use in

memory testing is discussed. Few techniques that have developed for test time saving

is analysis in section 2.6. Lastly, section 2.7 discuss about memory test time reduction

methodology used in industrial for comparison.

2.2 Functional Model of Memory

Memory is a huge array of cells which contain data. These cells are unique

addressable on a matrix with row and column address. There are 3 major signal used

to operate the memory. These signals are address signal, control signal and data signal.

The address signal used to identify the location of the cells to be operated. While

control signal is to determine the operation between write and read to the cells. Finally,

the data signal carry the data in or out of the memory cells [6].

7

2.3 Memory Testing Methodology

Memory testing algorithm is involved with combination of write and read

sequence to capture all kind defect in memory. There are number of algorithm is

implemented in memory to screening the device in production flow. Each of algorithm

have their own defect coverage for the memory [7].

A study has been carry out to determine coverage fault for few industrial

algorithms that been used in production screening. The fault coverage able to

represent in percentage value to identify the most effectively algorithm compare to

others. The percentage is determined by accumulating the number of faults captured

by the algorithm in relation to the total number of faults. Higher the percentage value,

more fault coverage detected by the algorithm. Table 2.1 and Figure 2.1 shows the

algorithm notation and fault coverage respectively [8].

From the Figure 2.1 data, the highest coverage fault is achieved by Algorithm

B, Hammer Walk, March U, March LR and March SS algorithm, around 80% of the

coverage faults compared to others algorithms. The SCAN and HAM5W is giving

below 30% of faults coverage. As cross check with the notation Table 2.1, the higher

faults coverage algorithms are complex and high test time compared to SCAN or

HAM5W algorithm [8].

8

Figure 2.1. Fault coverage of memory test algorithms [8].

Table 2.1. Algorithm notation [8].

9

Memory testing algorithm basically can be divided into 3 components,

algorithm’s direction, background and notation. Direction indicates whether the

algorithm needs to be run X directory or Y directory of memory. Meanwhile

background indicates type of data should to perform the testing such as checker broad,

column stripe or solid. Finally, the notation indicates the algorithm flow of write and

read. Each algorithm need to be repeated with different background and direction [4]

[9].

2.4 Type of Memory Faults

Faults may occur due to mass production, electrical errors, manufacturing,

logical error or random fluctuations in device parameters [10]. The memory faults

able to categories into 3 major faults, memory cell faults, dynamic faults and address

decoder faults as shown in Figure 2.2 [11].

Figure 2.2. Memory Faults [11].

Address decoder Faults

Memory Cell

Faults

Dynamic faults

Memory – Functional Fault

Models

10

2.4.1 Memory Cell Faults

 There are number of different type memory cell faults defects happen in

memory, some of them as describe below:

1. Stuck-at fault (SAF), where the cell or line is stuck at VCC or Ground [11].

2. Stuck-open fault (SOF), open cell or broken line within the memory. [21]

3. Transition fault (TF), the cell fails to transit from 0 to 1 or vice versa [11].

4. Data retention fault (DRF), cell changes the value after some period [21].

5. Coupling fault (CF), any operation on aggressor cell impact the victim cell

[4].

6. Bridging fault (BF), short between cells [11].

7. Neighborhood Pattern Sensitive Fault (NPSF), the surrounding cell causing

the base cell to changes its logic value [11]

2.4.2 Address Decoder Faults

Type of faults that could happen in the address decoder:

 1. No cell accessed by certain address [11].

 2. Multiple cells accessed by certain address [11].

 3. Certain cell not accessed by any address [11].

 4. Certain cell accessed by multiple addresses [11].

2.4.3 Dynamic Faults

Type of dynamics faults in memory:

11

 1. Recovery faults, slow in transit from the previous state within the memory

[21].

2. Disturb faults, any write or read operation on cell causing the cell itself or

others to change its logic value.

Any type of effort taken to improve the memory testing methodology should

not impact the fault coverage or quality of the memory. The sequence of the tests

algorithm for RAM tests coverage only can be adjusted or modified base on the proper

study on the yield data and DPM value.

2.5 Memory Faults Detection Base on Algorithms

 Table 2.2. summarizing conducted survey in [10] presents algorithms used to

cover the basic faults in memory testing. Some popular kinds of failure on memory

are defined such as Stuck at Fault (SAF), Transition Fault (TF), Address Decoder

Fault (ADF), Coupling Fault (CF).

Table 2.2. Algorithms to Detecting Memory Faults

Test Fault Coverage

MATS+ SAF

March Y SAF, TF, ADF, some CFs, some linked TFs

March X SAF, TF, ADF, some CFs

March LR Also linked faults

March A SAF, TF, ADF, some CFs, some linked CFs

March LA SAF, TF, ADF, some CFs, some linked faults

12

 Anyway, the algorithms in Table 2.2 are not enough to cover all memory faults

that are relating to patterns of neighborhood cells [12]. The data of memory cell is

changed due to the neighboring memory cell during write or read is called as

Neighborhood Pattern Sensitive Fault (NPSF). [4]

2.6 Test Time Base on Algorithm

Table 2.1 shows the notations for memory testing algorithms. Based on the

notations, the test time can be calculated for each algorithm. Prior to that, the

algorithm notation need to be understand. The notation briefly described in [13] [20].

The algorithm sequence is delimited by the parentheses. Any sequence within these

parentheses need to be completed to entire memory before moving next sequence. The

up, down and double side arrow is indicating the addressing sequence of algorithm

operation. The up-arrow sequence will execute the operation from first address to last

address [9]. Meanwhile for double side arrow, the sequence can be executed either up

direction or down direction. The W0, R0, W1 and R1 notation represent write data 0

into cell, read and compare with data 0, write data 1 and read data 1 respectively. A

D notation in March G algorithm indicate delay between operation sequence [13].

The test time table will be created based on number of sequence in the algorithm

with respect to the memory size (N). To calculate the actual test time for the memory,

the size of memory and executing clock frequency must be determined in prior. Table

2.3 and Figure 2.3 show the execution cycles for selected algorithm.

13

Table 2.3 Algorithm Cycles

Algorithm Cycles Algorithm Cycles

SCAN 4N March Y 8N

SCAN+ 8N March LR 14N

MATS 3N March LA 14N

MATS+ 5N March RAW 26N

MATS++ 6N March RAW1 13N

March C- 10N March AB 22N

March A 11N March AB1 11N

March B 17N March BDN 22N

Algorithm B 17N March SR 14N

March C+ 14N March SS 22N

PMOVI 13N Ham5R 25N

March 1/0 14N Ham5W 25N

March TP 11N March G 23N + 2D

March U 14N Ham_Walk 15N

March X 6N

Figure 2.3 Algorithm Cycles Count

0

5

10

15

20

25

30

SC
A

N

SC
A

N
+

M
A

TS

M
A

TS
+

M
A

TS
++

M
ar

ch
 C

-

M
ar

ch
 A

M
ar

ch
 B

A
lg

o
ri

th
m

 B

M
ar

ch
 C

+

P
M

O
V

I

M
ar

ch
 1

/0

M
ar

ch
 T

P

M
ar

ch
 U

M
ar

ch
 X

M
ar

ch
 Y

M
ar

ch
 L

R

M
ar

ch
 L

A

M
ar

ch
 R

A
W

M
ar

ch
 R

A
W

1

M
ar

ch
 A

B

M
ar

ch
 A

B
1

M
ar

ch
 B

D
N

M
ar

ch
 S

R

M
ar

ch
 S

S

H
am

5
R

H
am

5
W

H
am

_W
al

k

Algorithm Cycles (N)

14

With the time model for each algorithm, the tests time able to be calculated as

below formula:

Test Time = (Algorithm Cycle x Total Address of Memory)/Frequency

 Figure 2.4 shows the test time required for each algorithm for 1Mbyte

memory with 100Mhz functional or testing frequency.

Figure 2.4. Algorithm Test time.

2.7 Built-in Self-Test (BIST) for Memory

Built-in Self-Test is one of design for testability (DFT) features. Memory BIST

(MBIST) is automated testing for memory. It reduces the effort of write and read

operation manually through external pin. By having this features, the memory testing

can be run at variable speed using phase loop lock of the test device [2]. During failure

analysis, BIST able to identify the exact failing address to locate the exact location in

physical design [14].

0.00

50.00

100.00

150.00

200.00

250.00

300.00

SC
A

N
SC

A
N

+
M

A
TS

M
A

TS
+

M
A

TS
++

M
ar

ch
 C

-
M

ar
ch

 A
M

ar
ch

 B
A

lg
o

ri
th

m
 B

M
ar

ch
 C

+
P

M
O

V
I

M
ar

ch
 1

/0
M

ar
ch

 T
P

M
ar

ch
 U

M
ar

ch
 X

M
ar

ch
 Y

M
ar

ch
 L

R
M

ar
ch

 L
A

M
ar

ch
 R

A
W

M
ar

ch
 R

A
W

1
M

ar
ch

 A
B

M
ar

ch
 A

B
1

M
ar

ch
 B

D
N

M
ar

ch
 S

R
M

ar
ch

 S
S

H
am

5
R

H
am

5
W

H
am

_W
al

k

Algorithm Test Time (uS)

15

Memory BIST consist of data and control generator, address generator, state

machine and comparator. There are few type of memory BIST in industrial such as

soft-programming MBIST, hard-programming MBIST, reconfigurable MBIST and

self-repair MBIST.

Soft-programming Memory BIST capable of changing the algorithm sequence

without impacting the design changes to the Memory BIST controller. This features

become handy during debugging the failure at tester [6]. For Memory BIST with built-

in redundancy analysis (BIRA) is capable of repair the memory with spare row and

column during testing [7]. For this research, the hardcoded algorithm Memory BIST

is selected due to the design overhead and easy to developed.

Besides that, there are few types of interface used for MBIST such as Internal

Joint Test Action Group (IJTAG), Joint Test Action Group (JTAG) and external pin

scan chain [15].

During the Memory BIST insertion into the device, the placement of Memory

BIST and grouping of the memory is key parameter in design planning to reduce the

overhead on physical device and influences the tests time [16]. The main factor of

memory grouping are memory shape, depth, power and edge distances between

memory [17].

16

There are few types of Memory BIST architecture available in industrial, each

of Memory BIST have its own advantage and disadvantage. Main factor that involve

in choosing suitable the MBIST are testing frequency, area for DFT design, type of

memory and type of algorithm.

2.8 Test Time Reduction Method

There are few method have been developed to reduce the memory testing test

time. Some of the method have been discussed in following section.

2.8.1 Memory Test Time Reduction by Interconnecting Test Items

The interconnect test items method able to reduce the test time by sharing or

reuse the algorithm sequence between tests. By this, the algorithm can be simplified

to use the state of previous algorithm to continue with current algorithm sequence.

This able to save the initialization and verification sequences in the algorithm. Figure

2.5 shows the flow chart of the combination of few algorithms [18].

Figure 2.5. Flow of algorithm state with Interconnecting

17

On the disadvantage, this method is difficult to be developed for tests due to

complexity in algorithms sequence. Besides that, the tests lose the details of the failing

symptom of the algorithms. Without this data, the fault coverage for product unable

to be identified and unable to remove the redundant algorithm base production data

[14].

2.8.2 Remove the Ineffective Algorithm Base on Production Data

This method is driven by production data. During the memory testing in

production flow, the testing will be halt whenever a failing detected in the one of the

algorithm in the flow. After certain sample of size achieved, any algorithm with 0

fallout or low than DPM tolerance will be removed from the flow for test cost saving.

2.8.3 Remove the Redundant Algorithm in Production Flow

This method is driven by production failing data. An algorithm is mark as

redundant whenever two or more algorithms are failing on same device. For examples,

20 units is failing on algorithm A and 10 units out of 20 units is failing on the

algorithm B. The algorithm B is subtest fault coverage of algorithm A. Since the 10

units still able to fail during algorithm A testing, the algorithm B is call as redundant

and removed in the flow. This analyses only can carry out after a certain number

sample size is achieved [19]. Figure 2.6 illustrates the scenario.

18

Figure 2.6. Faults coverage algorithm B is subtest of algorithm A

2.9 Summary

Some of past research on memory test time reduction have been discussed in

this chapter. Base on the outcome, a summarizes table 2.4 have been put up for

comparisons.

Table 2.4. Comparison of Memory Test Time Reduction Method.

 Test Time Saving method

Memory Test

Time

Reduction

Method

Test

Implement

Turnaround

BIST
Test

Removable

Test

Trimming

Remove the

Redundant

Algorithm in

Production

Flow

Low, the

methodology

is useable for

any new

product

Yes Yes No

Remove the

ineffective

Algorithm base

on production

data

Low, the

methodology

is useable for

any new

product

Yes Yes No

Faults Coverage

Algorithm A

Faults

Coverage

Algorithm B

19

Memory Test

Time

Reduction by

Interconnecting

Test Items

High,

required high

turnaround

time to

develop and

implement

the tests.

Yes No Yes

Using specific

BIST for test

time reduction

Average,

required

change the

architecture

of the BIST

base on

algorithm

changes.

Yes Yes No

The proposal

method

Low, the

methodology

is useable for

any new

product

Yes Yes Yes

 Based on the comparison table above, the proposal method has an advantage

compare to the rest of the method discussed in the previous section. Even though the

proposal method briefly discusses about the algorithm trimming methodology in this

research, the architecture of the BIST and testing methodology are carefully defined

to accommodate all others existing saving method. The algorithm trimming

methodology is an add-on to existing test time saving method for better reduction in

the memory testing time.

 The algorithm trimming method is not implemented in most of existing

method except memory test time reduction using Interconnecting test item. But, the

interconnect test item has different trimming methodology compare to the proposal

method. The interconnects method able to reduce the test time by reusing same

20

sequence between the algorithms, while the algorithm trimming methodology will

remove the ineffective sequence in the algorithm based on yield data. Furthermore,

the interconnect method has high turnaround time of test development for any new

process node. While, the proposed method is reuse for any new process node except

the production yield data.

21

METHODOLOGY

3.1 Overview

 In the previous chapter, background of the memory testing with algorithm and

impacted of test time have been studied and discussed. In this chapter, a strategy and

methodology is proposed for effective way to optimize the memory algorithm testing

to reduce tests time for low cost product.

 Due to cost, the low-cost product has acceptable number of reject unit from

customer end which refer to DPM number (Defects per million). By utilizing this

tolerance and proper risk assessment, the algorithm can be optimized for tests time

saving without impacting the quality of product delivered to customer.

 This methodology is developed using the Quartus software tool, Verilog

programming language and test program for ATE tester.

The following design flow is used to developed the proposed test methodology:

1) Analysis and Calculation of DPM

2) Develop BIST (Built-in Self-Test) with failure report capability

22

3) Develop test program flow

4) Analysis on data

A detail flow chart of the methodology process is shown in Figure 3.1. With the

planning through the flow chart, every objective of the stage involved in the research

can be achieved effectively.

In the stage, which is “Analysis and Calculation of DPM”, the tolerance of

allowable reject at customer end is calculated. This number is required to measure the

product quality risk by modifying the test algorithm.

For “Develop BIST with Failure Report Capability” phase, the design

architecture with Quartus software tools are described and discussed in details.

Besides that, the design is simulated using VCS tools to make sure the functionality

of the BIST.

In “Develop Test Program Flow” phase, the step to implement the tests in

production flow in ATE tester is discussed. Besides that, the methodology of data

logging in database have been discussed.

In the final stage of flow which is “Analysis Output Data”, the output data

from the tester is analyzed to identify the location of trimming in testing algorithm

sequence. Besides that, the test time saving is calculated based on the memory size

and modified testing algorithm.

23

Figure 3.1. Methodology Flow Chart.

Data analysis

and

determine

Reporting

End

Check out

few unit at

ATE tester

Expected

outcome?

Yes

Debug and

Fix the design

No

Understand

the Algorithm

and RAM fault

coverage

Start

Identify the

point of

algorithm

trimming or

modified.

Built a bist

accordingly

to reseach

need using

Quartus

Simulation

passing?

No

Yes

24

3.2 Analysis and Calculation of DPM

Defects per million, is a measurement of the defect rate in certain product. Its

refer to failures which are time related, meaning units which are expected die at the

customer. High-end or high-cost product have tighter DPM number compare to low-

cost or low-product.

One of cost item in low-cost product is testing cost. Testing cost carry all factor

or cost related to testing include tester, test engineer cost and test time. To reduce the

test cost, the low-cost product usually has loose testing specification compare to high-

cost product. This is one of factor that contribute to higher DPM number for low-cost

product.

Formula to calculate DPM:

DPM = (a / b) x 1,000,000; where

a = Quantity of units with defects.

b = Quantity of units tested.

Example if given a product A have tolerance of 500 DPM, this product can have

reject of 500 units out of 1 million units delivered at customer due time related

degradation or over stress. During initial stage, rough estimation done per the formula

above due to small sample size.

Example if the product A have 15 reject units from the 10000 units delivered to

customer. The DPM number can estimate as (15/10000) x 1000000 which equal to

1500 DPM. Per examples, this is not acceptable since allowable DPM number is 500.

