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FAULT ISOLATION WITH ‘X’ FILTER FOR BOGUS SIGNALS AND 

INTENSIVE SCAN CELL SEQUENCE VALIDATION 

 

ABSTRACT 

There are some concerns in silicon data collection by using the Design-For-Test 

(DFT). Bogus signal which carries ‘x’ value in simulation, results from the complex logic 

synthesis and power-up floating state can often mislead the fault isolation process with 

invalid failing condition. Besides, scan cells within the scan chain architecture is also 

having mismatch value in between the simulation data and silicon data due to the non-

ideal mapping file passed down from the designer team. Hence, it is important to develop 

an integrated tool that can filter all the bogus signal online and to validate the correlation 

between silicon data and simulation data with minimum coverage of 90%. Data from 

actual Intel 6th generation microprocessor with 14 nm process technology, Skylake is 

imported to ensure that the application of this thesis in the current industry market. 

Necessary tools such as the “Differentiate and Display” feature to ease the analysis of data, 

the AND-logic operation to filter the bogus signal and X-OR logic operation to handle the 

inverted characteristic of signals are developed throughout the thesis. Results show that 

the developed integrated filter of bogus signals is successful and the minimum coverage 

of validation tool is 96.5%. Actual failure analysis case from industry is imported and the 

difference with and without the developed tools are compared. Inconclusive optical test 

result from the sample is obtained without the implementation of tools. On the other hand, 

defect of short circuit between the via and the metal line is found after the implementation 

of the developed tools. It is concluded that this thesis has achieved all the objectives set.  



KEGAGALAN PENGASINGAN DENGAN PENAPISAN ‘X’ UNTUK ISYARAT 

PALSU DAN INTENSIF PENGESAHAN URUTAN SEL SKAN 

ABSTRAK 

Kebimbangan muncul apabila data silikon dikumpul dengan menggunakan 

Design-For-Test (DFT). Isyarat yang mengandungi nilai ‘x’ dalam simulasi, disebabkan 

oleh sintesis logik yang rumit dan nilai asal apabila diaktif, sering mengelirukan proses 

kegagalan pengasingan dengan situasi gagal yang palsu. Selain itu, sel skan dalam rantaian 

skan juga mempunyai nilai yang berbeza antara data silikon dan data simulasi disebabkan 

oleh fail pemetaan yang bukan ideal dari kumpulan pereka. Oleh itu, pembangunan alat 

yang bersepadu dan dapat menapis isyarat mengandungi ‘x’ dalam talian serta 

mengesahkan korelasi antara data silikon dan data simulasi dengan liputan sekurang-

kurangnya 90% adalah sangat penting. Data mikropemposes Intel sebenar dari generasi 

ke- 6 dengan 14 nm teknologi proses diimport untuk memastikan aplikasi tesis ini dalam 

industri. Alat keperluan seperti “Differentiate and Display” fungsi yang memudahkan data 

analisis, operasi DAN get logik yang menapis isyarat ‘x’ serta XOR get logik yang 

mengendalikan kebalikan isyarat dicipta dalam tesis ini. Keputusan menunjukkan alat 

penapisan isyarat ‘x’ yang dibangunkan berjaya dan liputan minima alat pengesahan ialah 

sekurang- kurangnya 96.50%. Kes penggagalan keasingan dalam industri diimport dan 

perbezaan prestasi sama ada dengan alat yang dibangunkan atau tidak dibandingkan. 

Keputusan ujian optik yang tidak menyakinkan diperolehi apabila alat yang dibangunkan 

tidak diguna. Manakala, kegagalan litar pintas antara via dengan lapisan logam didapati 

selepas penggunaan alat yang dibangunkan dalam tesis ini. Kesimpulannya, tesis ini telah 

mencapai semua objektif yang ditentukan.  



TABLE OF CONTENTS 

 

Chapter 1 Introduction…………………………………………………………..……..1 

1.1 Background…………………………………………………………….…….1 

1.2 Problem Statement……………………………………………………….…..4 

1.3 Research Objectives…………………………………………………….……5 

1.4 Research Scope……………………………………………………………....5 

1.5 Thesis Outline………………………………………………………………..6 

 

Chapter 2 Literature Review…………………………………………………..……….7 

2.1 The Reasons Behind Failure Analysis………………………………………..8 

2.2 DFx Feature…………………………………………………………..………9 

2.2.1 Build-In-Self-Test (BIST)…………………….…………..………..9 

2.2.2 Scan Architecture……………………….………………………...10 

2.3 Conventional Fault Isolation and Failure Analysis………………………....11 

 2.3.1 Fault Isolation………………………………………………..……11 

 2.3.2 Failure Analysis……………………………………………...……13 

2.4 The Presence of ‘x’ State in Scan Signals…………………………………..14 

2.5 Post Silicon Validation……………………………………………………...16 

2.6 Summary of Chapter………………………………………………………...17 

 

Chapter 3 Methodology………………………………………………………….…….18 

3.1 Setup of Tester and Software Applications in Fault Isolation………………20 

3.2 Generation of Simulation Raw File…………………………………………21 



3.2.1 Limitations and Solution in Raw Data Collection…………………22 

3.3 ‘Differentiate and Display’ Feature…………………………………………23 

3.4 The Development of Algorithm……………………………………………..28 

  3.4.1 Bogus ‘X’ Scan Signal Masking…………………………………..28 

  3.4.2 Validation on Scan Signal Mapping File…………………….........29 

  3.4.3 Usage of “Differentiate and Display” Feature…………………….30 

  3.5 Proof of Concept…………………………………………………………….31 

  3.5.1 Bogus ‘X’ Scan Signal Masking…………………………………...31 

  3.5.2 Issue on Possible Over-Filter of Valid Mismatch………………….32 

  3.5.3 Validation on Scan Cell Sequence…………………………………34 

3.6 Summary of Chapter……….……………………………………………......35 

 

 

Chapter 4 Results and Discussions……….…………………………………………...36 

4.1 Generation of Simulation Raw File and Mask File………………………….37 

  4.1.1 Modification for Format of Scan Signal…………………………...37 

  4.1.2 Separation of Clock Cycle…………………………………………38 

  4.1.3 Format of Simulation Raw File and Mask File…………………...38   

 4.2 “Differentiate and Display” Feature…………………………………………40 

  4.2.1 Differentiation of Two Raw Files…………………………………39 

  4.2.2 “Scan Compare” as Result from “Differentiate and Display”  

                                 Feature………………………………………………...…………..41 

  4.3 Masking Bogus 'x' Signal……………………………………………………43 

  4.3.1 Generation of Mask File…………………………………………..44 



 4.3.2 Collection of Silicon Data from Healthy Unit before Implementation 

                                 of ‘X’ Filter………………………………………………………..43 

  4.3.3 Collection of Silicon data from Healthy Unit after Implementation  

         of ‘X’ Filter……...………………………………………………...45 

  4.3.4 Avoid Over Masking of Valid Scan Signals………………………46 

   4.4 Validation Tool……………………………………………………………...48 

      4.4.1 Extraction of Simulation Data……………………………….........48 

  4.4.2 Collection of Silicon Data from Healthy Unit……………………..49 

  4.4.3 Generation of Invert Database and Golden Simulation Raw  

                                 File………………………………………………………………...50 

  4.4.4 Validation Result…………………………………………….........52 

4.5 Impact of Implementation on Real Case……………………………….........54  

    4.5.1 Fault Isolation without Developed Tool…………………………...54 

4.5.1.1 Signal Tracing and Determination of Upper  

Boundary………………………………………………………..55 

  4.5.2 Failure Analysis based on Fault Isolation without Developed  

                                 Tool…………………………………………………………..........56 

  4.5.3 Fault Isolation after the Integration of Developed Tool…………..57 

     4.5.3.1 Determination of Upper Boundary after the Integration of  

                                                Developed Tool…………………………………………58 

     4.5.3.2 Signal Tracing and Determination of Upper  

                                                Boundary………………………………………………..59 

  4.5.4 Usage of Validation Tool on Scan Signals in the Boundary  

                                Formed……………………………………………………………..61 

  4.5.5 Failure Analysis based on Fault Isolation with Integrated Tool…..62 

     4.5.5.1 Unit Thinning and Signal Probing………………………64 

    4.5.5.2 Unit Preparation and Transmission Electron Microscopy  

                                     (TEM)…………………………………………………..66 

4.6 Discussion and Summary of Chapter……………………………………….67 

 



Chapter 5 Conclusion………………………………………………….………………68 

References……………………………………………………………………………...69 

Appendix A-D…………………………………………………………………….........74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES 

Figure 1.1 JTAG Structure…………………………………………………….…………2 

Figure 1.2 Scan Failure according to Fault Location………………………….…………3 

 

Figure 2.1 Graph of Transistor Size versus Year from year 1950……………….………7 

Figure 2.2 Image of Unit Cracking……………………………………………….…..….8 

Figure 2.3 The Role of Test and Failure Analysis in Product Development Cycle…...…9 

Figure 2.4 The Basic Operation of BIST………………………………..….…….....….10 

Figure 2.5 Scan Cell formed by Latches…………………………………………….….10 

Figure 2.6 The Standard Flow of Failure Analysis Procedure………………………….11 

 

Figure 2.7 The Overall Fault Isolation Process…………………………………...…….13 

Figure 2.8 The Illustration of Suggested Symbolic X-Propagation  

                    Checking [9][11]…………………………………………………………..15 

Figure 2.9 Adapted Design Required to Handle Don’t Care Situation of  

                    Registers [34]………………………………………………………………15 

 

Figure 3.1 Flow Chart on Methodology of this Thesis…………………………….…...19 

Figure 3.2 Block Diagram and Tester Setup in order to Collect Silicon Data…….……20 

Figure 3.3 Procedure on Generation of Simulation Raw File…………...……….……..21 

Figure 3.4 Flow of events in “Differentiate and Display” feature……………………...25 

Figure 3.5 Script to coordinate and map the bit location with their respective scan signal     

     according to the mapping file from designer…….………………………….26 

Figure 3.6 Script to differentiate the value of interested signal, handle the invert  

                 characteristic as well as provide list of all mismatching signals …...……….27 

Figure 3.7 Operation of “Differentiate and Display” Feature in Different Mode……....30 

 



Figure 4.1 Command Used to Extract the Data in Waveform Viewer Application….…37 

Figure 4.2 Format of Mapping File before Modification………………………….……37 

Figure 4.3 Format of Mapping File after Modification (Difference is Circled)…….…..37 

Figure 4.4 Part of Scan Signals in Waveform Viewer Software Application……….….39 

Figure 4.5 Extracted Data of Scan Signals from Waveform Viewer Application….…..39 

Figure 4.6 (a) Mask File and (b) Raw File based on Extracted Data……………….…..39 

Figure 4.7 The GUI for “Differentiate and Display” Feature……………………….….40 

Figure 4.8 Result from “Differentiate and Display” Formed by Two Matching Raw  

                  File…………………………………………………………………………..41 

Figure 4.9 Result from “Differentiate and Display” Formed by Two Mismatching Raw 

                  File…………………………………………………………………………..41 

Figure 4.10 Result from “Scan Compare” Formed by Two Mismatching Raw Files…..42 

Figure 4.11 Scan Signal A (circled) Carrying Value ‘x’ in Waveform Viewer 

                     Application………………………………………………………………..43 

Figure 4.12 Scan Signal Carrying Value ‘x’ in Extracted Simulation Data………….…43 

Figure 4.13 Mask File Generated based on Extracted Data………………………….…44 

Figure 4.14 Silicon Data Collected from “core 0” (a) and “core 1” (b) in Healthy Unit 

                     before the Implementation of Masking. Bit Location of Signal A is  

                     circled……………………………………………………………………..44 

Figure 4.15 Result from “Differentiate and Display” Showing Mismatch (as circled)  

                     between Signal that has ‘x’ Value in Simulation before the Implementation 

                     of Masking………………………………………………………………...45 

Figure 4.16 Silicon Data Collected from Healthy Unit after the Implementation of  

                     Masking. Bit Location of Signal A is circled. (a) “core 0” and  

                     (b) “core 1” …………………………………………………….…………46 

Figure 4.17 Result from “Differentiate and Display” Showing Match between Signal 

                    that has ‘x’ Value in Simulation after the Implementation  

                    of Masking…………………………………………………………………46 

 

Figure 4.18 Result from “Differentiate and Display” Showing Match between Signal  

                    that has Valid Value in Simulation after the Implementation  

                    of Masking…………………………………………………………………47 



Figure 4.19 Mapping File from Designer with Stated Invert Characteristic  

                    (as circled)…………………………………………………………………48 

Figure 4.20 Simulation Data in Waveform Viewer Application…………………….….48 

Figure 4.21 Simulation Data Extracted from Waveform Viewer Software  

                    Application………………………………………………………………...49 

Figure 4.22 Silicon Data Collected from Actual Healthy Microprocessor Unit…….….49 

Figure 4.23 Invert Database………….………………………………………………....50 

Figure 4.24 Mask File Generated………….……………………………………….…...50 

Figure 4.25 Original Raw File from Simulation Data after Changing ‘x’ to ‘1’….……51 

Figure 4.26 Modified Raw File for Simulation Data after X-OR Operation with Invert 

                     Database for Every Clock Cycle………………………………………….51 

Figure 4.27 ‘Scan Compare’ Generated by “Differentiate and Display” Feature Shows 

                      that No Mismatch is Found between Silicon data and Simulation Data for      

                      this part of Mapping file in the Interested Range of Clock Cycle….…….52 

Figure 4.28 The Identified First Failing Scan Signal in Increasing Clock Cycle…….....54 

Figure 4.29 Signal A (as circled) has 8 Bit of ‘x’ in the Interested Clock Cycle…….…55 

Figure 4.30 The Fault Isolation Process with Absence of Developed Tool………….…55 

Figure 4.31 Signal B is having same Value as Signal A and it Matches between Failing 

                    Core and Reference Core………….………………………………….……56 

Figure 4.32 Result from Optical Test with Focus on Formed Boundary within the 

                     Sample………….…………………………………………………………57 

Figure 4.33 Signal A has Matching Value between Failing Core and Reference Core 

                     after the Implementation of Developed Tool……………………………..58 

Figure 4.34 Signal C (as circled) has Mismatch Value between Failing Core and 

                    Reference Core in Clock Cycle 6bd9……………………………...………59 

Figure 4.35 The value of Signal C (as circled) in the Range of Interested Clock Cycle in  

                    Waveform Viewer Software Application………………………………….59 

Figure 4.36 The Fault Isolation Process with Presence of Developed Tool...……….…60 

Figure 4.37 Signal D (as circled) is having Matching Value between Cores………..….61 

Figure 4.38 “Scan Compare” File in Validation Mode for Interested Range of Clock…61 

 



Figure 4.39 The result from Optical Test that Shows the Abnormal Emission of Photon  

                     in the Suspected Failing Boundary………………………………………..62 

Figure 4.40 The Latest Failing Boundary after Elimination of Non-Suspected Device..63 

Figure 4.41 Graph of Stage Current vs Probe Voltage for the Output of Multiplexer….64 

Figure 4.42 Graph of Stage Current vs Probe Voltage for the Reference………….…...65 

Figure 4.43 The Illustration Image of Cross Surface of the Sample which Shows that  

                     there is Physical Contact between the Via of Output for Multiplexer and the              

                     Metal Layer of Voltage Supply……………………………………….…..66 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF TABLES 

Table 3.1 Truth Table of the X-OR Operation between Invert Database and Signal’s  

                 State………………………………………………………………………….23 

Table 3.2 Truth Table of AND-Operation between Mask File and Signal’s State.…….29 

Table 3.3 Result of Comparison after Masking of Silicon Data…………………….….29 

Table 3.4 Result of Comparison for Scan Signals having ‘x’ in Simulation and Different  

                 Power-Up State before the Implementation of Masking…………………….31 

Table 3.5 Result of Comparison for Scan Signals having ‘x’ in Simulation and Different  

                 Power-Up State after the Implementation of Masking………………………32 

Table 3.6 Comparison of Scan Signals having Value ‘0’ from Healthy Cores after then  

                 Implementation of Masking…………………………………………………32 

Table 3.7 Comparison of Scan Signals having Value ‘0’ and ‘1’from Health Core and  

                 Failing Core Respectively after the Implementation of Masking…………...33 

Table 3.8 Comparison of Scan Signals having Value ‘1’ from Healthy Cores after then  

                 Implementation of Masking…………………………………………………33 

Table 3.9 Comparison of Scan Signals having Value ‘1’ and ‘0’from Healthy Core and  

                 Failing Core Respectively after the Implementation of Masking…….……..33 

Table 3.10 Data Collection and Analysis for Cores that has Miscorrelation between  

                   Simulation Data and Silicon Data………………………………………….34 

 

Table 4.1 Separation of Simulation Run Based on Clock Cycle due to Limitation From  

                 Waveform Viewer Software Application……………………………………38 

Table 4.2 Result From the Validation Tool for Scan Out and All Clusters From  

                 Interleaved Scan……………………………………………………………..52 

 

 

 

 

 



LIST OF EQUATIONS 

Equation 3.1 Formula to Calculate the Mismatching Percentage between Silicon Data  

                       Collected and the Simulation Data………………………………………35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Yield is defined as the ratio of microprocessor units in a wafer that can perform 

and function as expected to the sum of microprocessor units produced in a wafer. It is 

mainly affected by the fabrication process and it carries huge commercial impact on mass 

production [1]. As the size of transistor shrinks from time to time, fabrication process 

faces challenge in maintaining the manufacturing yield. In order to minimize the rate of 

defect, fabrication process is improved and fixed continuously with data and root cause 

from defect mechanism [2]. The process and methodology developed to identify the root 

cause is named failure analysis. Failure analysis is crucial in product development cycle, 

it can benefit the wafer fabrication process from the production of first silicon to the 

package development. Of all the failure analysis steps, fault isolation is often the first step 

in order to define the failing boundary within the microprocessor unit, the location where 

the defect is expected [3]. Fault isolation relies heavily on the Design for Testability (DFT) 

and Design for Debug (DFD) or most of the times are combined and named as DFx feature 

on the chip. DFx is a design technique that includes the testability feature at architectural, 

layout and circuit level so that test application and diagnostics can be applied by debug 

engineer [4]. 

 One of the most popular DFx method is by implementing the scan capability, 

which recognized by Joint Test Action Group (JTAG), IEEE standard 1149.1-1990, 

entitled IEEE Standard Test Access Port (TAP) and Boundary-Scan Architecture. The 
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common standard consists of Test Access Port (TAP) controller, Scan Instruction Register 

and Scan Data Register within the device. The communication with external input is 

enabled with 5 pins to control the write and read of test instructions and data as well as 

their sequence, timing and priority with the architecture as shown in Figure 1.1 [5]. 

 

 

 

 

 

 

 

Figure 1.1: JTAG Structure 

Pin Test-Data-In (TDI) and Test-Data-Out (TDO) are used to write and read the 

data respectively, while pin Test Clock (TCK) and Test Mode Select (TMS) are used to 

determine the timing and selection of either instruction register scan or data register scan. 

There is also an optional Test Reset (TRST) pin that can reset the test signal when it is 

necessary [6]. 

 The main function of scan architecture in DFx is to provide visibility points along 

the circuit. Scan cell is formed by components of flip-flop or latch which able to store the 
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state of the circuit, while scan chain is formed by numbers of scan cells in a chain with 

capability to communicate with the combinational logic as shown in Figure 1.2 [7]. 

 

 

 

 

Figure 1.2: Scan Failure according to Fault Location 

 With the flexibility to apply input data into the scan chain and the combinational 

logic, test result can be analyzed by matching with the expected output data. In situation 

of output data mismatch with the expected data, failing boundary containing defect will 

be located and formed, whether it is within the scan cell chain or combinational logic, 

depends on the type of tests applied. Signal tracing with the help of simulation will further 

isolate the failing boundary, improve the debug process with higher effectiveness [8]. 

 However, there are drawbacks and limitations on the scan architecture that might 

mislead the debug process, which indirectly reduce the yield and causes negative impact 

to the production cost. It is observed that scan cell sequence within the scan cell chain is 

important to match with the simulation platform in order to locate the failing boundary 

accurately. Besides, there are also presence of bogus signal which carries the ‘don’t care’ 

condition in simulation, floating to the power-on state. 

 



4 
 

1.2 Problem Statement  

 In order to isolate the failing boundary effectively and precisely, the presence of 

visibility points along the circuit and their accuracy are vital to the debug process. 

However, the state of bogus signal which carries ‘don’t care’ situation in simulation alters 

the validity of the visibility point and might mislead the debug process [9]-[12]. Since the 

bogus signal floats to power-on state, comparison data might show mismatch when we 

compare the healthy core and core that contains defect. The mismatching data might 

mislead the debug engineer to form failing boundary based on invalid test result.  

 Apart from that, the concern of  the scan architecture is that the current validation 

for correlation between silicon data and simulation data is performed manually with eye-

ball validation which has low effectiveness and low coverage along the scan cell chain 

[13]-[16]. In case the scan sequence within the scan cell chain differs with simulation or 

expected sequence, it will mislead the debug process and the failing boundary formed 

might not be valid and accurate which further leads to lower success rate of root causing 

the failing mechanism. Thus, a tool that can utilize the available simulation data along the 

period of test with minimum 90% of correlation with silicon data as well as capability to 

recognize and filter the ‘don’t care’ signal in diagnosis will help to improve the quality of 

fault isolation, and directly improve the yield, quality and cost effectiveness of the product 

fabrication [14]-[17]. 
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1.3 Research Objectives 

The research objectives for this dissertation projects are defined as: 

i. To enhance the fault isolation process by integration of bogus signal filter in the 

silicon data collection process. All the bogus signals presented in simulation data 

should be masked and filtered by the integrated tool to avoid the situation where 

the invalid data mislead the debug process.   

 

ii. To develop a validation tool that will automate the intensive validation process 

between simulation data and silicon data with coverage of minimum 90% of 

overall scan cells.  

 

1.4 Research Scope 

The research scopes for this thesis are defined as: 

i. Silicon data and simulation data from actual industry microprocessor, an Intel 6th 

generation core microarchitecture, Skylake with 14nm process technology will be 

imported for the algorithm design and development, proof of concept as well as 

the presentation of result and discussion in this thesis. 

ii. The methodology used for scan chain data collection as well as the test pattern 

generation will only be discussed briefly in this thesis.  

iii. The number of scan cells and the details in scan architecture will not be further 

discussed as they are part of Intellectual Property (IP) owned by Intel. 
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1.5 Thesis Outline 

 In chapter 2, literature review on thesis topic is presented. The reasons behind 

failure analysis and the DFx feature developed throughout the years are explained. 

Conventional fault isolation and failure analysis will be discussed so that the results in this 

thesis can be better understood. The chapter is completed by analysis of available 

researches and algorithm developed for similar purpose of this thesis in optimizing fault 

isolation from the aspect of scan architecture and sequences.  

 In chapter 3, methodology of this thesis will be presented. The procedure on 

logistics and data collection, followed by the design and development of features and core 

algorithm will then be presented. Details explanation in each features are presented. Proof 

of concept and the procedure in result analysis will then be explained in the last section of 

this chapter. 

 Chapter 4 is mainly about result and discussion where the instant output and result 

of this thesis will first be presented. The result from data collection and feature developed 

throughout this thesis will be presented. The difference in fault isolation process with and 

without this thesis will also be compared followed by the improvement of the overall 

failure analysis in root cause the defect mechanism with the help of this thesis. This 

chapter is completed with an actual failure analysis case from industry to emphasize the 

importance and impact of the thesis. 

 Last but not least, chapter 5 will discuss mainly about the conclusion and the 

future works of this thesis in future.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter of thesis discusses about the previous studies on related field 

including the reason behind failure analysis and DFx feature, followed by explanation on 

conventional fault isolation and failure analysis process. Previous works on handling 

bogus ‘x’ signal as well as post silicon scan cell validation. By study and analyzing on 

available knowledge and previous works, reference and benchmark can be made along 

with the latest technology information and knowledge. 

In year 1965, more than half a century ago, “Cramming More Components onto 

Integrated Circuits” by Gordon E. Moore was published, which claims that the amount of 

transistors per square inch implemented in an integrated circuit will be doubled every year. 

Not only the statement is proven correct by the fact of history, it is even recognized as 

“Moore’s law” since then [18], [19], which the frequency of doubling was revised to every 

two years in year 1975 [20]. Figure 2.1 shows that the shrinking in size of transistors since 

the introduction of Moore’s law. With the decreasing size of transistors, the complexity 

and difficulty in fabrication process of microprocessor has increased, more physical 

defects are observed [1]. 

 

 

 

 

Figure 2.1 Graph of Transistor Size versus Year from year 1950 
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2.1 The Reasons Behind Failure Analysis 

Studies show that if the physical defects are not well taken care, shrinking size of 

transistor will greatly affect the performance of microprocessor. Although the impacts are 

still negligible before the 350 nm-regime [26], statistic shows that the yield of 

microprocessor drops from 90% to approximately 50% entering the 90 nm process [27], 

and further dropped to approximately 30% with 45 nm process [28]. If the issue is 

continuously neglected, the physical defects on transistors can go as far as trading off the 

performance gained from specific generation of process technology [29]. 

Note that the microprocessor units are fabricated in the form of wafer. The High 

Volume Manufacturing (HVM) and engineering data show that the location of a unit of 

microprocessor in a wafer determine whether the unit is healthy or having defect [30]. 

Based on previous cases, there are several types of possible failures such as metal etch 

defects, via defects and unit cracking as shown in Figure 2.2 [3].  

 

 

 

 

 

 

 

 

Figure 2.2 Image of Unit Cracking 

The health of microprocessor in wafer is affected by the maturity of the fabrication 

process. By implementing failure analysis to root cause the defect mechanism, corrective 
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action can be installed on fabrication process on specific location in the wafer, Defect Per 

Millions (DPM) can be minimized, and the cost effectiveness can be improved [31]. 

 

 

 

 

 

Figure 2.3 The Role of Test and Failure Analysis in Product Development Cycle 

2.2 DFx Feature 

In order to improve the yield performance of the fabrication process, DFx feature 

is implemented during the design process of microprocessor. DFx feature is defined as the 

inclusion of observability and controllability within the circuit in the design and product 

development cycle [4]. The main objective is to improve the effectiveness of debug 

process and the performance of the DFx feature will affect the quality of debug process as 

well as the result from failure analysis. 

2.2.1 Build-In-Self-Test (BIST) 

One of the most common DFx feature is the implementation of Build-In-Self-Test 

(BIST). There are three main components in the operation of BIST which are the test 

pattern generator, the test controller and the comparator. One of the advantage of BIST is 

that the test pattern will be generated within the circuit which help to save the cost of 

debugging. The pattern generated is applied to the circuit-under-test by the test controller 
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and the output response is compacted and compared with the reference signature from 

ROM [32]. 

 

 

 

 

Figure 2.4 The Basic Operation of BIST 

2.2.2 Scan Architecture 

In this thesis, the DFx feature discussed is the architecture of IEEE 1149.1 

boundary scan standard [33].  Boundary scan architecture consists of scan cells that help 

to capture and store the state of the signal which provide a visibility point of the signal 

within the circuit [34]. The scan cell layout that utilize two latches is presented in Figure 

2.5 below.  

 

 

 

 

Figure 2.5 Scan Cell formed by Latches 
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2.3 Conventional Fault Isolation and Failure Analysis  

In order to further familiarize and understand the impact of this thesis, the overall 

conventional fault isolation and failure analysis procedure is discussed and explained in 

details, however, due to Intellectual Property (IP) concern, some of the data and results 

are prohibited in this thesis report.Failure analysis is defined as the process of identifying 

physical defect and component failure of a microprocessor unit with the help from series 

of both electrical data and physical data analysis. Fault isolation, or sometimes termed as 

fault localization is part of failure analysis process which focuses on forming a suspected 

failing boundary within the electrical circuit with the help of the DFx features [36]. The 

standard flow of failure analysis procedure is presented as Figure 2.6 [31]. 

 

 

Figure 2.6 The Standard Flow of Failure Analysis Procedure 

2.3.1 Fault Isolation   

Fault isolation mainly involves electrical data collection and analysis. In multi-

core design microprocessor, which the data is imported from in this project, the health of 

silicon data is determined by comparison between cores in a unit, instead of comparing 

with another healthy unit. This is to simplify and ensure that the tests can be executed 

online with the help of basic tester that can load only one unit. This algorithm helps to 

reduce the cost by avoiding the needs to obtain a complex tester that can execute tests on 

two units in parallel.  
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Failing core is identified when the final Linear Feedback Shift Register (LFSR) 

value of a core is different among the cores.  After the identification of failing core, the 

first failing scan signal and its clock cycle are determined in order to form a failing 

boundary. Similar to the identification of failing core, the value of scan signals from 

failing core are compared with scan signals from healthy cores and the signal that has 

different value with scan signals from all the other cores is identified as the failing scan 

signals, the earliest clock cycle that contain any failing scan signal is recorded as first 

failing cycle. It is important to start the fault isolation with first failing signal and clock 

cycle as the consequence failing signal and clock cycle might not be valid as the 

mismatching data is caused by the driver from first failing signal and clock cycle in flow 

of circuit but not caused by the actual defect mechanism. 

 The first failing scan signal with its failing clock cycle which is also the first failing 

clock cycle is defined as the lower boundary of the fault isolation process. The process 

now requires the help of the simulation platform which the test patterns are loaded and 

presented. Starting from the lower boundary, the driver of signal is traced device by device 

until there is a scan cell or observability point in the circuit, the scan cell or observability 

point is compared with the exact signal from the healthy core, if the result matches with 

the signal from healthy cores, fault isolation process is completed by defining it as the 

upper boundary. If the result mismatches, further tracing is required until the scan signal 

from failing core matches with the same scan signal from the healthy cores [32]. 

 In the end of fault isolation process, failing boundary containing a lower boundary 

and upper boundary within microprocessor is determined and formed, the defect 
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mechanism and component failure is expected within the boundary. The overall fault 

isolation process is presented and shown as Figure 3.3. 

 

Figure 2.7 The Overall Fault Isolation Process 

2.3.2 Failure Analysis 

 The failing microprocessor unit will now be transferred to be tested by optical 

tester in order to further minimize and isolate the failing boundary. Optical tester is used 

to capture emission of photon as result from series of combination and generation of 

electron-hole pairs within the transistor. Abnormal strong emission of photon can be 

observed should there is component failure in the interested boundary. Unit preparation is 

needed prior the optical test so that the infrared wave from tester can penetrate to the 

surface of interested layer on the microprocessor unit.  The data from optical test is then 

be analyzed and the failing boundary is further isolated based on the abnormal emission 

of photon from the failing component.  

 The number of suspected device is reduced dramatically in this stage of failure 

analysis process and is suitable to go for probing due to low number of suspect candidates. 

Similar to the optical test, special surface preparation is needed so that the probe tip can 

be landed on the suspected component. After the analysis of optical data, the sample will 

then be thinned to the interested layer, probing will be carried out to collect the data related 

to possible failure of the component such as short circuit, open circuit and resistive path. 



14 
 

The result of probing is one of the last process before the defect is found and exposed 

physically with clear image.  

 The location of defect within the sample will be determined with the analysis and 

study on the probing data as well as the physical layout of the suspect candidates. The 

surface of the sample will then be thinned to the interested location and Transmission 

Electron Microscopy (TEM) will be used to capture the image of the physical defect in 

the microprocessor unit. The image of physical defect can be used to develop and improve 

the fabrication process, increasing the yield and maximize the cost effectiveness of the 

manufacturing process.  

2.4 The Presence of ‘x’ State in Scan Signals  

Due to the demands on smaller size and low power design of microprocessor, 

utilization of logic optimization and logic synthesis such as usage of don’t care ‘X’ 

condition is employed [9],[34]. The implementation of don’t care ‘X’ situation should be 

handled carefully as it might cause problems from the design, implementation to the 

verification process of the microprocessor [10]. There are numbers of solutions on 

handling of Don’t Care ‘X’ situation in the previous studies which most of them requires 

the involvement of early stage of product development cycle such as the architecture and 

design stage. 

 Few studies suggest the method to analyze and study the propagation of signal 

with don’t care ‘x’ value and minimize the number of initialized registers with symbolic 

x-propagation checking as shown in Figure 2.8 [9], [11], [34]. The authors then uses 
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similar approach with improvement on the computation cost with an algorithm that study 

only parts of the bogus signal named as heuristic algorithm [9], [10]. 

 

 

 

 

Figure 2.8 The Illustration of Suggested Symbolic X-Propagation Checking [9], [11] 

 The reduction of number of initialized registers acts as a feedback to the design 

and architecture stage. This solution of handling of don’t care ‘x’ situation takes place 

only in the early stage of the product development flow as shown in Figure 2.9. 

 

 

 

 

 

 

Figure 2.9 Adapted Design Required to Handle Don’t Care Situation of Registers [34] 
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 There is also suggestion to random replace the state of the signal with ‘x’ value to 

either value ‘1’ or value ‘0’. The author consider only the functional performance of the 

microprocessor and hope for the best case scenario for the random assignment in the debug 

procedure [16]. However, some authors do not agree with this solution as they have 

experiments that show there might be hidden bugs in the DFx feature should the value of 

‘x’ is replaced with ‘1’ or ‘0’ randomly [9], [34]. In this thesis, by using the simulation 

data collected, a post silicon algorithm is developed which not only minimize the usage 

of computation cost, but also cause minimum impact to the product development cycle. 

2.5 Post Silicon Validation 

Apart from the bogus signal filter, another objective of this thesis is to develop a 

post silicon validation tool for the scan chain architecture between the silicon data 

collected from the sample and the simulation data extracted from the test pattern generated. 

The correlation between silicon data and simulation data are important not only for fault 

isolation process, but also plays an important role in the development of automated fault 

isolation tool [35]. 

There are numbers of algorithm used to complete the fault isolation in post silicon 

validation from previous studies. One of the method studied is that a structural dependency 

graph that contain the representation of circuit in gate level can first be developed and the 

result of an approximate graph matching is used to correlate the data [13]. Besides, there 

is also method on feeding the bug data formed by comparison between architected states 

and simulation state into a machine for bug sites prediction where the machine is trained 

with huge database from previous experience [14]- [16]. Dynamic program slicing with 
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consistency checking is also another method to execute fault isolation in post silicon 

validation process [17]. 

2.6 Summary of Chapter 

 In order to understand the needs of failure analysis, brief history and background 

on evolution of transistor’s size is presented. As the size of transistor decrease from time 

to time to achieve Moore’s law, fabrication process faces challenges in maintaining the 

yield. Failure Analysis helps to rootcause the failure mechanism so that a solution can be 

applied in fabrication process in order to improve the yield performance.  

 The procedure in conventional fault isolation and failure analysis are studied and 

based on the few references in related field. By having the knowledge on the flow of fault 

isolation and failure analysis, the methodology and impact of this thesis are easier to be 

familiarized. Fault isolation helps to define the failing boundary within the circuit, where 

the physical defect and component failure are expected to be. The sample will then be sent 

to failure analysis, undergo the optical test and probing analysis before TEM image is 

taken to confirm the defect. As for the bogus signal handling, previous authors try to 

minimize the initialized register and use random replacement as solution. Structural 

dependency graph and bug site prediction are used to validate and correlate silicon data. 

The studies of experience shared from the previous related works help to position 

and benchmark the objectives set in this thesis. The specification, advantages as well as 

the possible drawbacks from the related works provide the knowledge and vision in the 

process of algorithm development in this thesis.  
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CHAPTER 3 

METHODOLOGY 

 This chapter discusses the methodology to complete this thesis including the 

necessary logistics and environment setup, the algorithm followed by the proof of concept, 

and the procedure of result analysis. Both simulation data and silicon data from Intel 6th 

generation microprocessor Skylake, a 14 nm manufacturing process technology unit are 

imported in this project in order to make sure that the thesis can be employed in industry. 

Programming language including Python and Unix are used in this thesis. The data are 

utilized not only to mask the bogus signal that are having power-up state, but will also be 

used to validate the sequence of scan cell and correlation between silicon data and 

simulation data.  

A flow chart of methodology is presented in Figure 3.1 to provide an overview for 

this chapter. This thesis is started with the setting of problem statement and the objective 

of thesis, studies of previous works and knowledge can help to benchmark the objective 

set for this thesis. After the chapter of introduction is completed, logistic of thesis will 

first be prepared, “Differentiate and Display” feature will then be developed in order to 

process the simulation data or silicon data provided. The details of the feature will be 

explained in later part of the chapter. At the same time, simulation raw file as well as the 

mask file will be generated and the silicon data will be collected through the usage of 

tester. Result is collected and analyzed after the implementation of the algorithm, the 

result is assessed based on the impact on fault isolation and failure analysis process before 

and after the implementation of this thesis in the procedure.    
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Figure 3.1 Flow Chart on Methodology of this Thesis 
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3.1 Setup of Tester and Software Applications in Fault Isolation     

 The tool and features developed in this thesis focus mainly on the improvement 

and development of the fault isolation process. The data from Intel 6th generation 

microprocessor, Skylake is imported for the usage of this project. The DFx features used 

in the sample is the JTAG standard pins. In order to provide input test pattern into the 

sample, a tester is needed. Standard tester involving the usage of a Field Programmable 

Gate Array (FPGA) and its own library is setup as shown in Figure 3.2.  

 

 

 

 

 

 

 

Figure 3.2 Block Diagram and Tester Setup in order to Collect Silicon Data 

The tester is controlled by a Graphical User Interface (GUI) application connected 

to a standard working station. The interface platform provides flexibility to the user and 

developer to communicate with the microprocessor sample by utilization of the JTAG 

pins. The development of interface and communication with the microprocessor will not 
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be discussed in details as it is not the focus of this thesis. Apart from the communication, 

power supply to activate the sample throughout the failure isolation process is also 

provided by tester and connected power planes.  With both the tester and power supply, 

silicon data is now ready to be collected. 

 As for the simulation data, they are displayed and presented by waveform viewer 

application. Test pattern is generated in Fast Signal Database (FSDB) format and a 

waveform viewer interface is needed in order to study and analyze the simulation of the 

test pattern. The function from waveform viewer interface is utilized to extract the 

simulation data including the signal name, their value as well as the clock cycle. The setup 

of both hardware tester and software application are vital to ensure that the data collection 

process is carried out in complete format.  

3.2 Generation of Simulation Raw File   

 Data collection process is important to the application of this thesis especially in 

the validation mode. Since the silicon data is collected by using the tester, it is important 

that the collection of simulation data is discussed. Raw data is collected according to the 

test pattern, there should be a unique simulation data for every test pattern which includes 

the name of the scan signal and their state in every clock cycle throughout the test pattern. 

An overview on the generation of simulation raw file is presented in flow chart below. 

 

 

Figure 3.3 Procedure on Generation of Simulation Raw File 
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In this thesis, the simulation raw data is extracted by using the feature from the 

waveform viewer application. Command is called in Unix operating system installed in a 

work station in order to extract the state of each interested scan signal for each clock cycle 

throughout the test pattern. The name for some of the scan signals provided by the designer 

is not tally with the expectation from the waveform viewer application, modifications of 

the name of scan signals are required so that they can be recognized and the extraction of 

data can be processed. After the data is extracted from the simulation platform, it is 

necessary for the data to be displayed in the format that can be recognized by the GUI of 

tester. Simulation raw file is generated by rearranging the data which not only ensure that 

the data is ready to be utilized by the GUI of tester, but also help to minimize the usage of 

the disk space in storage since unnecessary information from the original data is removed.  

3.2.1 Limitations and Solution in Raw Data Collection 

There are two major roadblocks in the simulation raw data collection process 

which are the invert characteristic of some scan signals and the limitation of the waveform 

viewer application. In the design flow process of microprocessor, the strength of signal 

might become weak as it propagate from the driver to destination, inverter is added within 

the propagation path so that the signal is stable. Inverter will change the state of the signal 

to opposite status and this will cause miscorrelation in between silicon data and simulation 

data. In order to solve this roadblock, post process of both the collected silicon and 

simulation data together with the list of inverted signal from designer are utilized.  

 A list of invert database formed by all scan signals is generated with value ‘1’ for 

inverted scan signal and value ‘0’ for non-inverted scan signal. X-OR operation is 
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implemented between the invert database and the extracted simulation raw data. By using 

the X-OR operation, the state of inverted signal will be toggled and the state of non-

inverted signal will be remained. The truth table for the scenario is shown in Table 3.1. 

Table 3.1 Truth Table of the X-OR Operation between Invert Database and Signal’s 

State 

Original state Characteristic Invert 

database 

After X-OR 

operation 

Final state 

0 Invert 1 1 Inverted  

0 Non-invert 0 0 Remain 

1 Invert 1 0 Inverted  

1 Non-invert 0 1 Remain  

 Another roadblock of the generation of simulation raw file will be the limitation 

of the waveform viewer platform as it is not allowed to extract data more than 2000 clock 

cycles due to the size of the raw data file generated. The roadblock is solved by separating 

the generation process with interval of 2000 clock cycle for each iteration throughout the 

overall clock cycle of test pattern, followed by merging the data into single simulation raw 

data file.  

3.3 ‘Differentiate and Display’ Feature 

 This feature is important for the fault isolation or fault localization purpose, apart 

from being utilized in this thesis to define the health of scan signals in the circuit. Post 

processes of the data collected from both silicon and simulation are required so that the 

study and analysis of data are simplified. The silicon data collected from TDO pin is 

displayed in string of value ‘1’ and ‘0’, with their sequence formed by the sequence of the 

respective scan cells in the architecture. Different bits of same signal bus might not be 
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arranged properly and this create difficulty for fault isolation engineer to make any 

hypothesis based on the data. Besides, in the fault isolation process where only silicon 

data are collected, there is also issue miscorrelation between simulation data and silicon 

data caused by the presence of mentioned inverted scan signals in the microprocessor 

since the utilization of X-OR logic method is implemented only in simulation data.  

 Hence, it is important to design a “Differentiate and Display” feature which takes 

input of two raw data file, formed by two sets of silicon data from different cores for fault 

isolation purpose or pair of silicon data and simulation data for the validation purpose. 

The “Differentiate and Display” features is expected to handle the differentiation of data 

collected, define whether the pairs of input data is matching among themselves and their 

respective values in specific clock cycle. The feature is also expected to provide the list 

of mismatching scan signals for the usage of validation mode.  Besides, there is a need to 

handle the toggling of inverted signals as well as arrangement of sequence based on the 

ascending order of bit for the same scan signal bus. Apart from that, extraction of certain 

range of clock cycle throughout the test pattern based on the input from user is also 

considered in the design of the feature. A series of features are planned and modified 

continuously as the “Differentiate and Display” feature is developed. The final design of 

the “Differentiate and Display” feature is presented in flow chart as shown in Figure 3.4. 

“Differentiate and Display” feature is scripted in Python programming language. Parts of 

the coding are extracted from the overall coding as shown in Figure 3.5 and Figure 3.6 so 

that each functions can be well explained. As for the complete coding of “Differentiate 

and Display” feature, it is available as reference in appendix of this thesis.  

 


