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ABSTRAK 

 

Dalam kajian ini, suatu kaedah prapemekatan disebut superpengecasan 

elektrokinetik elektroforesis zon rerambut (EKS-CZE) telah dibangunkan bagi 

penentuan sekbumeton (SEC) di dalam sampel air sekitaran. Kesan bagi panjang 

gelombang julat diod, pH dan kepekatan larutan penimbal, jenis dan kepekatan bagi 

elektrolit pemula dan penamat, voltan gunaan dan masa suntikan telah dikaji dengan 

teliti. Latar belakang elektrolit yang optimum adalah 100 mM larutan penimbal format 

(pH 2.5), suntikan hidrodinamik bagi 100 mM sodium klorida (30 s, 50 mbar) sebagai 

elektrolit pemula, suntikan elektrokinetik bagi sampel (250 s, 7 kV), suntikan 

hidrodinamik bagi 100 mM Tris (40 s, 50 mbar) sebagai elektrolit penamat dan 25 kV 

voltan bagi pemisahan (+25 kV). Di bawah keadaan optimum, kepekaan bagi SEC 

telah meningkat masing-masing sebanyak 3847-gandaan dan 2267-gandaan apabila 

dibandingkan dengan suntikan hidrodinamik biasa (HDI) dan suntikan elektrokinetik 

(EKI). Julat linear yang besar (0.1–500 µg L-1) dengan kelinearan yang baik, 

R2=0.9997, kebolehulangan yang memuaskan (% RSD < 4%, n=5) dan pengembalian 

yang baik (85.8–105.6%) telah didapati bagi SEC. Had pengesanan bagi SEC 

dengan sistem EKS-CZE ini adalah 0.03 µg L-1. Keputusan yang didapati 

menunjukkan bahawa kaedah yang dibangunkan mempunyai keupayaan bagi 

penentuan SEC di dalam matriks akueus yang rumit. 
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ABSTRACT 

 

In this study, an on-line preconcentration method termed electrokinetic 

supercharging capillary zone electrophoresis (EKS-CZE) was developed for the 

determination of secbumeton (SEC) in environmental water samples. The effects of 

diode array wavelength, buffer pH and concentration, the type and concentration of 

leading and terminating electrolyte, applied voltage and injection time were 

investigated thoroughly. The optimum background electrolyte was 100 mM formate 

(pH 2.5), hydrodynamic injection of 100 mM sodium chloride (30 s, 50 mbar) as 

leading electrolyte, electrokinetic injection of the sample (250 s, 7 kV), hydrodynamic 

injection of 100 mM Tris (40 s, 50 mbar) as terminating electrolyte and then a voltage 

of 25 kV for separation (+25 kV). Under the optimum conditions, the sensitivity of 

SEC was enhanced 3847-fold and 2267-fold when compared to normal 

hydrodynamic injection (HDI) and electrokinetic injection (EKI), respectively. Wide 

linear range (0.1–500 µg L-1) with good linearity, R2=0.9997, satisfactory repeatability 

(% RSD < 4%, n=5) and good recovery (85.7–105.6%) were obtained for SEC. The 

detection limit for SEC with this EKS-CZE system was 0.03 µg L-1. The results 

demonstrated that the developed method has great potential for the determination of 

SEC in complicated aqueous matrices.  
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CHAPTER 1 

INTRODUCTION 

 

1.1       Background of the Study 

The polluted substance in water, arising from contaminated or unwanted 

substances, are categorized into two forms, either the modification of the types and 

number of materials carried by water or by changing the physical properties of the 

water’s body. The pollution possesses several characteristics and causes, may 

contributes to serious threats to the environment and kills 14000 lives of people on a 

daily basis due to the presence of toxins in water. The pollution cases are increased in 

the developing countries compared to the industrialized countries (Agrawal et al., 2010).   

Man-made activities contribute to the water pollution include the agricultural, 

industrial and domestic activities. The water ecosystem is polluted as a result of 

agriculture through the use of bulk amounts of toxic pesticides and fertilizer, industrial 

toxic substances as well as animal and people’s wastes. The point and non-point is 

likely to produce pollution into the sources such as ground water, oceans, estuaries, 

seas, lakes and rivers. The point source of pollution is contributed by the effluents in 

a body of water, when the pollution is sent out directly from drain pipe. Contradictory, 

the discharged pollution from other spreading sources namely grazing lands, 

agricultural fields’ construction sites, roads and streets, and pits and mines are 

examples of non-point sources (Slattery, 2012). 

As stated by a published report from the Environment Protection Agency 

(EPA) in 1990; more than 50% of polluting water in miniature rivers as well as river 

derived from the removal process and combination of chemical substance from the 

operation of agriculture (Cook et al., 2008; Rai and Pandey, 2017). Numerous cases 

of water pollution were reported due to the exposure to the toxic chemical substances, 

which are not naturally occurring in aquatic ecosystems. The pesticides, herbicides 

and industrial compounds are significant contributors to the toxic water pollution. 
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Besides that, the natural phenomena are able to make a significant change in quality 

of water and in status of ecology of water (Agrawal et al., 2010). 

In the process of development of agriculture industry, pesticides have become 

an important tool as a plant protection agent for boosting food production (Abhilash 

and Singh, 2009). However, pesticides are poisons and improper use or management 

of pesticides can be harmful to human. As pesticides constitute a potential risk to 

human health, their occurrence in the environment is a matter of public concern. 

Pesticides are classified by their target organism, chemical structure and physical 

state. Many pesticides can be grouped into chemical families such as 

organophosphorus, organochlorines, carbamates, triazines, phyrethroids and 

bipyridyl groups (Tadeo et al., 2000). 

Triazine herbicides are a class of pre- and post- emergent broadleaf herbicides 

with similar chemical structure that inhibit the growth of weeds through disruption of 

photosynthesis pathways (Graymore et al., 2001). Main triazine herbicides are usually 

resulted from s-triazine which can persist in environmental samples from several 

months to many years as its stereochemical stability is high enough for it to do so 

(LeBaron et al., 2008). Triazine and the degradation products produced by triazine are 

extremely toxic and permanent in environment and organism. Thus, they have become 

a potential concern on the environmental safety (Farland et al., 2011). In addition, the 

maximum residue limits (MRLs) of triazines in environment have been established 

worldwide. For example, the maximum contaminant level of varies triazines which 

established by environmental protection agency (EPA) is approximately 1-4 µg L-1 

(EPA, 2012). Moreover, a maximum residue limits (MRLs) value of single pesticide 

approximately 0.1 µg L-1 and total pesticides about 0.5 µg L-1 in water have been 

established by the European Union Directive (The Council of the European Union, 

1998). Due to the presence of triazines in lower concentration levels in the 

environment, a sensitive, simple, accurate and environmentally friendly method is 

required to monitor the concentrations of triazines in the environment.  
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Several methods of analysis of triazine herbicides in environment and food 

samples have been developed, including gas chromatography (GC) and high-

performance liquid chromatography (HPLC) and capillary electrophoresis (CE) 

system (Sanagi et al., 2012; Fang et al., 2014; Yang et al., 2014).  CE commonly 

requires low organic solvent and sample consumption, produces fast analysis of 

compounds and has becomes significant and a popular alternative to the HPLC, GC 

and LC-MS methods (Wang et al., 2012). The detection of trace amount of triazine 

normally required preconcentration step such as solid phase extraction (SPE), liquid-

liquid extraction (LLE), solid phase microextraction (SPME), liquid phase 

microextraction (LPME) and stir bar sorptive extraction (SBSE) methods too. 

However, these off-line preconcentration methods often take up longer time and 

contributing to the total cost of analysis (Osbourn et al., 2000). Therefore, various 

on-line preconcentration methods coupled to electrophoretic approaches have been 

developed to improve the sensitivity of CE system, including field-amplified sample 

injection (FASI), isotachophoresis (ITP), dynamic pH injection and sweeping. The 

combination of the on-line preconcentration and the CE system have contributed to 

high enhancement factors of analytes, cost-effective, shortened the analysis time, 

simple and environmentally friendly (Almeda et al., 2010). In this study, a new on-line 

preconcentration method termed as elektrokinetic supercharging (EKS) coupled to 

CE was developed for the determination of atrazine compound, secbumeton (SEC) in 

environmental water samples.  

 

1.2 Problem Statement  

In agriculture sector around the world, pesticides as well as herbicide are 

explored in the purpose of enhance the production yields. Selective pre- and post-

emergence herbicides for control of broadleaf and grassy weeds which commonly 

used are triazines. Although, triazines have ability to destroy the unwanted planted, 

they are considered as the harmful reagents. Generally, the environment and crops 
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are polluted with extreme toxicity of triazines. Furthermore, human health impact 

including cancers, birth defects and interruption of hormone also can be harmed by 

this type of herbicide (Wu et al., 2009). Thus, the maximum residue limits (MRLs) of 

triazines in environment as well as foods have been widely established. 

Recently, liquid chromatography-mass spectrometry, high performance liquid 

chromatography, gas chromatography and gas chromatography-mass spectrometry 

are known as the common methods for triazine separation (Elbashir and Aboul-Enein, 

2015). These methods are mostly sensitive, thus, with the purpose of avoiding 

contamination of chromatographic column, clean-up processes are frequently 

needed. The disadvantages of these methods are costly and time consuming due to 

the procedures need off-line extraction and much volume of solvent (Acedo-

Valenzuela et al., 2004). To avoid these problems, some researchers have 

considered on investigation of the CE system since it provides superior advantages 

including less analysis time, extreme efficiency of separation as well as minimal cost 

of operation. Nevertheless, the normal CE system results in poor sensitivity because 

of the limited UV detection (Chen et al., 2012).  

To overcome this shortcoming, different on-line preconcentration methods 

have been developed, including field-amplified sample injection (FASI), transient 

isotachophoresis (tITP), dynamic pH injection and sweeping. However, these 

methods are not adequate to determine SEC at trace MRLs under some conditions, 

due to the concentration and major interferences exist in the complex environmental 

water samples. EKS, the combination of FASI and tITP, was firstly introduced by 

Hirokawa at the year of 2003. It is a very powerful on-line preconcentration method, 

and enhancement factors up to three to four orders of magnitude have been reported 

in the literature (Dawod et al., 2009; Botello et al., 2013; Lu and Breadmore, 2010; 

Ning et al., 2012; Lu et al., 2015; Abdul Karim et al., 2016). EKS is an appropriate 

method for environmental analysis since it is believed as a powerful on-line 

preconcentration strategy which concerns on tITP and FASI combination (Okamoto 
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and Hirokawa, 2003). To the best of our knowledge, there are no reports on the use 

of EKS for SEC analysis in environmental waters samples.  

 

1.3 Objective of the Study 

The main objective of this study is to develop a simple and sensitive 

electrokinetic supercharging capillary zone electrophoresis (EKS-CZE) in CE for the 

determination of secbumeton (SEC) in selected environmental water samples. In 

order to achieve the main objective, there are three specific objectives of this study 

include: 

i. To optimize capillary zone electrophoresis (CZE) conditions for the separation 

selectivity of SEC.  

ii. To enhance the separation and achieve lowest detection limit of SEC by 

optimizing the online EKS-CZE parameters. 

iii. To explore the application of the developed method for the determination of 

SEC in the real environmental water sample. 

 

1.4 Scope of the Study 

The presented study focuses into the analysis of SEC in environmental water 

samples using CE system. EKS, which combines FASI and tITP methods, is used as 

the preconcentration method in this study and the detection is carried out by CE with 

diode array detection (CE-DAD). Several important CE parameters affecting the 

analyte sensitivity were optimized comprehensively including the detection 

wavelength, pH and concentration of background electrolyte (BGE), separation 

voltage and injection time. For detection enhancement, EKS-CZE parameters were 

optimized including injection time of leading electrolyte (LE), terminating electrolyte 

(TE) and injection time of sample. The real environmental water samples that were 

analysed in this study include river water and pond water.  
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1.5 Significance of the Study  

The on-line preconcentration method, namely electrokinetic supercharging 

capillary zone electrophoresis (EKS-CZE) in CE was developed for the determination 

of SEC in environmental water samples. The method is inexpensive, fast, simple, 

environmentally friendly and sensitive and it was shown to be suitable for the detection 

of SEC in water samples. 
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CHAPTER 2   

LITERATURE REVIEW 

 

2.1 Pesticides  

Pesticides are chemical substances designed to mitigate, repel, prevent and 

destroy pests namely insect, weeds, rodents and plenty of undesired organisms 

(Friis, 2012). Therefore, the pesticides played an important role amongst other 

chemicals that used in the environment aiming at injuring and killing some form of life. 

The pesticides of most common class, depends on the target species they work on. 

There are four significant classes of pesticides include insecticides, rodenticides, 

fungicides and herbicides. Beside this, pediculicides, larvicides, miticides, molluscides 

and acaricides are also known as pesticides. Furthermore, some of these including 

plant growth regulators, attractants (pheromones) and repellents also placed under this 

class of chemicals for purposes of regulation (Morrison and Murphy, 2010).  

The pesticides are of a significant tool to protect plants and deemed as an agent 

for increasing food production as well as for maintaining numerous of dreadful diseases, 

this development is observed to be made in agricultural industry. In addition, the 

production yield was improved by the application of pesticides since they protect the 

cultivation (Morrison and Murphy, 2010). However, the foresaid target pests are only 

species of animals that divide plenty of similar type and characteristic of other animals. 

The susceptibility towards concrete toxins is considered one among the above 

characteristics (Koureas et al., 2012). For instance, the function of sex hormones and 

reproductive performance mostly received negative impact from these does use of 

chemicals. The endocrine disruptors are resulted from the acting of pesticides as 

xenohormones or the disruption of processes of endocrine (Handford et al., 2015). The 

utilization of pesticides has to consider the benefit with the possibility of risks to people 

health or the destruction of the quality of environment. The analysis of residues of 

pesticide is importantly used to monitor the contamination of food chain. The 
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pesticides give positive effect the crop yields, yet its residues in soils and water 

provide negative effect to the health of human (Koureas et al., 2012). Therefore, the 

European Commission strictly manage the pesticide residues level produced by most 

popular agents such as organophosphorus, organochlorine, triazine, and carbamate 

groups in many different food commodities as well as environmental water (Hamilton 

et al., 2003).  

 

2.2 Triazine  

The triazine herbicides are classified as a pre-post emergent broadleaved 

herbicide along with same chemical structure which prevents the weeds’ growth via 

the disruption of pathways photosynthesis (Breckenridge et al., 2010). They are also 

one of herbicides families that prevent the normal growth and improvement of plants 

(Casida, 2009). Approximately 1/3 of the herbicides utilized in agriculture are triazines. 

These widespread uses are operating in lots of fields namely industry, agriculture and 

urban location to soil for the management of grassy and broadleaved weeds in crops 

as follows: sorghum, sugarcane and corn (Farland et al., 2011). Current reports 

atrazine and relevant trazine herbicides namely cyanazine and simazine, have been 

supposed to be endocrine disrupters. Furthermore, they are able to cause multiple 

varieties of cancers and birth defect as well as inhibit tumors’ reproductive and 

function of hormone; as a result, these deemed hazardous compounds for human 

health and environment (Hayes et al., 2002). In addition, their toxicity is also known 

as potential dangers. Because of the hazardous effects of triazine on human health 

and environment, for instance, activity of carcinogenic and endocrine disruption; they 

are deemed as compounds of critical concern. Moreover, there is a concern over the 

increase of triazine herbicide compounds in various sources of water and 

groundwater, in which this leads to the limits on their utilization in numerous countries. 

The extensive concern was seen occurred from the existence of triazines and their 

degradation products, this because of much toxic and persistent in soil, water, and 
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organism, which become an emergent concern upon the safety of environment 

(Armon and Hänninen, 2015).  

Secbumeton (N-ethyl-6-methoxy-N´-(1-methylpropyl)-s-triazine) is a critical 

type of triazine herbicide handled to manage of weed owing to the application of both 

selective and non-selective. This is of usefulness for the control of industrial weed for 

a miniature time at a certain place (See et al., 2010). However, it is able to 

contaminate the environment especially water resources (Sanagi et al., 2015). 

Moreover, it is commonly known that the health issue including dizziness, drowsiness, 

gastric, and intestinal issues, cracking or skin dryness and corneal are caused by the 

secbumeton toxicities (Alvarsson, 2012). In addition, the toxic is also be able to 

spreads to the environment and aquatic organisms including fish algae or bacterial 

which leading to trouble to climate changes and ecology (LeBaron et al., 2008). 

Table 2.1: Chemical structures and pKa value of studied anayte. 

Secbumeton pKa 

 

4.4 

Thus, it is necessary to develop methods with high sensitive, accurate and 

reliable for the triazine separation and determination in different types of samples 

including environmental samples, food samples as well as biological samples. 

 

2.3 Analytical Methods for Triazine Analysis 

Recently, numerous methods have been developed for the determination and 

separation of triazine compounds. The developed methods included high performance 

liquid chromatography with UV detector (HPLC-UV) (Wang et al., 2012; Liu et al., 

2014; Yang et al., 2014; Zhou and Gao, 2014), HPLC with DAD detector (Zhao et al., 
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2011; Rodríguez-González et al., 2014), gas chromatography-mass spectrometry 

(GC-MS) (Sanagi et al., 2012), liquid chromatography-mass spectrometry (LC-MS) 

(Ji et al., 2008) and micro-liquid chromatography (See et al., 2010).   

These methods are known as the highly sensitive method but sample 

preparations which increase the cost operation and time consumption are usually 

required.  A major disadvantage of HPLC was high organic solvent consumption 

which leads to high operating cost as well as waste generated (Yan, 2004). Micro LC 

was likely to develop, however, exist of hardship in designing high-pressure, low-

volume solvent delivery systems and in controlling the decline of pressure in packed 

column chromatography discouraged the commercial improvement (Dziubakiewicz 

and Buszewski, 2013). 

Beside these above method, capillary electrophoresis is commonly used in 

analytical field in order to obtain the high resolution, quantitative precision and the low 

costs of waste disposal as well as operation. CE is known as a separation method 

which provides a trouble-free, quick and cost-effective substitute to GC-MS or LC-MS 

for separation of toxic substances in water sample. The capillary has ability to 

eliminate efficiently the Joule heat made from the applied voltage which leads the 

electrophoretic separations to be able operating at up to 30 kV at ambient temperature 

(Landers, 2007). However, low sensitivity due to the characteristic of small 

dimensions in flowing cell and the capacity of sample volume is the significant limit of 

CE. Therefore, extraction procedures are also required. Nevertheless, off-line 

extraction can be avoided because CE has ability to do on-line preconcentration by 

stacking or sweeping (Zhao et al., 2011; Rodríguez-González et al., 2014). The 

analytical methods for SEC analysis are summarised in Table 2.2.  
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Table 2.2: Analytical methods for triazine analysis.  

Triazine Analytes Samples Instrument Preconcentration method LOD 

(µg L-1) 

Recovery  

(%) 

Reference 

Simazine, atrazine, simetryn, 
propazine, ametryn, 
terbuthylazine, prometryn, 
terbutryn 

Cereal and 
vegetable 

MEKC On-line sweeping 0.02-0.04 82.8-96.8 Fang et al.  
(2014) 

Simazine, atrazine, cyanazine, 
simetryn 

Milk HPLC Cloud point extraction 6.79-11.19  70.5-96.9 Liu et al.  
(2014) 

Ametryn, atrazine, cyanazine, 
prometryn, propazine, 
simazine, simetryn, 
terbuthylazine terbutryn 

Seaweed HPLC-DAD Matrix solid phase 
dispersion 

and solid phase extraction 
clean-up 

1.4-3.8  75-100 Rodríguez-
González et al. 

(2014) 

Atrazine, simazine, ametryn 
cyanazine, 

Fruit and 
vegetable 

GC–FID Ionic liquid-calixarene 
solid-phase microextraction 

3.3-13  71.5–96.9 Tian et al.  
(2014) 

Cyanazine, desmetryn, 
secbumeton, terbutryn, 
dimethametryn, dipropetryn 

Vegetable 
and oil 

samples 

LC-UV Magnetic ionic liquid-
based dispersive liquid–

liquid microextraction 

1.31–1.49  81.8–114.2 

 

Wang et al. 
(2014) 

Atrazine, simatryn, ametryne, 
propazine  

Tap and river 
water 

HPLC Double water compatible 
molecularly imprinted 

polymers  

(DWC-MIPs-SPE) 

3.2-8.6  69.2–95.4 Xu et al. 
 (2014) 

Atraton, desmetryn, atrazine, 
terbumeton and terbuthylazine 

Milk HPLC-UV Aqueous two-phase 
extraction 

2.1-2.8 86.3-120.6 Yang et al.  
(2014) 
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Table 2.2: Continued  

Triazine Analytes Samples Instrument  Preconcentration method LOD 

(µg L-1) 

Recovery  

(%) 

Reference 

Cyanazine, Simazine, Atrazine Water HPLC-UV Ionic liquid dispersive 
liquid-phase 

microextraction 

0.05-0.06 85.1-100 Zhou and Gao 
(2014) 

Simazine, atrazine, 
secbumeton,  cyanazine 

Farm, tap 
and lake 

water  

GC-MS Dispersive liquid–liquid 
microextraction 

0.037-0.008 95.7-116.9 Sanagi et al. 
(2012) 

Ametryn, atrazine, desmetryn, 
propazine, simazine  

Cereal HPLC-UV Dynamic microwave-
assisted extraction 

(DMAE-SFO system) 

1.1-1.5 80-102 Wang et al. 
(2012) 

Atrazine, prometon, propazine, 
prometryn 

lake, river, 
reservoir 

water 

HPLC graphene-based Fe3O4 
magnetic nanoparticles 

(G-Fe3O4 MNPs) 

0.025- 0.040  89-96.2 Zhao et al.  
(2011) 

Simazine, cyanazine, atrazine, 
propazine 

River water Micro-LC Membrane-protected 
carbon nanotubes solid 

phase membrane tip 
extraction 

0.2-0.5 95–101 See et al.  
(2010) 

Chloro-s-trazine, viz. atrazine, 
simazine, propazine, 
thiomethyl-s-triazine ones, viz. 
ametryn, prometryn, prometon 

Fruits and 
vegetables 

 

LC-MS Dispersive solid-phase 
extraction 

0.05-0.2  80-110 Ji et al.  
(2008) 

Atrazine, simazine Drain water GC-MS Solid-phase 
microextraction 

0.25-0.5 - Rocha et al. 
(2008) 
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Table 2.2: Continued  

Triazine Analytes Samples Instrument  Preconcentration method LOD 

(µg L-1) 

Recovery  

(%) 

Reference 

Simazine, prometryn, atrazine Water  MEKC On-line sweeping  0.5-10 83.7-94.3 Zhang et al. 
(2008) 

Atrazine, desmetryn, simazine 

prometryn, propazine, 
ebuthylazine, secbumeton 

simetryn 

River and tap 
water 

GC-MS  Dispersive liquid–liquid 
microextraction 

0.021- 0.12  24.2–115.6 Nagaraju and 
Huang  
(2007) 

Atrazine, simazine  Water MEKC Solid-phase extraction 0.6-1 80-95 Acedo-
Valenzuela et al. 

(2004) 

Simazine, prometon, atrazine, 
simetryn, ametryn, propazine, 
prometryn, trietazine, 
terbutlylazine, terbutryn 

Ground water 
samples 

MEKC Solid-phase extraction 0.02-0.03 > 87 Frı́as et al. 
 (2004) 

Atrazine Fruit juices CE Solid-phase extraction 30 40-60 

 

  

Khrolenko et al. 
(2002) 

Simetryn, ametryn, prometryn 

terbytryn 

Deionised 
water 

MEKC Stacking  9-15 - Lin et al.  
(2001) 
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2.4 Electrokinetic Supercharging (EKS) On-line Preconcentration  

A major disadvantages of CE with UV detection is Low sensitivity due to the 

characteristic of small dimensions in flowing cell and the capacity of sample volume. 

The total capillary volume can be result in negative to resolution if the amount of the 

sample volume introduces into the capillary more than 1-5%. Hence, CE is considered 

as weak concentration detector even though it is a useful mass detector. According 

to this reason, the using of CE as a separation technique for sample consisting 

supposedly high concentration (10 µg L-1 or greater) is limited (Grossman and 

Colburn, 2012). As the result, some approaches development for on-capillary sample 

concentration is necessary to obtain micro analytical technique of CE. There are some 

on-capillary sample concentration techniques which are commonly used include 

stacking of sample, focusing of sample, enrichment of isotachoporetic sample and 

on-line preconcentration (Osbourn et al., 2000).  

In current reports, stacking techniques such as; either field amplified sample 

injection (FASI) or transient ITP (tITP), are able to improve sensitivity of separation 

which lead the limit of detection down to ppb and ppt. Nevertheless, in order to obtain 

this sensitivity level, additional off-line extraction processes are still needed when 

apply on real sample  (Zdena et al., 2009; Almeda et al., 2010). As mentioned earlier, 

CE also has capacity to do on-line preconcentration together with detection, and other 

additional instrumentations are regularly not required for this technique. Thus, online 

preconcentration is the best choice for on-capillary sample concentration in order to 

get the lowest sensitive of separation. 

There are several on-line preconcentration techniques which recently used. 

Among those, EKS has been considered as the suitable technique which FASI 

together with tITP has been used in CE. The important substances in EKS are leading 

electrolyte (LE) and terminating electrolyte (TE) which has faster and slower mobility 

than the analytes, respectively. In order to assist in the stacking process during tITP, 

LE and TE are injected into the capillary by hydrodynamic injection mode before and 
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after samples, respectively while the samples are introduced by electrokinetic 

injection  (Hirokawa et al., 2003). EKS has been used firstly by Hirokawa’s group who 

did separation on rare-earth ores samples (Okamoto and Hirokawa, 2003). Then, 

several currently studies (Table 2.3) have used this method to separate many different 

types of sample by adopted Hirokawa’s method. According to Table 2.3, EKS together 

with CZE was commonly used rather than other CE mode. These investigations 

demonstrated that the separation and preconcentration by EKS method to detect the 

different toxic substances provided the low LOD (0.01-53 µg L-1) and high enhancement 

factor (100-11800 fold) compared with hydrodynamic injection (Dawod et al., 2008, 

2009, Botello et al., 2013; Lu and Breadmore, 2010; Ning et al., 2012; Lu et al., 2015; 

Abdul Karim et al., 2016). Until now, there is lack of reports on utilized of EKS as 

preconcentration on the separation of triazine. However, there is a reports on the 

melamine compound analysis in milk powder and liquid powder using EKS-CZE which 

conducted by Lu and co-workers (Lu et al., 2015). The result from that finding 

demonstrated that EKS-CZE was the sensitive and reliable method with the 

enhancement factor of 2285 fold compared to HDI-CZE whereby the LOD was 0.7 ng 

mL-1. Therefore, due to the ability of EKS system on improving the separation 

sensitivity without off-line preconcentration processes requirement, this on-line 

preconcentration method together with capillary zone electrophoresis will be used for 

study in order to obtain the lowest LOD as well as high enhancement factor. The 

reported methods involved with EKS are summarised in Table 2.3.  
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Table 2.3: Application of electrokinetic supercharging (EKS) with different mode of CE for toxic substances separation.  

Analytes Samples Analytical 
method 

Enhancement 
factor  

(fold) 

LOD 

(µg L-1) 

Recovery 

(%)  

Reference 

Disrupting chemical and 
phenolic compound  

Environmental 
water 

EKS-CZE 100-737 4.89-53 56-64 Abdul Karim et al. 
(2016) 

Melamine Milk EKS-CZE 2285 0.7 29.8-42.1 Lu et al. 
(2015) 

Three barbiturate drugs Urine Sample EKS-CZE 1050 1.5-2.1 97-102 Botello et al. 
(2013) 

Acromatic Acids River water EKS-NACE 3868-6480 0.08-0.3 21-75.5 Ning et al. 
(2012) 

Five non-steroidal anti-
inflammatory drugs 

water and human 
plasma 

EKS-CZE 2000 0.9-2 56-73 Botello et al. 
(2010) 

Phenolic acids Water EKS-NACE 1333-3440 0.22-0.51 42.25-75.24 Lu and Breadmore 
(2010) 

Seven Non-steroidal anti-
inflammatory drugs 

Waste water CF-EKS 11800 0.01-0.04 - Dawod et al. 
(2009) 

Seven Non-steroidal anti-
inflammatory drugs 

Waste water EKS-CZE 2400 0.5-1.8 - Dawod et al. 
(2008) 


