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PENGHETEROGENAN KOMPLEKS FERUM-KARBONIL TIOUREA KE 

ATAS SEKAM PADI DAN AKTIVITI PENGOKSIDAAN LIMONIN 

DENGAN HIDROGEN PEROKSIDA 

 

ABSTRAK 

 

 

    Tiga ligan tiourea yang baru 2-metil-N-[(2-piridina-2-il-etil)karbamotiol] 

benzamida, O2;  4-metil-N-[(4-metilpiridina-2-il)karbamotiol]benzamida, P1; dan 

4-metil-N-[(2-piridina-2-il-etil)karbamotiol]benzamida, P2 telah disintesis dan diciri- 

kan melalui pelbagai teknik spektral dan analitikal seperti NMR (1H and 13C), 

spektroskopi FTIR dan analisis unsur. Struktur molekul untuk tiga jenis terbitan 

tiourea telah dikenalpasti melalui teknik pembelauan sinaran-X kristal tunggal.  

Ligan tersebut telah dimodifikasikan dengan menggunakan 

3-kloropropiltrietoksisilina (CPTES) sebagai ejen pencantuman terhadap abu sekam 

padi (RHA). Mangkin yang telah dihasilkan telah ditetapkan sebagai RHACO2, 

RHACP1 dan RHACP2. Pencirian spektroskopik membuktikan pencantuman ligan 

organik pada rangka silika. Analisis 29Si MAS NMR pada RHACP1 dan RHACP2 

menunjukkan kewujudan pusat silikon T1, T2, Q2 dan Q3 manakala pusat silikon T2, 

T3, Q3 dan Q4 wujud pada RHACO2. Spektrum 13C MAS NMR menunjukkan 

anjakan kimia pada moiti –CH2CH2CH2–. RHACO2 memiliki anjakan kimia pada 

24.97, 41.72 dan 62.82 ppm manakala RHACP1 dan RHACP2 memiliki anjakan 

kimia masing-masing pada 23.52, 40.17, 60.40 ppm, 26.68, 47.86 dan 63.02 ppm. 

Spektrum 13C MAS NMR menunjukkan kesemua mangkin mempunyai siri anjakan 

kimia yang konsisten dengan kehadiran gelang aromatik benzena dan juga piridin. 

Dalam kajian ini, mangkin - mangkin ini telah digunakan dalam pengoksidaan 

limonin. Produk utama yang terhasil ialah epoksida limonin dengan produk 



 xxx 

sampingan. Berdasarkan kepada parameter optimum, susunan kereaktifan pemangkin 

ditemui untuk. menjadi seperti urutan berikut: RHACP1 > RHACO2 > RHACP2. 

Kesan sterik yang lebih tinggi pada P2 seolah-olah memberikan perubahan 

kereaktifan yang rendah pada RHACP2 berbanding RHACP1. P1 ligan telah 

dikomplek dengan ferum (II). Potensi untuk menggunakan ferum dalam proses kimia 

ini disebabkan oleh efisiensi kos dan mesra alam. Kompleks logam yang terhasil 

telah dipegun terhadap RHA silika untuk menghasilkan pemangkin baru, 

RHACP1Fe. Ia telah dicirikan dan digunakan dalam pengoksidaan limonin. Produk 

utama adalah epoksida limonin manakala produk sampingan terhad hanya kepada 

karvon dan karviol. Didapati bahawa penggabungan ferum (II) telah menyebabkan 

penurunan drastik jumlah produk sampingan (karvon dan karviol). Hasil LO didapati 

sebanyak 46.23 % dengan 69.00% daripada penukaran limonin dan 67.00 % daripada 

pemilihan LO. Mangkin ini boleh didapatkan semula melalui penapisan dan 

digunakan semula untuk sekurang-kurangnya tiga kali tanpa kehilangan aktiviti 

pemangkin ketara. Lima et. al., (2006) menghasilkan komplek logam (salen) dan 

digunakan sebagai pemangkin pengoksidaan limonena dengan nisbah molar yang 

sama Limonene: H2O2 dalam asetoniril sebagai pelarut pada 80 ºC. Walaupun tindak 

balas itu berlaku pada suhu yang lebih rendah, dan menghasilkan 45.1 % limonene 

epoksida, bagaimanapun, kelemahannya adalah cabaran untuk memisahkan 

pemangkin dari campuran tindak balas, sifat pemangkin yang mengakis dan sifatnya 

yang berbahaya. Oleh itu, penanda aras aktiviti pemangkin ini telah digunakan untuk 

disiasat. Maka, pemangkin heterogen yang mempunyai ligan organik dengan memuat 

atau mencantumkan sokongan padu dari abu sekam padi telah digunakan. 
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THE HETEROGENATION OF IRON-CARBONYL THIOUREA COMPLEX 

ONTO RICE HUSK SILICA AND ITS CATALYTIC OXIDATION OF 

LIMONENE WITH HYDROGEN PEROXIDE 

 

ABSTRACT 

 

 

 Three new thiourea ligands (2-methyl-N-[(2-pyridine-2-yl-ethyl)carbamothioyl] 

benzamide, O2;  4-methyl-N-[(4-methylpyridin-2-yl) carbamothioyl]benzamide, P1; 

and 4-methyl-N-[(2-pyridine-2-yl-ethyl)carbamothioyl]benzamide, P2) were 

synthesized and characterized by various spectroscopic and analytical techniques viz., 

NMR (1H and 13C), FTIR and elemental analysis. Molecular structure of three 

thiourea derivatives were established through single crystal X-ray diffraction 

technique. The ligands O2, P1 and P2 were functionalized using 

chloropropyltriethoxysilane (CPTES) as the anchoring agent onto rice husk ash 

(RHA). The resultant catalysts were designated as RHACO2, RHACP1 and 

RHACP2. Spectroscopic characterisation confirmed the successful immobilization of 

the organic ligands on the silica framework. The 29Si MAS NMR of RHACP1 and 

RHACP2 showed the presence of T1, T2, Q2 and Q3 while the T2, T3, Q3 and Q4 were 

present in RHACO2. The 13C MAS NMR showed the chemical shifts of 

–CH2CH2CH2– moiety. RHACO2 had chemical shifts at 24.97, 41.72 and 62.82 ppm 

while RHACP1 and RHACP2 had chemical shifts at 23.52, 40.17, 60.40 ppm, 26.68, 

47.86 and 63.02 ppm respectively. The 13C MAS NMR demonstrated that all the 

catalysts have a series of chemical shifts which is compatible with the existence of 

pyridine ring and aromatic benzene ring. In this study, these catalysts have been used 

in the oxidation of limonene. The main product obtained was limonene epoxide (LO) 

with many side products. Limonene epoxide which is the principle item would be 
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vital as intermediates for organic synthesis for various items such as in 

pharmaceuticals products, food additives, and scents. Based on the optimum 

parameters, the order of the catalyst’s reactivity was found to be: RHACP1 > 

RHACO2 > RHACP2. The higher steric effect of P2 seems to be change of the low 

reactivity of RHACP2 compared to RHACP1. The yield of LO obtained for 

RHACO2, RHACP1 and RHACP2 were 40.02 %, 63.20 % and 25.65 % respectively. 

P1 ligand was complexed with iron (II). The potential to utilize iron in this chemical 

processes are due to its cost-efficient and ecological-friendly. The resulting metal 

complex was immobilized onto RHA silica to produce a new catalyst, RHACP1Fe. It 

was characterized and used in the oxidation of limonene. The main product was 

limonene epoxide while the side products were limited only to carvone and carveol. 

It was found that the incorporation of the iron (II) resulted in the drastic reduction of 

the number of side products (carvone and carveol). The yield of LO was found to be 

46.23 % with 69.00 % of limonene conversion and 67.00 % of LO selectivity. 

Filtration can be used to efficiently recover these catalysts. These catalysts are reused 

for a minimum of three times without considerable loss in its catalytic action. Lima 

et. al., (2006) produced metal (salen) complex and used as a catalyst in oxidation of 

limonene with same molar ratio of Limonene: H2O2 in Acetonitrile as a solvents at 

80 ºC. Eventhough the reaction was took place in at lower temperature, and produced 

45.1 % of limonene epoxide, however, the drawback is the challenge to separate the 

catalysts from the reaction mixture, the corrosive nature of the catalyst and their 

hazardous properties. Thus this benchmark of catalytic activity has been used to be 

investigated. Therefore, heterogeneous catalyst possessing organic ligands by 

loading or grafting onto a solid support from rice husk ash was used. 
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CHAPTER 1 

 INTRODUCTION 

1.1 General Introduction 

It has been discovered that the production of fine chemicals by using 

homogeneous catalyst has many disadvantages. The disadvantages include non-

reusability of the catalyst, the problem of dissociation (Ghiaci et al., 2010) 

inefficient in terms of separation and recovery process and in most cases contribute 

to environmental hazards. Therefore, the development of efficient heterogeneous 

catalyst is being explored to control this adverse situation in the industry (Hadi et al., 

2015). Catalyst is a substance that speeds up the chemical reaction without itself 

being spent (Battegazore et al., 2014). There is a decrease in the activation energy 

which permits the creation of an alternative pathway for the reaction to happen. 

Silica is a catalysis supporter that is most commonly studied. It possesses strong 

chemical resistance and high-temperature resistance.  

Two primary categories of catalysts are homogenous and heterogeneous.  

Despite that, homogenous reactions have several disadvantages in terms of recovery 

and reuse. Besides that, it is costly. On the other hand, heterogeneous catalyst 

presents many benefits such as ease of recovery and can be reused. Therefore, it is 

more economical and cost-efficient as compared to homogeneous catalyst (Nur et 

al., 2006). 

 

1.2 Silica 

Silica is made up of oxygen and silicon. The qualities of silica are high 

melting point, hard, and chemically inert. The qualities are determined based on the 

strength of the bonds between the atoms (Baccile et al., 2009). Despite crystalline 
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silica being one of the most abundant material in the earth’s crust, the utilization is 

constrained since silica has low reactivity (Chen et al., 2015). Crystalline silicon is 

distinct to amorphous silicon. This is because the SiO2 stoichiometric in amorphous 

silicon dioxide is devoid of crystalline structure as determined by the X-ray 

diffraction spectra. The primary composition on the silica’s surface is siloxane and 

silanol. Silica becomes chemically efficacious when the surface was appropriately 

modified. The presence of organic modifier enables surface reaction to occur by 

forming new bonds, i.e. ≡Si−O−C≡, ≡Si−C≡, ≡Si−N=. Silica is usually porous. The 

porosity of silica can be formed by the random condensation of sodium silicate and 

the pore space made up of interstices between particles during compaction. 

The importance of silica as heterogeneous support in catalysis has seen an 

ascending growth in the past decade. The versatility of functionalization techniques 

of mesoporous materials along with the ability to readily separate from the products 

upon reaction completion has allowed for continuous innovation in its use in 

catalysis (Yu, 2013). Silica can be prepared easily from the precursors such as 

tetraethylorthosilicate (TEOS) and tetramethylorthosilicate (TMOS) (Nabavi and 

Alizadeh, 2014); (Han et al., 2016), sodium metasilicate and colloidal silica. 

However, these well-known precursors are toxic, expensive and hazardous 

(Nakashima et al., 1998). Naturally occurring silica from biomass such as paddy 

plants and their waste can provide an alternative as it is cheaper and a safer source of 

silica. The pore space is comprised of crevices between the particles which was 

promotes the porosity of the silica. The size of the pore measure of silica does 

significantly influence particular application, for example, adsorption of large 

molecule from effluent, separation of proteins and catalysis (Liu et al., 2015). Solid 

silica can be distributed in liquid or gaseous medium.  
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Table 1.1 demonstrates that silica can exist in a separated system with various types 

of amorphous. 

Table 1.1: Classification of dispersed silica system according to Douglas et al., 

(1995). 

Silica sols-

colloidal silica 

Sols formed from pH adjustment with acid which undergo polyco-

ndensation and polymerisation occur to grow into colloidal particl- 

icles. Stable dispersions/sols of discrete particles of morphous 

silica. 

Silica hydrogel Dispersed silica particles aggregate forming colloidal silica 

particles which are linked together. Silica gel, in which the pores 

orifice are filled with the corresponding liquid (water).  

Silica xerogels  Dehydration process of hydrogels that leads to partial collapse of 

globular structure leading to xerogels. A gel from which the liquid 

medium has been removed, resulting in a compressed structure and 

a reduced porosity. 

Silica aerogels  High-temperature hydrolysis of silica compounds to produce 

spherical amorphous particles. The liquid has been removed in 

such a way as to prevent any collapse or change in the structure as 

liquid is removed. 

Polymeric 

silica solutions  

Partial hydrolysis of alkoxysilanes that results in macromolecular 

solutions.  

Pyrogenic  Silicas made at high temperatures. 

Aerosils Flame hydrolysis products of SiC14; very pure materials. 

Arc silicas Made by the reduction of high purity sand. 

Plasma  Ultra-fine silica powders, made by the direct volatilization of sand 

in a plasma jet. 

 

 1.2.1 Silica in rice husk (RH) and rice husk ash (RHA) 

Paddy plant is a place where silica can be found. Food and Agricultural 

Organization (FAO) of United Nations have presented in a report that Asia was the 

region that produces the largest amount of world rice production with an astounding 
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92 % while Asia produces 90 % of production for global rice consumption. Thus 

forecast paddy production has increased in 2016 by 1.3 million tonnes to 746.8 

million tonnes (Pourbafrani et al., 2014). Henceforth, rice has been considered a 

staple sustenance for Asian nations. One ton of husk is created for each five tons of 

rice that was harvested. It is approximately 1.2 × 108 tons of RHs for every year 

globally (Liu et al., 2013).    

The large amount of RH from the rice milling process has resulted in 

disposal problems. In addition, the rusk rice is being ignored nowadays. Thus it is 

becomes more worthwhile as it can be converted into more useful product (Yalcin et 

al. 2001). RH is comprised of 32 % of cellulose, 15 % of ash and 21 % of lignin. 

The mineral ash comprises of 2.11 % of K2O, 96.34 % of SiO2, 0.20 % of Fe2O3, 

0.45 % of MgO, 30.41 % of CaO and 0.08 % of MnO2 (Woranan et al., 2007). The 

original source of RHA is from RH burning. The burning process removes lignin 

and cellulose and leaves just silica ash (Adam et al., 2012a). Subsequently, in this 

current research, rice husk was calcined to attain white ash or known as RHA as 

depicted in Fig. 1.1. 

 
Fig. 1.1: The conversion of rice husk to rice husk ash (RHA). 

 

1.2.2 The silanol and siloxane bonds in RHA 

There are three types of silanol and siloxane bonds within the silica matrix. 

Fig. 1.2 shows the three types of bonds in silica. First, the geminal (two hydroxyl 

600 ℃, 6 h 
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group attached to the silicon atom, =Si(OH)2). Second, isolated group (a single 

hydroxyl group attached to the same silicon atom, (=SiOH) as shown in Fig. 1.2. 

The last group is, the vicinal silanol where the isolated silanol are in adjacent to the 

silicon atoms which are linked by intramolecular hydrogen bond (Yang et al., 2010). 

As the surface area of RHA is large, it contains abundant Si-OH groups for 

silylating agents to anchor easily. Thus, the free hydroxyl group is able to displace 

the alkoxy groups onto silane to create covalent bonds of Si-O-Si. This is the 

primary reason why silanol groups play a crucial role in the modification of silica 

surface with the use alkyl silane (Dash et al., 2008). When the temperature increase, 

the silanol groups would undergo the dehydration on the silica surface which results 

in the formation of siloxane bonds (Peng et al., 2012). Antonio et al. (2001) found 

that silylating agents are chemically reactive towards the free silanol groups. 

The three siloxane bonds are discerned as (i) Q2 – silicon atom bearing two 

hydroxyl groups and bonded to two silicon atoms via oxygen bond, (ii) Q3 – silicon 

atom bearing one hydroxyl group and bonded to three silicon atom via oxygen bond 

and (iii) Q4 – silicon atom not bonded to any hydroxyl group and bonded to four 

other silicon atoms via oxygen. 29Si CP/MAS NMR spectrum can be referred to 

identify these silicon atoms. The superscript number [n] is derived from the general 

equation, Qn = Si(OSi)n(OH)4-n by Adam and Batagrawa, (2013) and conforms to the 

number of (−O−Si) bond linked to the respective silicon atom.   

 

OH HO 
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Fig. 1.2: Different forms of silanol groups at the silica surface (Sharma et al., 2015). 

The silicon atom of the propyl silane was illustrated in Fig 1.3 which creates 

a bridge with the silica surface after modification. These silicon atoms can be 

monitored from the 29Si solid state NMR which give distinct signals depending on 

the nature of silicon atom’s attachment. The NMR signals are identified as (i) T1 – 

silicon atom bearing two hydroxyl groups, (ii) T2 – silicon atom bearing one 

hydroxyl group and T3 – silicon atom not bonded to any hydroxyl group.  

 

Fig. 1.3: The silica surface with various bridging formation to the silicon of propyl 

 silane. The nature of the T1, T2 and T3 silicon atoms in the immobilized   

silica.  

 

1.3. Organically functionalised mesoporous materials 

The incorporation of organic onto the silica structure has been attempted by 

several effort. The fascinating notion for researchers to explore originates from the 

idea of combining the properties of inorganic and organic construction unit in a 

single material. Distinctive applications have been studied by utilizing hybrid 

materials, for example, sensing, optics, separation, microelectronic, and finally as a 

catalyst (Hoffmann and Froba, 2011). There are three main approaches for the 

synthesis of porous hybrid materials depending on the organoalkoxysilane units 

(Fig. 1.4). 

1. Grafting approach: grafting refers to the modification of a pre-fabricated 

mesoporous support by attachment of functional molecules to the surface of the 
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mesopores. Mesoporous silicates possess surface silanol (Si-OH) groups that act 

as convenient anchoring points for organic functionalisation. Surface 

modification with organic groups is most commonly carried out by silylation. 

The advantage of post-synthetic method is that the mesostructure of the starting 

silica phase is usually retained, whereas the lining of the walls is accompanied 

by a reduction in the porosity of the hybrid material. 

 

Fig. 1.4: Three synthesis approaches for the synthesis of mesoporous hybrid materia  

   -als (Hoffman et al., 2006). Where, : Si(OR’)4 

 

2. Co-condensation approach (one-pot synthesis): involves the preparation of 

mesostructured silica phases by the co-condensation of [(RO)4Si; i.e. tetraethyl 

orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS)] with terminal 

trialkoxysilanes of the type (RO)3SiR. A structure directing agent (SDA) is used 
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to bring about materials with organic residues anchored covalently to the pore 

walls. The drawbacks are, first, the degree of mesoscopic order of the products 

decreases with increasing concentration of (RO)3SiR in the reaction mixture, 

which ultimately leads to totally disordered products. Second, an increase in 

loading of the incorporated organic groups can lead to a reduction in the pore 

diameter, pore volume and specific surface area. 

3. Periodic mesoporous organosilica (PMO) production approach: this was first 

used in 1999 (Inagaki et al., 1999; Hoffnam and Froba et al., 2011) by 

hydrolysis and subsequent condensation reactions of the bridged organosilica 

precursors of the type (RO)3Si-R-Si(OR’)3, which had long been known from 

sol-gel chemistry (Ren et al., 2010). 

 

1.4 Hydrogen bonded urea and hydrogen peroxide 

Ortho and para benzoylthiourea ligands were selected in this study due to 

their property to release and accept proton easily. In this work, the ligands 

synthesised were tailored for oxidation of limonene. This reaction was catalysed at 

the C=O and C=S active sites of the catalysts. Hydrogen peroxide was used as an 

oxidising agent. In fact, H2O2 is a relatively weak oxidising agent (Clark and Jones, 

1999). It can effect oxidations unaided, e.g. it reacts slowly with substrates such as 

aromatic hydrocarbons and alkanes but for the majority of applications, it requires 

activation in one way or another.  

Basically activation of hydrogen peroxide by transition metal ions is the 

method of choice. However, the reaction of hydrogen peroxide with organic 

compounds can, therefore, provide a viable alternative to metal ion activation. There 

are two solid peroxygens which dominate the area of inorganic hydrogen peroxide 
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chemistry, namely sodium percarbonate (PCS) and sodium perborate (PBS). It is 

also worth observing that the urea hydrogen-bonded complex of hydrogen peroxide, 

known as urea-hydrogen peroxide (UHP) is also an important solid peroxygen 

which will be discussed here. UHP is represented by the structure in Fig. 1.5.  

 

H
O

O
HO

NH2

H

H  

Fig. 1.5: Hydrogen-bonded complex of urea and hydrogen peroxide (UHP). 
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NA2HPO4
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Ac2 (3 equiv)

77 %

94 %  

Fig. 1.6: Use of UHP to oxidize an organic compound to industrially useful interme 

   -diates. 

UHP is readily crystallised from concentrated hydrogen peroxide and urea 

solution. Since it is anhydrous and essentially a neutral complex, it is a favourable 

alternative to very highly concentrated hydrogen peroxide (> 85 %) which is 

difficult to obtain and relatively hazardous. The application of UHP in organic 

synthesis has been explored and has been verified to be a suitable substitute for 

concentrated hydrogen peroxide in generating trifluoroperacetic acid from the 
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anhydride. An example of reactions that utilise UHP to generate peroxyacids in situ 

is shown in Fig. 1.6 (pg. 9). 

 

1.5  Thiourea 

1.5.1 Introduction to thiourea 

Thiourea, CSN2H4 is an organic compound which contains carbon, nitrogen, 

sulfur, and hydrogen atoms. In addition, the synonymous name is sulfourea or 

thiocarbamide. The structure of thiourea is similar to urea but the oxygen atom in 

urea is replaced by sulfur. Thus, the property of thiourea and urea is different due to 

the relative electronegativities of sulfur and oxygen. Fig. 1.7 below shows the 

general structures of thiourea and urea (Yusof et al., 2010). Fig. 1.8 shows the basic 

structure of benzoylthiourea derivatives. 

 

 

 

Fig. 1.7:  Structure of urea and thiourea. 

N N

O S

H H
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R1= ortho position of methyl, R2, = ethyl pyridine ; O2 

R1= para position of methyl, R2= methyl pyridine; P1 

R1=para position of methyl, R2= ethyl pyridine: P2 

 

Fig. 1.8: General structure of benzoylthiourea 
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1.5.2 Thione–thiol tautomerism 

Similar to thiosemicarbazones by Haque et al., (2015) thione–thiol 

tautomerism is plausible for acylthioureas since a thioamide −NH−C=S− functional 

group is present, as well as a carbonyl group, which can accept hydrogen-bonding 

donor groups (Gholivand et al., 2014). In Fig. 1.9 the thione (middle structure) and 

thiols tautomers are shown. The thione form is strongly preferred, and to the best of 

our knowledge, there are no reports on compounds showing the thiol form as the 

most stable tautomer.  

. N N
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H
 

 

Fig. 1.9: Thione–thiol tautomerism in acylthioureas. 

Saeed and coworkers, (2103) reported the infrared spectrum of solid 1-(2-

fluorobenzoyl)-3-(4-methoxyphenyl)thiourea, where a weak band appearing at 2438 

cm−1 could be assigned to the ν(S−H) stretching mode.  
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(a) (b) (c)

where X=O or S  

Fig. 1.10: Typical Hydrogen-Bonding Modes of Urea/Thiourea Molecules: (a) Head 

    to-Tail; (b) Shoulder-to-Shoulder; (c) Designation of syn- and anti-    

     Hydrogen Atoms. 

 

A work reported by Saeed et al. (2013), suggested that tautomeric 

equilibrium exists in 4-(3-benzoylthioureido)-benzoic acid, promoted by an 

intramolecular proton shift between the thioketo-sulfur and the amine-nitrogen, via 
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intramolecular hydrogen bonding N−H···S or S−H···N. There are three principal 

modes of inclusion compounds of urea/thiourea that are stabilized by conventional 

hydrogen bonds. The classical type of hydrogen bonding having a host lattice 

constructed from urea/thiourea molecules which is illustrated in Fig.  1.10 (pg 11). 

 

1.5.3 The metal transition complexes of thiourea 

An early review of 1-(acyl)-3-substituted thioureas was reported by Beyer et 

al. (1981) in coordination chemistry particularly about their coordination with some 

first-row and second-row transition metals. The presence of these hard and soft 

donor sites offers a huge array of bonding possibilities which were C=O carbonyl 

and C=S thiocarbonyl. Three coordination mode have been reported so far, 

monobasic bidentate or chelating mode (O, S), (Sreekanth et al., 2003): (Antoschuk 

et al., 1999) and neutral bidentate (O, N) modes (Rotondo et al., 2014)  (Fig. 1.11). 

1-(benzoyl)-3, 3-(di-alkyl) thiourea ligands are able to exhibit neutral monodentate 

coordination through the S atom as well as the normal monobasic O, S bidentate 

coordination (Karipcin et al., 2011). 
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Fig. 1.11:Neutral monodentate through the S atom (left) and monobasic O, S biden- 

   tate (right) coordination modes found in Pd(II) complexes of 1-(benzoyl)-3, 

   3-(di-alkyl) thioureas. Adapted from reference (Karipcin et al., 2011). 
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1.5.4 Iron 

Among the large variety of transition metals which were used as catalysts, 

iron plays a special role. Dissimilar to harmful metals like osmium, chromium and 

cadmium, iron is physiologically-accommodating and a ecological friendly metal.  

The few toxic iron compounds can easily be oxidized or hydrolyzed to harmless iron 

salts. Iron is the fourth most common element in the earth's crust (after oxygen, 

silicon and aluminium). It consists of approximately 5.0 % by weight of the Earth's 

solid surface. The plenitude of iron in the earth’s crust renders enables iron to be 

considered as an inexpensive metal source as compared with those valuable metals 

which are both costly and destructive to the environment. Its low costs combined 

with their ecologically benevolent nature offer the likelihood to draw in iron in 

many fine chemical activities, for example, dihydroxylation of olefins, allylic 

substitution reactions, cross-coupling of organic halides with organometallic 

reagents  and epoxidation reactions.  

 

1.5.5 Thiourea immobilised silica as a support 

Urea and urea-type compounds create viable catalyzing agents when 

supported onto mesostructures. They are considered as supported organocatalysts 

which have been used to catalyse organic reactions. Lin and collaeague arranged a 

series of urea-and thiourea-functionalised MSNs and examined their catalytic 

examination in the Diels–Alder reaction amongst crotonaldehyde and 

cyclopentadiene. In this case, the prepared catalysts exhibited a superior catalytic 

activity towards the Diels–Alder reaction than did homogeneous analogues. They 

attributed the enhancement in the catalytic activity to a cooperative acid base 

system. Four urea-and thiourea-supported MSNs were also analyzed and among 
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them, it was found those containing the solid electron-withdrawing group CF3 can 

improve Lewis acidity of these heterogeneous organocatalysts and hence yield the 

best outcome. Therefore, they form an efficient cooperative catalytic system.  

Rostamnia’s group simultaneously incorporated AAPTS [N-(2-aminoethyl)-

3-aminopropyltrimethoxysilane] with urea on the surface of MSN (Mesoporous 

Silica Nanoparticles) and investigated it in the aldol reaction. They used a 3-ureido- 

propyl group as an acid and AAPTS as a base to perform aldol, Henry and 

cyanosilylation reactions. (Refer Fig. 1.12). 

 

Fig. 1.12: Cooperative catalysis by acid and base bifunctionalized MSN. 

 

There are many reports on the homogenous catalysts of different organic 

ligand based on thiourea moiety for different types of catalytic oxidation. Thiourea 

has also been used extensively and commercially used such as herbicides, fungicides 

and insecticide agent in the agrochemical industries. Other than that, it is being used 

widely in pharmaceutical industry for potential therapeutic agents as antibacterial, 

for example, N-(4-(hexyloxy)phenyl)-N’-(4-methoxybenzoyl)thiourea (Peng et al., 
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2012). Besides, 1-Benzoyl-3-propylthiourea is an effective adsorbent for removal of 

mercury ions from aqueous solutions (Yusof et al., 2010). Although these thiourea 

derivatives have been used in many areas, their application in heterogenous catalysis 

is comparatively unexplored. A literature review of these different heterogenous 

catalysts in different area of catalysis is tabulated in Table 1.2. The work embodied 

in this thesis is the first report detailing the immobilisation of carbonylthiourea 

moiety onto silica support and used as a catalyst in the oxidation of limonene. 
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1.5.6 Literature Review of Thiourea Derivatives 

Table 1.2: Several Literature Review of Thiourea Derivatives in Catalysis 

Chelating Group Functionalised silica/ Application References 

Thiosemicarbazide Separation and selective extraction of palladium (II) from other interfering metal 

ions 

(Mahmoud et al., 2000) 

Iminodithiocarbamate 

derivative 

Silica surface was modified by a sequential reaction of preactivated silica gel with 

chloropropyl silica, 3-chloropropyltriethoxysilane and ethylenediamine (EDA) or 

diethylenetriamine (DETA) or triethylenetetramine (TETA) followed by treatment 

with carbon disulfide for selective solid phase extraction of mercury (II) 

(Oksana et al., 2004) 

1-Allyl-3-propylthiourea High adsorption capacity for mercury ions (Antochshuk et al., 

2002) 

Amidinothiourea Cyanoethylaminopropyl silica obtained from reaction of aminopropyl silica gel and 

acrylonitrile was treated with NH4SCN to produce amidinothioureido silica gel 

containing amidine and thiourea functional groups. It is found to extract Ag+, Au3+ 

and Pd2+ in nano scale 

(Zhang et al., 2002)  

Thiourea dioxide TUD Acetalization of aldehydes. NCS with thiourea as highly efficient catalysts for 

acetalization of aldehyde. 2.0 mmol of aldehyde, 5 mol % NCS 2 mol % Thiourea, 

MeOH (6 cm3), 23 ℃, tert-butylhydroperoxide TBHP as oxidant for 1 hour 

 

(Mei et al., 2009) 

Proline-amino thioureas Self-assembled proline-amino thioureas as efficient organocatalysts for the 

asymmetric Michael addition of aldehydes to nitroolefins. Nitrostyrene (0.1 mmol), 

aldehyde (0.3 mmol), L-proline (10 mol %) and thiourea (10 mol %) in 0.5 mL of 

toluene at 0 ℃ 

(Wang et al., 2010) 

1
6
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9-thiourea epiquinine 

heterogeneous Supported by 

mesoporous SBA-15 and 

MCM-41 materials 

Stepwise fabrication and architecture of heterogeneous 9-thiourea epiquinine 

catalyst with excellent enantioselectivity in the asymmetric Friedel–Crafts reaction 

of indoles with imines. Asymmetric Friedel-Crafts reaction of indoles with imines. 

(93 ee) 77 (99) 78 (96) 

(Yu et al., 2008) 

Magnetically separable nano 

CuFe2O4 

An efficient and reusable heterogeneous catalyst for the green synthesis of thiiranes 

from epoxides with thiourea. 34−45 min 80-90 % yields. The epoxide was converted 

to thiirane. 

(Eisavi et al., 2016) 

6-amino-1,3-dimethyl uracil, 

aromatic aldehydes, and 1,3- 

dicarbonyl compound 

catalyzed by thiourea dioxide 

in aqueous media. 

6-Amino-1,3-dimethyl uracil (3 mmol), aldehyde (3.5 mmol), 1,3-dicarbonyl 

compound (3.5mmol), TUD (2 mol %) in water (2 ml) at 50 ℃ under nitrogen 

Atmosphere for 8 hours reaction. 94 % yield. 

(Verma and Jain, 2012) 

3-(1-thiouredo)propyl 

functionalised silica 

 

Online preconcentration and separation of Ag+, Au3+ and Pd2 (Liu and Chen, 2000) 

Hybrid inorganic–organic 

xerogels (XGPtu) 

 

hydrogenation of phenylacetylene (Pd) and hydroformylation of styrene, but metal 

leaching occurred, even if to a limited extent. Styrene to iso- aldehyde. 92 % yield. 

(Cauzzi et al., 2000) 

[Rh(cod)2] BF4 

Hydroformylation of styrene 

by [Rh(cod)2] BF4 with 

thiourea: 

Conditions: [Rh(cod)2] BF4  5.10-5
 mol; toluenes:10 ml; styrene :Thiourea: Rh; 

350:1:1, CO2 + H2 (1:1) 40 bar, T:40 ℃, time:18 h. Solvent, TH.  Styrene to 

aldehyde (7 % ee) 40 % yield. 

 

(Breuzard et al., 2000) 

 

 

1
7
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Synthesis, crystallography and catalytic activity. Oxidation of alcohols or ketone in 

presence of TBHP at 80 ℃ -TBHP was found to be the best as it gave acetophenone. 

Alcohol to aldehyde. 93 %. 

(Gunasekaran et al., 

2012) 
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1.6 Primary, secondary and tertiary amine in reactions 

All organic ligands in this research were identified as secondary amine. 

However, Wang and Shantz, (2010) and colleagues investigated the effects of 

organoamine type (primary, secondary, tertiary), amine density, and the presence of 

silanol groups on the nitroaldol reaction by preparing a series of amine-based MCM-

41 materials (Fig. 1.13). The authors also claimed that the best results were obtained 

when the secondary amines were used. They additionally found that an expansion in 

the quantity of amine loading has brought a lessening in catalytic activity. One 

noteworthy point is that the capping of silanols with trimethylsilyl groups reduced 

the catalytic activity for nearly all samples which indicates that the cooperative 

effect of surface silanols with amine groups. 

 
 

Fig. 1.13: Scheme of secondary and tertiary amine in reactions. 

 

1.7 Limonene 

R-Limonene is a colourless oil that is sparingly soluble in water with a sweet 

orange smell. Commercially, the terpene is mostly obtained from waste orange peel 

(dry orange peel waste contains 3.8 wt % of R-limonene on a dry weight basis) 

(Pourbafrani et al., 2010) as shown in Fig. 1.14.  
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Fig. 1.14: Orange essential oil from orange peel obtained at room temperature after 

    centrifugation of the water oil emulsion. (Image courtesy of (Pourbafrani et 

     al., 2010). 

 

Today, R-limonene is obtained as a by-product of citric fruit juice 

processing, mainly by a cold process involving centrifugal separation or by steam 

distillation. Due to the existence of a chiral center in the chemical structure of 

limonene (carbon 4. Fig. 1.15), this compound has two enantiomers with optical 

configurations R and S (Wrobleska et al., 2016). Orange peels are the main source of 

R-limonene while lime peels mostly contain S-limonene (Wrobleska et al., 2014). 
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Fig. 1.15: Stereoisomer of limonene with chiral center denoted as (*) at carbon 4. 

   

Limonene can be attained from more than 300 plants. It was one of the 

regular terpene. It was extricated from citrus oil which is produced 30,000 tones for 

every year. It was generally utilized as a feedstock. R-limonene has a solid aroma 

similar to oranges. The production of limonene in Brazil is about 12,500 tonnes per 

* 


