ISOLATION AND IDENTIFICATION OF CHEMICAL MARKERS FROM *LABISIA PUMILA* (BLUME) AND PREPARATION OF STANDARDISED AND NANOFORMULATED EXTRACTS FOR ANTI-OBESITY, ANTI-UTERINE FIBROID AND ANTI-CERVICAL CANCER STUDIES

by

MOHAMMED ALI AHMED SAEED

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2017

ACKNOWLEDGEMENT

All praises to Allah the almighty who help me and gave me the strength, inspiration and patience to finish this research and Prophet Muhammad صلى الله عليه وسلم (May peace be upon him).

I would like to extend my deepest gratitude to my main supervisor Professor Dr. Zhari Ismail and my co-supervisor Professor Dr. Amirin Sadikun, for their invaluable assistance, guidance, and support during my research and preparation of thesis. Their visionary motivation help me to steer my work in positive direction.

My sincere thanks to Prof. Dr. Chan Kit Lam for providing the humidity chamber for my stability study and to Dr. Khamsah Suryati for her lab facilities, and also to all the science officers and lab technicians especially, Mr. Fisal Jamaludin, Mr. Ahmed ZainuddinYunus, Mr. Abdul Hamid Ismail, Miss Mahani Md. Ismail, Mr. Ahmed Anuar and Mr. Rosli Hassan for their assistance and contribution to the success of this research.

I'm very grateful to all my colleagues and friends in Universiti Sains Malaysia for encouraging me and for their kind moral support, especially, Dr. Mahfoudh, Dr. Hooi Kheng Beh, Dr. Sultan, Dr. Fouad, Dr. Abdul Hakeem, Dr. Armaghan, Mohd Shahrul, Kameh, Syafinaz and Ghenyia.

I wish all of you be well and happy.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii
TABLE OF CONTENTSiii
LIST OF TABLESx
LIST OF FIGURES xiii
APPENDICES xxiii
LIST OF ABBREVIATIONSxxxi
LIST OF UNITSxxxvi
LIST OF SYMBOLSxxxvii
ABSTRAKxxxviii
ABSTRACT xli

CHAPTER ONE: INTRODUCTION

1.1	Background 1
1.2	Herbs used for the treatment of obesity 1
1.3	Herbs used for the treatment of uterine fibroids
1.4	Herbs used for the treatment of cervical cancer
1.5	Problem statement 4
1.6	Justification of research 4
1.7	Research hypothesis
1.8	General objective
1.9	Research objectives
1.10	Significance of present research work

CHAPTER TWO: LITERATURE REVIEW

2.1	Labisi	a pumila	10
	2.1.1	Taxonomic classification	10
	2.1.2	Plant description	10
	2.1.3	Traditional uses of Labisia pumila	11
	2.1.4	Review of chemical constituents of Labisia pumila	12
	2.1.5	Review on biological activities of Labisia pumila	19
2.2	Standa	ardisation of medicinal plants	22

2.3	Liposome of medicinal plants	23
2.4	Stability of medicinal plants	25
2.5	Toxicity of medicinal plants	26
2.6	Pharmacokinetics of medicinal plants	28
2.7	Obesity and medicinal plants	30
2.8	Cancer and medicinal plants	35
	2.8.1 Uterine fibroid and medicinal plants	37
	2.8.2 Cervical cancer and medicinal plants	43

CHAPTER THREE: MATERIALS AND METHODS

3.1	Mater	ials	47	
3.2	Instruments and equipments			
3.3	Metho	ods	52	
3.4	Qualit	y control of the plant material	53	
	3.4.1	Plant material	53	
	3.4.2	Determination of moisture content	53	
	3.4.3	Determination of foreign matter	54	
	3.4.4	Determination of total ash content	54	
	3.4.5	Determination of acid insoluble ash content	55	
	3.4.6	Determination of heavy metals content	55	
	3.4.7	Microbial limit test	56	
		3.4.7(a) Pseudomonas aeruginosa and Staphylococcus aureus	56	
		3.4.7(b) Escherichia coli	56	
		3.4.7(c) Salmonella species	57	
	3.4.8	Determination of extractive values	57	
		3.4.8(a) Hot method	57	
		3.4.8(b) Cold method	57	
3.5	Optim	isation of extraction of Labisia pumila using different extraction		
	metho	ds	58	
	3.5.1	Reflux extraction	58	
	3.5.2	Maceration extraction	58	
	3.5.3	Microwave extraction	58	
	3.5.4	Soxhlet extraction	59	
	3.5.5	Sonication extraction	59	

3.6	Prepa	ration and	analysis of leaf, root and whole plant extracts of Labisia	
	pumil	a		59
3.7	Analy	sis of Lab	isia pumila extracts from different locations	59
	3.7.1	Heavy m	etals and microbial limit tests	60
	3.7.2	HPLC ar	alysis of Labisia pumila extracts from different locations	60
3.8	Prepa	ration of L	PE	60
3.9	Stand	ardisation	of LPE	60
	3.9.1	Chromat	ographic and spectroscopic analysis of LPE	60
		3.9.1(a)	Ultraviolet-visible spectroscopy analysis	61
		3.9.1(b)	Fourier transform infrared spectroscopy	61
	3.9.2	Primary	and secondary metabolites from LPE	61
		3.9.2(a)	Estimation of total proteins	61
		3.9.2(b)	Estimation of total polysaccharides	62
		3.9.2(c)	Estimation of total glycosaponins	62
		3.9.2(a)	Estimation of total phospholipids	63
		3.9.2(b)	Estimation of total phenolics content	63
		3.9.2(c)	Estimation of total flavonoids content	64
3.10	Isolati	ion and ide	entification of chemical markers from LPE	64
	3.10.1	Isolation	of LA	64
	3.10.2	2 Identifica	ation of LA	65
	3.10.3	3 Isolation	of DTBP	66
	3.10.4	Identifica	ation of DTBP	67
3.11	High _J	performan	ce liquid chromatography analysis of LPE	68
	3.11.1	Develop	ment and validation of the method	68
	3.11.2	2 Chromat	ographic conditions	68
	3.11.3	3 Linearity	y, limit of detection, limit of quantification	68
	3.11.4	Within d	ay, between day accuracy and precision	69
	3.11.5	6 Recovery	у	69
3.12	Quant	ification o	f the selected marker compounds in LPE	70
3.13	Prepa	ration of L	LP	70
	3.13.1	Characte	risation of LLP	70
		3.13.1(a)	Determination of aqueous solubility	70

3.13.1(b) Fourier transform infrared spectroscopy, principal	
component analysis and ultraviolet-visible	
spectroscopy71	L
3.13.1(c) Measurement of particle size, zeta potential and	
transmission electron microscopy71	L
3.14 Accelerated stability study of LPE and LLP72	2
3.14.1 HPLC analysis of the samples72	2
3.14.2 Calculations of chemical kinetics	;
3.14.2(a) Order of the reaction	;
3.14.2(b) Activation energy and pre-exponential factor	;
3.14.2(c) Shelf life (t ₉₀)	ł
3.14.3 Storage conditions for accelerated stability studies	;
3.14.4 Accelerated stability of LPE and LLP by chemical fingerprinting	
using UV-Vis spectroscopy75	;
3.14.5 Accelerated stability of LPE and LLP by chemical fingerprinting	
using fourier transformed infrared spectroscopy and principal	
component analysis76	j
3.15 Inhibition of LPE and LLP on pancreatic lipase activity	ĵ
3.16 Inhibition of LPE and LLP on 3T3-L1 cells77	1
3.16.1 Cell culture assay77	1
3.16.2 Cell growth inhibition	1
3.17 Anti-uterine fibroid study of LPE and LLP on SK-UT-1 cells	
5.17 Third define horoid study of Er E and EEr of Six OT Teens	3
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells	
-)
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells)
 3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells)
 3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells))
 3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells) 2
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells) 2
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells) 1 2 3
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells) 1 2 3 3
 3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells) 1 2 3 3 3
3.18 Anti-cervical cancer study of LPE and LLP on HeLa cells 79 3.19 <i>Ex vivo</i> anti-angiogenesis study of LPE and LLP 80 3.20 Toxicity study of LPE and LLP 81 3.20.1 Animals 81 3.20.2 Acute toxicity study 82 3.20.3 Repeated dose toxicity study 82 3.20.4 Statistical analysis 83 3.21 Pharmacokinetic study of LPE and LLP chemical constituents 83 3.21.1 Plasma sample preparation 83) 1 2 3 3 4

	3.21.3(b)	Calibration c	urves, l	inearity ranges,	limits of dete	ction	
		and limits of	quantif	ication		••••••	85
	3.21.3(c)	Within-day	and	between-day	precisions	and	
		accuracies, an	nd reco	very of plasma o	extraction	••••••	85
	3.21.4 Animals.					••••••	86
	3.21.5 Pharmaco	kinetic study.				••••••	86
	3.21.6 Determin	ation of pharn	nacokin	etic parameters		••••••	87
3.22	In vivo anti-obes	sity study of l	LPE an	d LLP in high-	fat diet induc	ed rat	
	model					••••••	88
	3.22.1 Animals.					••••••	88
	3.22.2 Normal a	nd high-fat die	et			••••••	88
	3.22.3 Dose prep	paration	•••••			••••••	89
	3.22.4 Body wei	ght analysis	•••••			••••••	89
	3.22.5 Calculation	on of body ma	ss inde	x		•••••••••	89
	3.22.6 Average of	daily food inta	ke			••••••••••	90
	3.22.7 Blood and	alysis				•••••••••	90
	3.22.8 Relative of	organ weight a	and live	r histology		•••••••••	90
	3.22.9 Histology	analysis				•••••	91
	3.22.10 Statistica	l analysis				•••••	91

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Standa	ardisation of the plant material and LPE	92
	4.1.1	Determination of moisture content, foreign matter, total ash and	
		acid insoluble ash contents	92
	4.1.2	Determination of heavy metals content	93
	4.1.3	Microbial limit test	94
	4.1.4	Determination of extractive values	94
4.2	Optim	isation of extraction of Labisia pumila using different extraction	
	metho	ds	95
4.3	Prepar	ration and analysis of leaf, root and whole plant extracts of Labisia	
	pumile	7	96
4.4	Analy	sis of Labisia pumila extracts from different locations	97
	4.4.1	Bacterial and heavy metals	98
	4.4.2	HPLC analysis of Labisia pumila extracts from different locations	99

4.5	Standardisation of LPE
	4.5.1 Spectroscopic and chromatographic analysis of LPE100
	4.5.1(a) Ultraviolet-visible analysis of LPE100
	4.5.1(b) Fourier transform infrared spectroscopy of LPE101
	4.5.2 Primary and secondary metabolites of LPE102
4.6	Isolation and identification of chemical markers from LPE104
	4.6.1 Isolation and identification of LA104
	4.6.2 Isolation and identification of DTBP116
4.7	High performance liquid chromatography analysis of LPE127
4.8	Quantification of the selected marker compounds in LPE130
4.9	Preparation of LLP
	4.9.1 Determination of aqueous solubility
	4.9.2 Fourier transform infrared spectroscopy and UV-Vis spectroscopy132
	4.9.3 Measurement of particle size, zeta potential and transmission
	electron microscopy135
4.10	Accelerated stability study of LPE and LLP
	4.10.1 Chemical kinetics
	4.10.2 Accelerated stability study of LPE and LLP by chemical
	fingerprinting using UV-Vis spectroscopy147
	4.10.3 Accelerated stability study of LPE and LLP by chemical
	fingerprinting using fourier transformed infrared spectroscopy
	and principal component analysis149
4.11	Inhibition of LPE and LLP on pancreatic lipase activity152
4.12	Inhibition of LPE and LLP on 3T3-L1 cells155
4.13	Anti-uterine fibroid study of LPE and LLP on SK-UT-1 cells156
4.14	Anti-cervical cancer study of LPE and LLP on HeLa cells
4.15	Ex vivo anti-angiogenesis study of LPE and LLP
4.16	Toxicity study of LPE and LLP
4.17	Pharmacokinetic study of LPE and LLP chemical constituents
	4.17.1 Pharmacokinetic parameters
4.18	In vivo anti-obesity study of LPE and LLP
CHA	PTER FIVE: CONCLUSION
~	

5.1	Conclusion	216
-----	------------	-----

5.2	Suggestions for future work	219
REF	FERENCES	220
APP	PENDICES	246
LIS	T OF PUBLICATIONS	299

LIST OF TABLES

		Page
Table 2.1	Classification of obesity	30
Table 2.2	Medicinal plants used for treatment of obesity	35
Table 2.3	Medicinal plants used for treatment and management of	42
	uterine fibroids	
Table 2.4	Medicinal plants used for treatment and management of	45
	cervical cancer	
Table 3.1	Materials used in this research	47
Table 3.2	Instruments and equipments used in this research	50
Table 3.3	Storage conditions for stability study and control of	75
	relative humidity (RH) by saturated salt solution	
Table 4.1	Moisture content, foreign matter, total ash and acid	92
	insoluble ash contents values for L. pumila (raw	
	material	
Table 4.2	Heavy metals values for L. pumila (raw material and	93
	extract)	
Table 4.3	Microbial limit test values for L. pumila (raw material	94
	and extract)	
Table 4.4	Extractive values for different L. pumila extracts	95
Table 4.5	Yield percentage of extracts from different extraction	95
	methods	
Table 4.6	HPLC analysis of samples from different extraction	96
	methods	
Table 4.7	HPLC analysis of leaf, root and whole plant extracts of	97
	L. pumila	
Table 4.8	The yield percentage of L. pumila extracts from	98
	different location	
Table 4.9	Microbial limit test and heavy metal test values for L.	98
	pumila extracts from different locations	
Table 4.10	HPLC analysis of L. pumila extracts from different	99
	locations	

Table 4.11	Analysis of primary and secondary metabolites of L.	103
	pumila standardised extract	
Table 4.12	Comparison between the ¹ H-NMR data of LA with data reported previously	115
Table 4.13	Comparison between the ¹³ C-NMR data of LA with	116
	data reported previously	
Table 4.14	Comparison between the ¹ H-NMR data of DTBP with	127
	data reported previously	
Table 4.15	Comparison between the ¹³ C-NMR data of DTBP with	127
	data reported previously	
Table 4.16	Percentage recovery, within-day and between-day	129
	precision and accuracy values for GA, CA, R, DTBP	
	and LA in LPE	
Table 4.17	Rate constant (k) of degradation reaction of all markers	144
	compounds in LPE at different temperatures	
Table 4.18	Rate constant (k) of degradation reaction of all markers	145
	compounds in LLP at different temperatures	
Table 4.19	Activation energy and pre-exponential factor for all	145
	selected marker compounds in LPE	
Table 4.20	Activation energy and pre-exponential factor for all	146
	selected marker compounds in LLP	
Table 4.21	Shelf lifes of all selected marker compounds from LPE	146
	at various storage conditions	
Table 4.22	Shelf lifes of all selected marker compounds from LLP	146
	at various storage conditions	
Table 4.23	Comparison of anti-pancreatic lipase data of Orl with	154
	data reported previously	
Table 4.24	Weekly body weight of rats treated with LPE and LLP	163
	at doses of 2 and 5 g/kg for acute toxicity study	
Table 4.25	Organ-to-body weight ratios of rats treated with LPE	163
	and LLP at dose 2 g/kg for acute toxicity study	
Table 4.26	Organ-to-body weight ratios of rats treated with LPE	164
	and LLP at dose 5 g/kg for acute toxicity study	

Table 4.27	Weekly body weight (g) of rats treated with LPE and	165
	LLP for 28 days	
Table 4.28	Organ-to-body weight ratios of rats treated with LPE	166
	and LLP for 28 days	
Table 4.29	Haematological parameters of rats treated with LPE	168
	and LLP for 28 days	
Table 4.30	Biochemical parameters of rats treated with LPE and	170
	LLP for 28 days	
Table 4.31	LOD, LOQ and linearity of selected marker compounds	185
	in rat plasma	
Table 4.32	Recovery (%), within-day and between-day precision	186
	and accuracy values for GA, CA, R, DTBP and LA in	
	rat plasma	
Table 4.33	Pharmacokinetic parameters of GA after oral and i.v.	190
	administrations of LPE and LLP in Sprague-Dawley	
	rats	
Table 4.34	Pharmacokinetic parameters of CA after oral and i.v.	191
	administrations of LPE and LLP in Sprague-Dawley	
	rats	
Table 4.35	Pharmacokinetic parameters of R after oral and i.v.	192
	administrations of LPE and LLP in Sprague-Dawley	
	rats	
Table 4.36	Pharmacokinetic parameters of DTBP after oral and i.v.	193
	administrations of LPE and LLP in Sprague-Dawley	
	rats	
Table 4.37	Pharmacokinetic parameters of LA after oral and i.v.	194
	administrations of LPE and LLP in Sprague-Dawley	
	rats	
Table 4.38	Comparison of pharmacokinetic data obtained with data	199
	reported previously for the selected marker compounds	

LIST OF FIGURES

		Page
Figures 1.1	Flow chart of research study	9
Figures 2.1	Photo of <i>L. pumila</i> var. alata	10
Figures 2.2	Chemical structures of phytochemicals identified from	13
	L. pumila	
Figures 2.3	Photo of uterine fibroid	38
Figures 3.1	Flow chart of isolation of LA	65
Figures 3.2	Flow chart of isolation of DTBP	67
Figures 4.1	UV-Vis spectra of L. pumila extract	101
Figures 4.2	FTIR spectra for L. pumila extract	102
Figures 4.3	UV-Vis spectra of LA	104
Figures 4.4	FTIR spectra of LA	105
Figures 4.5	LC-MS spectra of LA	105
Figures 4.6	¹ H-NMR spectra of LA	106
Figures 4.7	¹ H-NMR (split 1) spectra of LA	107
Figures 4.8	¹ H-NMR (split 2) spectra of LA	107
Figures 4.9	¹ H-NMR (split 3) spectra of LA	108
Figures 4.10	¹³ C-NMR spectra of LA	108
Figures 4.11	¹³ C-NMR (split 1) spectra of LA	109
Figures 4.12	¹³ C-NMR (split 2) spectra of LA	109
Figures 4.13	¹³ C-NMR (split 3) spectra of LA	110
Figures 4.14	¹³ C-NMR (split 4) spectra of LA	110
Figures 4.15	¹³ C-DEPTQ NMR (split 1) spectra of LA	111
Figures 4.16	¹³ C-DEPTQ NMR (split 2) spectra of LA	111
Figures 4.17	2D-HMBC for LA	112
Figures 4.18	2D-HMBC NMR spectra of LA	112
Figures 4.19	2D-COSY NMR spectra of LA	113
Figures 4.20	2D-NOESY NMR spectra of LA	113
Figures 4.21	2D-HSQC NMR spectra of LA	114
Figures 4.22	UV-Vis spectra of DTBP	117
Figures 4.23	FTIR spectra of DTBP	118
Figures 4.24	GC-MS spectra of DTBP	118

Figures 4.25	¹ H-NMR spectra of DTBP	119
Figures 4.26	¹ H-NMR (split 1) spectra of DTBP	119
Figures 4.27	¹ H-NMR (split 2) spectra of DTBP	119
Figures 4.28	¹ H-NMR (split 3) spectra of DTBP	120
Figures 4.29	¹ H-NMR (split 4) spectra of DTBP	120
Figures 4.30	¹³ C-NMR spectra of DTBP	121
Figures 4.31	¹³ C-NMR (split 1) spectra of DTBP	121
Figures 4.32	¹³ C-NMR (split 2) spectra of DTBP	122
Figures 4.33	¹³ C-NMR (split 3) spectra of DTBP	122
Figures 4.34	¹³ C-DEPTQ NMR (split 1) spectra of DTBP	123
Figures 4.35	¹³ C-DEPTQ NMR (split 2) spectra of DTBP	123
Figures 4.36	2D-HMBC for DTBP	124
Figures 4.37	2D-HMBC NMR spectra of DTBP	124
Figures 4.38	2D-COSY NMR spectra of DTBP	125
Figures 4.39	2D-NOESY NMR spectra of DTBP	125
Figures 4.40	2D-HSQC NMR spectra of DTBP	126
Figures 4.41	A representative HPLC chromatogram of mixed	128
	standard compounds, (A) GA, (B) CA, (C) R (D)	
	DTBP and (E) LA	
Figures 4.42	A representative HPLC chromatogram of LPE showing	130
	the selected marker compounds (A) GA, (B) CA, (C) R	
	(D) DTBP and (E) LA	
Figures 4.43	Quantification of the selected marker compounds in	131
	LPE by HPLC method	
Figures 4.44	Analysis of the selected marker compounds in LPE and	132
	LLP by HPLC showing improvement in their solubility	
Figures 4.45	FTIR spectra (A) and PCA (B) for LPE, LLP and	134
	soybean phospholipid	
Figures 4.46	UV-Vis spectra for LPE, soybean phospholipid and	135
	LLP	

Figures 4.47	Particle size, zeta potential of LLP sample (A) volume	136
	size distribution of LLP particles, (B) intensity size	
	distribution of LLP particles, and (C) zeta potential for	
	LLP particles	
Figures 4.48	TEM image of LLP	137
Figures 4.49	Remaining concentration (%) of GA in LPE stored at	139
	different storage conditions	
Figures 4.50	Remaining concentration (%) of CA in LPE stored at	139
	different storage conditions	
Figures 4.51	Remaining concentration (%) of R in LPE stored at	140
	different storage conditions	
Figures 4.52	Remaining concentration (%) of DTBP in LPE stored at	140
	different storage conditions	
Figures 4.53	Remaining concentration (%) of LA in LPE stored at	141
	different storage conditions	
Figures 4.54	Remaining concentration (%) of GA in LLP stored at	141
	different storage conditions	
Figures 4.55	Remaining concentration (%) of CA in LLP stored at	142
	different storage conditions	
Figures 4.56	Remaining concentration (%) of R in LLP stored at	142
	different storage conditions	
Figures 4.57	Remaining concentration (%) of DTBP in LLP stored at	143
	different storage conditions	
Figures 4.58	Remaining concentration (%) of LA in LLP stored at	143
	different storage conditions	
Figures 4.59	Overlay of UV-Vis spectra for LPE for a period of 6	148
	months at 30°C/75% RH	
Figures 4.60	Overlay of UV-Vis spectra for LLP for a period of 6	148
	months at 30°C/75% RH	
Figures 4.61	Overlay of FTIR spectra for LPE stored at 30°C/75%	149
	RH for a period of 6 months	
Figures 4.62	Overlay of FTIR spectra for LLP stored at 30°C/75%	150
	RH for a period of 6 months	

Figures 4.63	PCA for LPE at 30°C/75% RH	151
Figures 4.64	PCA for LLP at 30°C/75% RH	151
Figures 4.65	Percentage inhibition of LPE, LLP, LA, DTBP and Orl	153
	(100 μ g/mL) on pancreatic lipase activity	
Figures 4.66	IC_{50} of LPE, LLP, LA, DTBP and Orl on pancreatic	153
	lipase activity	
Figures 4.67	Percentage inhibition of LPE and LLP (200 μ g/mL) on	155
	3T3-L1 cells	
Figures 4.68	IC_{50} of LPE and LLP on 3T3-L1 cells inhibition	155
Figures 4.69	Percentage inhibition of LPE, LLP, GA, CA, R, DTBP,	157
	LA, MOMC, DOX, EGCG and ETP (100 $\mu g/mL)$ on	
	uterine fibroid cells	
Figures 4.70	IC ₅₀ of LPE, LLP, GA, CA, R, DTBP, LA, MOMC,	157
	DOX, EGCG and ETP on uterine fibroid cells	
	inhibition	
Figures 4.71	Percentage inhibition of LPE, LLP (200 $\mu\text{g/mL})$ and 5-	158
	FU (50 μ g/mL) on cervical cancer cells	
Figures 4.72	IC_{50} of LPE, LLP and 5-FU on cervical cancer cells	159
	inhibition	
Figures 4.73	Photos showing the inhibition on cervical cancer cells	159
	(A) negative control (B) 5-FU 50 μ g/mL (C) LPE and	
	(D) LLP 200 µg/mL	
Figures 4.74	Percentage inhibition of vessel growth in rat aortic ring	161
	assay treated with LPE, LLP (100 µg/mL), DTBP, LA	
	(50 μ g/mL), and Sur (100 μ g/mL)	
Figures 4.75	IC_{50} of the blood vessels growth inhibition for LPE,	161
	LLP and Sur	
Figures 4.76	Photos of the blood vessels growth on rat aortic rings	162

- Figures 4.77 Liver histology of female rats in repeated dose toxicity 172 study for 28 days as assessed by H and E staining (A): normal control with arrow showing mild periportal chronic inflammation (1 out of 5 rats) (B): treated group with 250 mg/kg of LPE showing normal parenchyma without any portal inflammation
- Figures 4.78 Liver histology of female rats in repeated dose toxicity 173 study for 28 days as assessed by H and E staining (A): treated group with 500 mg/kg of LPE with arrow showing mild periportal chronic inflammation (1 out of 5 rats) (B): treated group with 1000 mg/kg of LPE showing normal parenchyma
- Figures 4.79 Liver histology of female rats in repeated dose toxicity 174 study for 28 days as assessed by H and E staining (A): treated group with 250 mg/kg of LLP showing normal parenchyma (B): treated group with 500 mg/kg of LLP showing normal parenchyma (C): treated group with 1000 mg/kg of LLP showing normal parenchyma
- Figures 4.80 Liver histology of male rats in repeated dose toxicity 175 study for 28 days as assessed by H and E staining (A): normal control with arrow showing mild periportal chronic inflammation (only 1 out of 5 rats) (B): treated group with 250 mg/kg of LPE with arrow showing mild periportal chronic inflammation (only 1 out of 5 rats)

176

Figures 4.81 Liver histology of male rats in repeated dose toxicity study for 28 days as assessed by H and E staining (A): treated group with 500 mg/kg of LPE showing normal parenchyma without any portal inflammation (B): treated group with 1000 mg/kg of LPE with arrow showing mild periportal chronic inflammation (only 1 out of 5 rats) Figures 4.82 Liver histology of male rats in repeated dose toxicity 177 study for 28 days as assessed by H and E staining (A): treated group with 250 mg/kg of LLP showing normal parenchyma without any portal inflammation (B): treated group with 500 mg/kg of LLP showing normal parenchyma without any portal inflammation (C): treated group with 1000 mg/kg of LLP showing normal parenchyma without any portal inflammation

178

- Figures 4.83 Kidney histology of female rats in repeated dose toxicity study for 28 days as assessed by H and E staining (A): normal control showing normal renal tubules with chronic pyelitis (only 1 out of 5 rats) (B): treated group with 250 mg/kg of LPE showing normal renal tubules
- Figures 4.84 Kidney histology of female rats in repeated dose 179 toxicity study for 28 days as assessed by H and E staining (A): treated group with 500 mg/kg of LPE showing normal renal glomeruli and tubules (B): treated group with 1000 mg/kg of LPE showing normal tubules with chronic pyelitis (only 1 out of 5 rats)
- Figures 4.85 Kidney histology of female rats in repeated dose 180 toxicity study for 28 days as assessed by H and E staining (A): treated group with 250 mg/kg of LLP showing normal renal tubules (B): treated group with 500 mg/kg of LLP showing normal glomeruli and tubules (C): treated group with 1000 mg/kg of LLP showing normal renal tubules
- Figures 4.86 Kidney histology of male rats in repeated dose toxicity 181 study for 28 days as assessed by H and E staining (A): normal control showing normal glomeruli and tubules (B): treated group with 250 mg/kg of LPE showing normal renal tubules

Figures 4.87 182 Kidney histology of male rats in repeated dose toxicity study for 28 days as assessed by H and E staining (A): treated group with 500 mg/kg of LPE showing normal glomeruli and tubules (B): treated group with 1000 mg/kg of LPE showing normal glomeruli and tubules Figures 4.88 183 Kidney histology of male rats in repeated dose toxicity study for 28 days as assessed by H and E staining (A): treated group with 250 mg/kg of LLP showing normal renal tubules (B): treated group with 500 mg/kg of LLP showing normal glomeruli and tubules (C): treated group with 1000 mg/kg of LLP showing normal glomeruli and tubules Figures 4.89 A representative HPLC chromatogram of blank rat 187 plasma Figures 4.90 A representative HPLC chromatogram of rat plasma 187 spiked with (A) GA, (B) CA, (C) R, (D) 4,5-DCQA (E) DTBP and (F) LA Figures 4.91 A representative HPLC chromatogram of rat plasma at 187 2 hrs after i.v. administration of LLP (50 mg/kg). (A) GA, (B) CA, (C) R, (D) 4,5-DCQA (E) DTBP and (F) LA 188 Figures 4.92 A representative HPLC chromatogram of rat plasma at 2 hrs after oral administration of LLP (500 mg/kg). (A) GA, (B) CA, (C) R, (D) 4,5-DCQA (E) DTBP and (F) LA Figures 4.93 Mean plasma concentration-time profiles (mean ± 190 SEM, n = 8) of GA after i.v. administration of 50 mg/kg of LPE and LLP Figures 4.94 Mean plasma concentration-time profiles (mean ± 191 SEM, n = 8) of CA after i.v. administration of 50 mg/kg of LPE and LLP

Figures 4.95	Mean plasma concentration-time profiles (mean ±	192
	SEM, $n = 8$) of R after i.v. administration of 50 mg/kg	
	of LPE and LLP	
Figures 4.96	Mean plasma concentration-time profiles (mean \pm	193
	SEM, $n = 8$) of DTBP after i.v. administration of 50	
	mg/kg of LPE and LLP	
Figures 4.97	Mean plasma concentration-time profiles (mean \pm	194
	SEM, $n = 8$) of LA after i.v. administration of 50 mg/kg	
	of LPE and LLP	
Figures 4.98	Mean plasma concentration-time profiles (mean \pm	196
	SEM, $n = 8$) of GA after oral administration of 500	
	mg/kg of LPE and LLP	
Figures 4.99	Mean plasma concentration-time profiles (mean \pm	196
	SEM, $n = 8$) of CA after oral administration of 500	
	mg/kg of LPE and LLP	
Figures 4.100	Mean plasma concentration-time profiles (mean \pm	197
	SEM, $n = 8$) of R after oral administration of 500	
	mg/kg of LPE and LLP	
Figures 4.101	Mean plasma concentration-time profiles (mean \pm	197
	SEM, $n = 8$) of DTBP after oral administration of 500	
	mg/kg of LPE and LLP	
Figures 4.102	Mean plasma concentration-time profiles (mean \pm	198
	SEM, $n = 8$) of LA after oral administration of 500	
	mg/kg of LPE and LLP	
Figures 4.103	Percentage change in body weight of normal control	201
	group and HFD groups treated with LPE 125 mg/kg,	
	LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen	
	500 mg/kg, Orl 28 mg/kg and negative control group	
	for 45 days	
Figures 4.104	Body mass index of normal control group and HFD	202
	groups treated with LPE 125 mg/kg, LPE 250 mg/kg,	
	LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl	
	28 mg/kg and negative control group for 45 days	

- Figures 4.105 Average daily food intake of normal control group and 203 HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.106 Total cholesterol level of normal control group and 204 HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.107Triglyceride level of normal control group and HFD205groups treated with LPE 125 mg/kg, LPE 250 mg/kg,LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl28 mg/kg and negative control group for 45 days
- Figures 4.108 Low density lipoprotein-cholesterol level of normal 206 control group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.109 High density lipoprotein-cholesterol level of normal 207 control group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.110 Heart relative weight to body weight of normal control 208 group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days

- Figures 4.111 Lung relative weight to body weight of normal control 208 group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.112 Kidney relative weight to body weight of normal 209 control group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.113 Liver relative weight to body weight of normal control 209 group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.114 Adipose tissue relative weight to body weight of 210 normal control group and HFD groups treated with LPE 125 mg/kg, LPE 250 mg/kg, LPE 500 mg/kg, LLP 500 mg/kg, Zen 500 mg/kg, Orl 28 mg/kg and negative control group for 45 days
- Figures 4.115 Liver histology of normal control group and HFD 211 treated groups for 45 days. (A) normal control group
 (B) LPE 125 mg/kg (C) LPE 250 mg/kg (D) LPE 500 mg/kg (E) LLP 500 mg/kg (F) Zen 500 mg/kg (G) Orl 28 mg/kg (H) negative control group

xxii

APPENDICES

		Page
Appendix A	Stability study	247
Figure 1	Standard curve of GA	247
Figure 2	Standard curve of CA	247
Figure 3	Standard curve of R	248
Figure 4	Standard curve of DTBP	248
Figure 5	Standard curve of LA	249
Table 1	Remaining percentage concentration of GA in LPE	249
	stored at different storage conditions	
Table 2	Remaining percentage concentration of GA in LLP	250
	stored at different storage conditions	
Table 3	Remaining percentage concentration of CA in LPE	250
	stored at different storage conditions	
Table 4	Remaining percentage concentration of CA in LLP	251
	stored at different storage conditions	
Table 5	Remaining percentage concentration of R in LPE	251
	stored at different storage conditions	
Table 6	Remaining percentage concentration of R in LLP	252
	stored at different storage conditions	
Table 7	Remaining percentage concentration of DTBP in	252
	LPE stored at different storage conditions	
Table 8	Remaining percentage concentration of DTBP in	253
	LLP stored at different storage conditions	
Table 9	Remaining percentage concentration of LA in LPE	253
	stored at different storage conditions	
Table 10	Remaining percentage concentration of LA in LLP	254
	stored at different storage conditions	
Figure 6	Plot of (ln C) against time for GA in LPE at	254
	30°C/75% RH	
Figure 7	Plot of (ln C) against time for GA in LPE at	254
	40°C/75% RH	

Figure 8	Plot of (ln C) against time for GA in LPE at	255
	50°C/85% RH	
Figure 9	Plot of (ln C) against time for GA in LPE at	255
	60°C/85% RH	
Figure 10	Plot of (ln C) against time for GA in LLP at	255
	30°C/75% RH	
Figure 11	Plot of (ln C) against time for GA in LLP at	256
	40°C/75% RH	
Figure 12	Plot of (ln C) against time for GA in LLP at	256
	50°C/85% RH	
Figure 13	Plot of (ln C) against time for GA in LLP at	256
	60°C/85% RH	
Figure 14	Plot of (ln C) against time for CA in LPE at	257
	30°C/75% RH	
Figure 15	Plot of (ln C) against time for CA in LPE at	257
	40°C/75% RH	
Figure 16	Plot of (ln C) against time for CA in LPE at	257
	50°C/85% RH	
Figure 17	Plot of (ln C) against time for CA in LPE at	258
	60°C/85% RH	
Figure 18	Plot of (ln C) against time for CA in LLP at	258
	30°C/75% RH	
Figure 19	Plot of (ln C) against time for CA in LLP at	258
	40°C/75% RH	
Figure 20	Plot of (ln C) against time for CA in LLP at	259
	50°C/85% RH	
Figure 21	Plot of (ln C) against time for CA in LLP at	259
	60°C/85% RH	
Figure 22	Plot of (ln C) against time for R in LPE at 30°C/75%	259
	RH	
Figure 23	Plot of (ln C) against time for R in LPE at 40°C/75%	260
	RH	

Figure 24	Plot of (ln C) against time for R in LPE at 50°C/85% RH	260
Figure 25	Plot of (ln C) against time for R in LPE at 60°C/85% RH	260
Figure 26	Plot of (ln C) against time for R in LLP at 30°C/75% RH	261
Figure 27	Plot of (ln C) against time for R in LLP at 40°C/75% RH	261
Figure 28	Plot of (ln C) against time for R in LLP at 50°C/85% RH	261
Figure 29	Plot of (ln C) against time for R in LLP at 60°C/85% RH	262
Figure 30	Plot of (ln C) against time for DTBP in LPE at 30°C/75% RH	262
Figure 31	Plot of (ln C) against time for DTBP in LPE at 40°C/75% RH	262
Figure 32	Plot of (ln C) against time for DTBP in LPE at 50°C/85% RH	263
Figure 33	Plot of (ln C) against time for DTBP in LPE at 60°C/85% RH	263
Figure 34	Plot of (ln C) against time for DTBP in LLP at 30°C/75% RH	263
Figure 35	Plot of (ln C) against time for DTBP in LLP at 40°C/75% RH	264
Figure 36	Plot of (ln C) against time for DTBP in LLP at 50°C/85% RH	264
Figure 37	Plot of (ln C) against time for DTBP in LLP at 60°C/85% RH	264
Figure 38	Plot of (ln C) against time for LA in LPE at 30°C/75% RH	265
Figure 39	Plot of (ln C) against time for LA in LPE at 40°C/75% RH	265

Figure 40	Plot of (ln C) against time for LA in LPE at	265
	50°C/85% RH	
Figure 41	Plot of (ln C) against time for LA in LPE at	266
	60°C/85% RH	
Figure 42	Plot of (ln C) against time for LA in LLP at	266
	30°C/75% RH	
Figure 43	Plot of (ln C) against time for LA in LLP at	266
	40°C/75% RH	
Figure 44	Plot of (ln C) against time for LA in LLP at	267
	50°C/85% RH	
Figure 45	Plot of (ln C) against time for LA in LLP at	267
	60°C/85% RH	
Figure 46	Arrhenius plot for GA in LPE	267
Figure 47	Arrhenius plot for CA in LPE	268
Figure 48	Arrhenius plot for R in LPE	268
Figure 49	Arrhenius plot for DTBP in LPE	268
Figure 50	Arrhenius plot for LA in LPE	269
Figure 51	Arrhenius plot for GA in LLP	269
Figure 52	Arrhenius plot for CA in LLP	269
Figure 53	Arrhenius plot for R in LLP	270
Figure 54	Arrhenius plot for DTBP in LLP	270
Figure 55	Arrhenius plot for LA in LLP	270
Figure 56	Overlay of UV-Vis spectra for LPE for a period of 6	271
	months at 40°C/75% RH	
Figure 57	Overlay of UV-Vis spectra for LPE for a period of 6	271
	months at 50°C/85% RH	
Figure 58	Overlay of UV-Vis spectra for LPE for a period of 6	272
	months at 60°C/85% RH	
Figure 59	Overlay of UV-Vis spectra for LLP for a period of 6	272
	months at 40°C/75% RH	
Figure 60	Overlay of UV-Vis spectra for LLP for a period of 6	273
	months at 50°C/85% RH	

Figure 61	Overlay of UV-Vis spectra for LLP for a period of 6	273
	months at 60°C/85% RH	
Figure 62	Overlay of FTIR spectra for LPE stored at 40°C/75%	274
	RH for a period of 6 months	
Figure 63	Overlay of FTIR spectra for LPE stored at 50°C/85%	274
	RH for a period of 6 months	
Figure 64	Overlay of FTIR spectra for LPE stored at 60°C/85%	275
	RH for a period of 6 months	
Figure 65	Overlay of FTIR spectra for LLP stored at 40°C/75%	275
	RH for a period of 6 months	
Figure 66	Overlay of FTIR spectra for LLP stored at 50°C/85%	276
	RH for a period of 6 months	
Figure 67	Overlay of FTIR spectra for LLP stored at 60°C/85%	276
	RH for a period of 6 months	
Figure 68	PCA for LPE at 40°C/75% RH	277
Figure 69	PCA for LPE at 50°C/85% RH	277
Figure 70	PCA for LPE at 60°C/85% RH	278
Figure 71	PCA for LLP at 40°C/75% RH	278
Figure 72	PCA for LLP at 50°C/85 % RH	279
Figure 73	PCA for LLP at 60°C/85% RH	279
Appendix B	Activity on pancreatic lipase enzyme and 3T3-L1	280
	cells	
Table 11	Percentage inhibition and IC_{50} of LPE and LLP on	280
	pancreatic lipase enzyme	
Table 12	Percentage inhibition and IC_{50} of LPE and LLP on	280
	3T3-L1 cell line	
Appendix C	Anti-uterine fibroid activity	280
Table 13	Percentage inhibition and IC ₅₀ of LPE and LLP on	280
	uterine fibroids	
Appendix D	Anti-cervical cancer activity	281
Table 14	Percentage inhibition and IC_{50} of LPE and LLP on	281
	cervical cancer	
Appendix E	Ex vivo anti-angiogenesis using rat aortic ring assay	281

Table 15	Percentage inhibition of LPE and LLP of rat aortic	281
	ring assay	
Appendix F	Pharmacokinetic study	282
Figure 74	Standard curve of GA in rat plasma	282
Figure 75	Standard curve of CA in rat plasma	282
Figure 76	Standard curve of R in rat plasma	283
Figure 77	Standard curve of DTBP in rat plasma	283
Figure 78	Standard curve of LA in rat plasma	284
Table 16	Pharmacokinetic data of GA after i.v. administration of LPE	284
Table 17	Pharmacokinetic data of GA after i.v. administration of LLP	285
Table 18	Pharmacokinetic data of CA after i.v. administration	285
Table 19	of LPE Pharmacokinetic data of CA after i.v. administration	286
	of LLP	
Table 20	Pharmacokinetic data of R after i.v. administration of	286
	LPE	
Table 21	Pharmacokinetic data of R after i.v. administration of	287
T 11 22	LLP	207
Table 22	Pharmacokinetic data of DTBP after i.v. administration of LPE	287
Table 23	Pharmacokinetic data of DTBP after i.v.	288
	administration of LLP	
Table 24	Pharmacokinetic data of LA after i.v. administration	288
	of LPE	
Table 25	Pharmacokinetic data of LA after i.v. administration	289
T 11 06	of LLP	200
Table 26	Pharmacokinetic data of GA after oral administration of LPE	289
Table 27	Pharmacokinetic data of GA after oral administration	290
	of LLP	

Table 28	Pharmacokinetic data of CA after oral administration of LPE	290
Table 29	Pharmacokinetic data of CA after oral administration of LLP	291
Table 30	Pharmacokinetic data of R after oral administration of LPE	291
Table 31	Pharmacokinetic data of R after oral administration of LLP	292
Table 32	Pharmacokinetic data of DTBP after oral administration of LPE	292
Table 33	Pharmacokinetic data of DTBP after oral administration of LLP	293
Table 34	Pharmacokinetic data of LA after oral administration of LPE	293
Table 35	Pharmacokinetic data of LA after oral administration of LLP	294
Appendix G	In vivo anti-obesity data	294
Table 36	Percentage change in body weight of high-fat diet- induced rats treated with different doses of LPE, LLP for 45 days	294
Table 37	Body Mass Index (BMI) values of high-fat diet- induced rats treated with different doses of LPE, LLP for 45 days	295
Table 38		295
	Average daily food intake (g/ rat /day) of high-fat diet-induced rats treated with different doses of LPE, LLP for 45 days	2)3
Table 39		295

Table 41	Serum LDL-C and HDL-C levels in high-fat diet-	297
	induced rats treated with different doses of LPE, LLP	
	for 45 days	
Table 42	Heart and lung relative weight of high-fat diet-	297
	induced rats treated with different doses of LPE, LLP	
	for 45 days	
Table 43	Kidney and liver relative weight of high-fat diet-	298
	induced rats treated with different doses of LPE, LLP	
	for 45 days	
Table 44	Adipose tissue relative weight of high-fat diet-	298
	induced rats treated with different doses of LPE, LLP	
	for 45 days	
Appendix H	List of publications	299
Appendix I	USM / Animal Ethics Approval for this research	310
	work	

LIST OF ABBREVIATIONS

А	Pre-exponential factor
AAS	Atomic absorption spectroscopy
ACN	Acetonitrile
ALT	Alanine transaminase
API	Active pharmaceutical ingredients
ARASC	Animal Research and Service Centre
AS	Arsenic
AST	Aspartate transaminase
AUC	Area under the curve
BMI	Body mass index
CA	Caffeic acid
Cd	Cadmium
CH ₃ COOH	Acetic acid
C_{\max}	Peak concentration
CL	Clearance
COMT	Catechol-O-methyl transferase
CO_2	Carbon dioxide
CV	Coefficient of variation
DEPTQ	Distortionless enhancement by polarisation transfer with retention of
	quaternaries
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DOX	Doxorubicin
DTBP	2,4-di-tert-butylphenol
Ea	Activation energy
EGCG	Epigallocatechin gallate
ESI	Electrospray ionisation
EtOH	Ethanol
ETP	Etoposide
et al	Else where or and other

FBS	Fetal bovine serum
FRIM	Forest Research Institute of Malaysia
FTIR	Fourier Transform Infrared
FPP	Finished pharmaceutical products
GA	Gallic acid
GAVI	Global Alliance for Vaccines and Immunization
GC	Gas chromatography
GC-MS	Gas chromatography-mass spectrometry
GIT	Gastrointestinal tract
H_2O	Water
HC1	Hydrochloric acid
HCT-116	Human colorectal carcinoma cell line
HDL-C	High density lipoprotein-cholesterol
HFD	High-fat diet
Hg	Mercury
HIFBS	Heat-inactivated fetal bovine serum
HMG-CoA	3-hydroxy-3-methylglutaryl coenzyme A
HPLC	High performance liquid chromatography
HPV	Human papillomavirus
HV	High voltage
IARC	International Agency for Research on Cancer
IC ₅₀	Half maximal inhibitory concentration
ICH	International Conference on Harmonisation
IL-1β	Interleukin-1beta
IL-6	Interleukin-6
i.v.	Intravenous
KBG	Kue-chin-fu-ling-man
KBr	Potassium bromide
KCL	Potassium chloride
Ke	Elimination rate constant
L. pumila	Labisia pumila
LA	Labisiaquinone A
LC-MS	Liquid chromatography-mass spectrometry

LDH	Lactate dehydrogenase
LDL-C	Low density lipoprotein-cholesterol
LLP	Liposome of Labisia pumila standardised extract
ln C	Natural logarithm of concentration
ln k	Natural logarithm of rate constant
LOD	Limit of detection
Log k	Logarithm of rate constant
LOQ	Limit of quantification
LPE	Labisia pumila standardised extract
LPS	Lipopolysaccharide
MCF-7	Human breast adenocarcinoma cell line
MDA	Malondialdehyde
MDI	Mixture of methyl isobutyl xanthine, dexamethasone, and insulin
MeOD	Deuterated methanol
MeOH	Methanol
MLT	Microbial limit test
MOMC	Mixture of the 5 selected marker compounds
MRSA	Methicillin-resistant Staphylococcus aureus
MS	Mass spectrometry
MSA	Mannitol salt agar
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
n	Number of samples
N_2	Nitrogen
NaCl	Sodium chloride
NF-kB	Nuclear factor kappa B
NIH	National Institute of Health
NMR	Nuclear magnetic resonance
NOAEL	No-observed-adverse-effect level
OECD	Organisation for Economic Cooperation and Development
OD	Optical density
Orl	Orlistat
Pb	Lead
PBS	Phosphate-buffered saline

PC3	Human prostate cancer cell line
PCA	Principal component analysis
PCS	Photon correlation spectroscopy
PDI	Poly dispersity index
PGE ₂	Prostaglandin E ₂
PMA	phorbol 12-myristate 13-acetate
p-NPB	p-nitrophenyl butyrate
PPL	Porcine pancreatic lipase
Psi	Pound per square inch
PTFE	Polytetrafluoroethylene
R	Rutin
R^2	Coefficient of determination
RH	Relative humidity
ROS	Reactive oxygen species
RPMI-1640	Roswell Park Memorial Institute medium
RVSEB	Rappaport Vassiliadis Salmonella enrichment broth
SCDA	Soybean Casein Digest Agar
SDA	Sabouraud Dextrose Agar
SEM	Standard error of mean
SK-UT-1	Uterine fibroid cell line
SPSS	Statistical Package for the Social Sciences
Sur	Suramin
<i>t</i> _{1/2}	Biological half life
TC	Total cholesterol
TEM	Transmission electron microscopy
TG	Triglycerides
TLC	Thin layer chromatography
$T_{\rm max}$	Time to reach peak concentration
TNF-α	Tumor necrosis factor-alpha
UK	United Kingdom
UPLC	Ultra performance liquid chromatography
USA	United States of America
USP	United States Pharmacopoeia

UTI	Urinary tract infection
UV-Vis	Ultra violet-visible
v/v	Volume to volume
v/wt	Volume to weight
$V_{ m d}$	Volume of distribution
VEGF	Vascular endothelial growth factor
Vpp	Voltage peak-to-peak
WHO	World Health Organisation
XLD	Xylose-lysine-deoxycholate
Zen	Zenoctil
Zp	Zeta potential
ZS	Zetasizer
1/C	Inverse of concentration
1/T	Inverse of temperature
¹ H-NMR	Proton nuclear magnetic resonance
2D-COSY	Two dimensional correlation spectroscopy
2D-HMBC	Two dimensional heteronuclear multiple-bond correlation
2D-HSQC	Two dimensional heteronuclear single quantum correlation
2D-NMR	Two dimensional nuclear magnetic resonance
2D-NOESY	Two dimensional nuclear overhauser effect spectroscopy
3T3-L1	Adipocyte cell line
4,5-DCQA	4,5-di-caffeoylquinic acid
5-FU	5-fluorouracil
¹³ C-NMR	Carbon-13 nuclear magnetic resonance

LIST OF UNITS

cfu	Colony forming unit
cm	Centimetre
cm ⁻¹	Per centimetre
g	Gram
g/kg	Gram per kilogram
h	Hour
hrs	Hours
Hz	Hertz
IU	International unit
k	Rate constant
Κ	Kelvin
kg	Kilogram
kJ	Kilojoule
kV	Kilovolt
L	Litre
М	Molar
m/z	Mass-to-charge ratio
μg	Microgram
mg	Milligram
mg/dL	Milligram per decilitre
µg/mL	Microgram per millilitre
MHz	Megahertz
μL	Microlitre
mL	Millilitre
μm	Micrometre
μΜ	Micro mole
mm	Millimetre
mmol/L	Millimole per litre
mol	Mole
nm	Nano metre
ppm	Parts per million

LIST OF SYMBOLS

α	Alpha
β	Beta
°C	Degree Celsius
δ	Delta
=	Equal
>	Greater than
\geq	Greater than or equal to
λ	Lambda
<	Less than
\leq	Less than or equal to
_	Minus
Х	Multiplication
/	Per
%	Percentage
π	Pi
+	Plus
±	Plus minus
θ	Theta
ζ	Zeta potential

PEMENCILAN DAN PENGENALPASTIAN PENANDA KIMIA DARIPADA *LABISIA PUMILA* (BLUME) DAN PENYEDIAAN EKSTRAK TERPIAWAI DAN TERFORMULASI NANO UNTUK KAJIAN ANTI-OBESITI, ANTI-FIBROID UTERUS DAN ANTI-KANSER SERVIKS

ABSTRAK

Labisia pumila Blume, dikenali setempat sebagai Kacip Fatimah, telah lama digunakan sebagai tonik wanita dan produk kesihatan. L. pumila juga telah digunakan secara tradisional untuk merawat disentri, dismenorea dan gonorea. Kajian ini bertujuan untuk memencilkan dan mengenal pasti penanda kimia yang berkaitan dengan anti-obesiti, anti-fibroid uterus dan anti-kanser serviks dari ekstrak terpiawai L. pumila (LPE), untuk memformulasi dan mencirikan liposom ekstrak terpiawai L. pumila (LLP) dan menjalankan kajian kestabilan dipercepat, toksisiti dan farmakokinetik ke atas LPE dan LLP. Penilaian aktiviti anti-obesiti secara in vitro dan in vivo serta anti-fibroid uterus dan anti-kanser serviks secara in vitro telah dicuba. 2,4-di-tert-butilfenol dan labisiakuinon-A telah diasingkan dan dikenal pasti menggunakan kaedah NMR, LC-MS/GC-MS, dan FTIR. Pemiawaian LPE melibatkan pemprofilan kimia dan analisis kuantitatif menggunakan 5 sebatian penanda; asid galik (GA), asid kafeik (CA), rutin (R), 2,4-di-tert-butilfenol (DTBP) dan labisiakuinon-A (LA) menggunakan kaedah HPLC yang disahkan. Jumlah sebatian penanda dalam LPE ditemui sebanyak 1.03 - 46.36 µg/mg. LPE telah berjaya diformulasi sebagai liposom (fomulasi nano) dan dicirikan menggunakan penguji saiz zeta, zeta berpotensi, TEM dan FTIR. Saiz zarah purata adalah 171.20 \pm 1.53 nm dengan zeta berpotensi -44.10 ± 1.37, keputusan FTIR menunjukkan perbezaan ciri-ciri berkaitan dengan kumpulan berfungsi. Dalam kajian kestabilan dipercepatkan, LPE dan LLP adalah lebih stabil pada suhu 25°C berbanding suhu lain yang dikaji dan jangka hayat dianggarkan (t₉₀) adalah masing-masing 19.40 dan 22.80 bulan pada 25°C. Hasil kajian anti-obesiti in vitro masing-masing menunjukkan perencatan aktiviti lipase pankreas LPE dan LLP sebanyak (di 100 μ g/mL) 21.85 \pm 1.39 dan 40.06 \pm 2.56%. Orlistat (kawalan positif) pada 100 μ g/mL menunjukkan perencatan yang lebih tinggi ke atas lipase pankreas in vitro berbanding LPE dan LLP. LPE dan LLP mempamerkan aktiviti perencatan tinggi pada adiposit 3T3-L1 masing-masing dengan 94.30 ± 0.92 and $98.20 \pm 1.49\%$. Untuk aktiviti anti-fibroid uterus secara in vitro, assai MTT telah digunakan dan peratusan perencatan untuk LPE adalah 99.01 \pm 3.23% dengan IC₅₀ 14.24 \pm 0.69 µg/mL, manakala peratusan perencatan untuk LLP adalah 97.99 \pm 2.77% dengan IC₅₀ 20.33 \pm 1.03 µg/mL. Kawalan positif (doksorubisin, epigallokatekin galat and etoposide) mempamerkan kesan anti-proliferasi yang hampir sama dengan LPE dan LLP terhadap jalur sel fibroid uterus. Bagi assai kanser serviks in vitro, peratusan perencatan untuk LPE adalah 54.69 \pm 0.41% dengan IC₅₀ 185.00 \pm 2.77 µg / mL, manakala peratusan perencatan untuk LLP adalah 58.99 \pm 0.17% dengan IC₅₀ 169.60 \pm 2.49 µg/mL. Kawalan positif (5-fluorouracil) menunjukkan aktiviti yang lebih tinggi terhadap jalur sel kanser serviks berbanding LPE dan LLP. Untuk aktiviti antiangiogenesis, LPE, LLP, DTBP dan LA menunjukkan aktiviti peratusan yang tinggi 75.41 ± 2.97 , 77.36 ± 2.58 , 80.16 ± 3.22 dan 83.54 ± 3.43 , masing-masing. Dalam toksisiti dos akut dan berulang LPE dan LLP menunjukkan bahawa ekstrak selamat pada dos yang dipilih (250-5000 mg/kg) dalam tikus Sprague-Dawley. Tiada perubahan signifikan diperhatikan dalam ciri-ciri biokimia, hematologi dan histologi pada tikus yang dirawat berbanding dengan kumpulan kawalan normal.

Farmakokinetik LPE dan LLP telah dijalankan menggunakan kaedah HPLC bagi penentuan serentak sebatian penanda plasma selepas pemberian oral dan intravena (i.v.). Bioavailabiliti GA, CA, R, DTBP dan LA dalam LPE adalah 6.70 ± 0.21 , 3.92 \pm 0.15, 3.38 \pm 0.14, 3.75 \pm 0.12 dan 4.09 \pm 0.15%, manakala bagi LLP masingmasing diperhatikan adalah 9.50 \pm 0.29 (P < 0.01) , 5.38 \pm 0.23 (P < 0.05), 4.47 \pm 0.22 (P < 0.05), 5.54 \pm 0.17 (P < 0.01) dan 5.61 \pm 0.23% (P < 0.01). Keputusan ini menunjukkan bahawa bioavailabiliti sebatian penanda dalam LLP adalah bertambah baik berbanding LPE. Model tikus teraruh diet tinggi lemak selama 45 hari telah digunakan dalam assai anti-obesiti LPE dan LLP secara in vivo. Hasil kajian menunjukkan pengurangan signifikan dalam indeks jisim badan (P < 0.001), berat badan (P < 0.001), pengambilan makanan harian (P < 0.001), jumlah kolesterol (TC) (P < 0.001), trigliserida (TG) (P < 0.05), lipoprotein ketumpatan rendah (LDL-C) (P< 0.001), organ hepar (P < 0.001), dan berat tisu adipos (P < 0.001) dan peningkatan lipoprotein berketumpatan tinggi (HDL-C) (P < 0.001) berbanding dengan kumpulan kawalan negatif serta mempamerkan ciri histologi hepar normal dalam tikus yang dirawat dengan LPE 500 mg/kg dan LLP 500 mg/kg. Kawalan positif (zenoctil dan orlistat) didapati kurang atau sama berbanding LPE dan LLP. LPE dan LLP adalah selamat pada dos yang terpilih (250-5000 mg/kg), menunjukkan kesan anti-obesiti, anti-fibroid uterus dan anti-kanser serviks secara in vitro dan kesan anti-obesiti secara in vivo.

ISOLATION AND IDENTIFICATION OF CHEMICAL MARKERS FROM *LABISIA PUMILA* (BLUME) AND PREPARATION OF STANDARDISED AND NANOFORMULATED EXTRACTS FOR ANTI-OBESITY, ANTI-UTERINE FIBROID AND ANTI-CERVICAL CANCER STUDIES

ABSTRACT

Labisia pumila Blume, locally known as Kacip Fatimah, has long been used as female tonics and health products. L. pumila has also been used traditionally in the treatment of dysentery, dysmenorrhoea and gonorrhoea. This study was aimed to isolate and identify of chemical markers related to anti-obesity, anti-uterine fibroid and anti-cervical cancer from L. pumila standardised extract (LPE), to formulate and characterise a liposome of L. pumila standardised extract (LLP) and carry out accelerated stability, toxicity and pharmacokinetic studies on LPE and LLP. Evaluation of the anti-obesity, anti-uterine fibroid, anti-cervical cancer studies were attempted. 2,4-di-tert-butylphenol and labisiaquinone-A were isolated and identified using NMR, LC-MS/GC-MS, and FTIR methods. Standardisation of LPE involved chemical profiling and quantitative analysis of the 5 selected marker compounds; gallic acid (GA), caffeic acid (CA), rutin (R), 2,4-di-tert-butylphenol (DTBP) and labisiaquinone-A (LA) using a validated HPLC method. The amount of the selected marker compounds in LPE was found to be in the range of 1.03-46.36 µg/mg. LPE was successfully formulated as a liposome (nanoformulation) and characterised by zetasizer, zeta potential, TEM and FTIR. The average particle size was 171.20 ± 1.53 nm with zeta potential -44.10 ± 1.37 , the FTIR results showed characteristic differences in related to functional groups. In accelerated stability study, LPE and LLP were more stable at 25°C compared to other temperatures studied and the estimated shelf life (t_{90}) was 19.40 and 22.80 months, respectively, at 25°C. For the inhibition effect on pancreatic lipase activity of LPE and LLP at 100 µg/mL, the inhibition percentage was at 21.85 ± 1.39 and $40.06 \pm 2.56\%$, respectively. Orlistat (positive control) at 100 µg/mL showed better inhibition on pancreatic lipase as compared to LPE and LLP. LPE and LLP exhibited high inhibition activity on 3T3-L1 adipocytes at 94.30 \pm 0.92 and 98.20 \pm 1.49%, respectively. For the anti-uterine fibroid activity, MTT assay was used and the percentage inhibition for LPE was 99.01 \pm 3.23% with IC₅₀ of 14.24 \pm 0.69 µg/mL, while the percentage inhibition for LLP was 97.99 \pm 2.77% with IC₅₀ of 20.33 \pm 1.03 µg/mL at 100 µg/mL. The positive controls (doxorubicin, epigallocatechin gallate and etoposide) almost showed similar anti-proliferative effect on uterine fibroid cell line as compared to LPE and LLP. For the anti-cervical cancer assay, the percentage inhibition for LPE was $54.69 \pm 0.41\%$ with IC₅₀ of 185.00 \pm 2.77 µg/mL, while the percentage inhibition for LLP was 58.99 \pm 0.17% with IC₅₀ of 169.60 \pm 2.49 µg/mL at 200 µg/mL. Positive control (5fluorouracil) possessed higher activity on cervical cancer cell line as compared to LPE and LLP. For the anti-angiogenesis activity, LPE, LLP, DTBP and LA shows high percentage activity 75.41 \pm 2.97, 77.36 \pm 2.58, 80.16 \pm 3.22 and 83.54 \pm 3.43, respectively. In the acute and repeated dose toxicity of LPE and LLP, the extracts were safe at the selected doses (250-5000 mg/kg) in Sprague-Dawley rats. Nonsignificant changes were observed in biochemical, haematological and histological features in treated rats compared to normal control group. The pharmacokinetics of LPE and LLP were performed using HPLC method for the simultaneous plasma determination of the selected marker compounds after oral and intravenous (i.v.) administration. The observed bioavailability of GA, CA, R, DTBP and LA in LPE

was 6.70 \pm 0.21, 3.92 \pm 0.15, 3.38 \pm 0.14, 3.75 \pm 0.12 and 4.09 \pm 0.15%, while in LLP was $9.50 \pm 0.29 \ (P < 0.01)$, $5.38 \pm 0.23 \ (P < 0.05)$, $4.47 \pm 0.22 \ (P < 0.05)$, 5.54 $\pm 0.17 \ (P < 0.01)$ and 5.61 $\pm 0.23\% \ (P < 0.01)$, respectively. These results indicated that the bioavailability of selected marker compounds in LLP was improved significantly compared to LPE. A 45 days high-fat diet induced rat model was used for the *in vivo* anti-obesity assay of LPE and LLP. The results of showed significant reduction in body mass index (P < 0.001), weight (P < 0.001), daily food intake (P < 0.001) 0.001), total cholesterol (TC) (P < 0.001), triglycerides (TG) (P < 0.05), low density lipoprotein-cholesterol (LDL-C) (P < 0.001), liver organ (P < 0.001), and adipose tissue weight (P < 0.001) and increased high density lipoprotein-cholesterol (HDL-C) (P < 0.001) as compared to the negative control group and also exhibited normal histology features in the liver of the rats treated with LPE 500 mg/kg and LLP 500 mg/kg. The positive controls (zenoctil and orlistat) were found with less or similar activity as compared to LPE and LLP. The selected doses (250-5000 mg/kg) of LPE and LLP were found safe, exhibited anti-obesity, anti-uterine fibroid and anticervical cancer effects.

CHAPTER ONE: INTRODUCTION

1.1 Background

Plants have been used as a source of medicine since ancient times up to date. Large number of plants are used by world's population as an important source for primary health care conditions (Sahu et al., 2010). Recently, researchers showed high interest to search for new medicines from plant source. Many of the medicinal plants like Panax ginseng, Camellia sinensis, Allium sativum, Hypericum perforatum, Ginkgo biloba and Zingiber officinale have gained popularity for the prevention or management of wide number of diseases (Deodhar and Shinde, 2015). In German, more than 70% of the physicians prescribe herbs. Medicinal plants are generally considered to be safe and effective agents. Therefore, people every year turn to herbal medicine because they believe plant remedies are free from undesirable side effects (Nasri and Shirzad, 2013). Preparation of new drugs from medicinal plants as reliable source has also been considered. Nowadays, researchers more than before are dependent on medicinal plants for invention of new drugs with less adverse effects (Rafieian-Kopaei, 2011). Majority of the people in the developing countries still use traditional indigenous medicines as primary health care. Universally, around 85% of all medications for primary health care are originated from plants (Abbasi et al., 2010).

1.2 Herbs used for the treatment of obesity

Obesity is the most prevalent health problem affecting all age groups, and leads to many complications in the form of diabetes mellitus type 2, chronic heart disease, and stroke (Hasani-Ranjbar *et al.*, 2013). Many herbs are used in the traditional medicine for management of obesity such as *Zingiber officinale* and *Angelica sinensis*. Recently, pharmacological reports on the use of the medicinal plants for treatment of obesity are increasing in number. Plant extracts were used such as *Camellia sinensis, Nigella sativa* and *Irvingia gabonensi* exhibited significant reduction in body weight (Hasani-Ranjbar *et al.*, 2013). Medicinal plants worth more intention and investigation as an effective treatment for the management of obesity.

1.3 Herbs used for the treatment of uterine fibroids

Uterine fibroid is a benign tumor in the uterus. Although many women with fibroids are not aware of them, the growths may cause symptoms or problems due to their size, number, or location. Herbal treatment for uterine fibroids is widely used alternatives to surgery, drug treatment or both (Liu *et al.*, 2013). Many herbs were used in traditional medicine for management of uterine fibroid such as *Cinnamomum verum* and *Zingiber officinale* (Bajracharya *et al.*, 2009; Van Andel *et al.*, 2014). Currently, pharmacological reports on medicinal plants used for management of uterine fibroids are rapidly getting attention. Plant extracts such as *Camellia sinensis* (Zhang *et al.*, 2010a), *Allium sativum* (Obochi *et al.*, 2009), *Panax ginseng* (Zhu *et al.*, 2015), *Cimicifuga racemosa* (Xi *et al.*, 2014), *Scutellaria barbata* (Kim *et al.*, 2008a) and *Euonymus alatus* (Lee *et al.*, 2004) showed activity against uterine fibroids.

In addition, formulations from plants like ayurvedic formulations (Dhiman, 2014) and Nona roguy herbal formulations (Hazlina *et al.*, 2005) also exhibited

activity as effective treatment for uterine fibroid. Furthermore, curcumin (Tsuiji *et al.*, 2011), berberine (Tang *et al.*, 2009), genistein (Di *et al.*, 2008), isoliquiritigenin (Kim *et al.*, 2008c), retinoic acid (Islam *et al.*, 2013) and heparin (Avila *et al.*, 2013) are natural compounds from natural origin that have been reported for uterine fibroid regression and symptomatic recovery.

1.4 Herbs used for the treatment of cervical cancer

Cervical cancer is a tumor arising from the cervix. Typically no symptoms are seen. Later symptoms may involve pain during sexual intercourse, pelvic pain or abnormal vaginal bleeding. Although bleeding after sex may not be serious, it could also indicate the presence of cervical cancer (Kumar *et al.*, 2012). Human papillomavirus (HPV) infection founds to be responsible for the development of more than 90% of cases. Other reasons include oral contraceptives, a weak immune system and smoking. Cervical cancer usually develops from precancerous changes over 10 to 20 years. About 90% of cervical cancer cases are squamous cell carcinomas, and 10% are adenocarcinoma. Cervical cancer can be diagnosed by cervical screening followed by a biopsy. Medical imaging is then done to determine the extent of the spread of cancer (Tarney and Han, 2014).

Regarding the treatment of cervical cancer using herbs, a famous Chinese formulation called "Kung Ching Tang", contain a mixture of eleven Chinese herbs (*Achyranthes bidentata, Angelica sinensis, Coix lacryma-jobi, Curcuma zedoaria, Cyperus rotundus, Dipsacus asper, Laminaria japonica, Prunela vulgaris, Prunus persica, Sparganium stoloniferum,* and *Vaccaria segetalis*) found effective in relieving the symptoms and reducing the tumor size (De Moura *et al.,* 2002). Furthermore, root of *Hypoxis nyasica* investigated against cervical cancer and indicated high activity (Bhanot *et al.*, 2011). There is a large number of herbs yet to be investigated for treatment of cervical cancer, thus, there is high possibility for reaching a stage in the future when cervical cancer will no longer be a threat.

1.5 Problem statement

In this study, *L. pumila* a local plant was selected for studying its anti-obesity, anti-uterine fibroid and anti-cervical cancer effects. *L. pumila* is a medicinal plant grown in South East Asia. Recent scientific findings showed that *L. pumila* have the potential for different pharmacological properties such as reducing body weight in ovariectomised rats (Fazliana *et al.*, 2009), but no research study was performed on anti-obesity effects on high-fat diet induced rat model.

Although a number of products manufactured from *L. pumila* are available in the market, there is still lack of information in terms of chemical components related to anti-obesity, anti-uterine fibroid and anti-cervical cancer effects of *L. pumila*. Furthermore, a new step in development of new generation of standardised herbal medicine is preparation of botanical nano-formulation to increase the solubility, stability and bioavailability of the active constituents with therapeutic activity.

1.6 Justification of research

Based on literature review, there is no research work reported on the preparation of liposome of *L. pumila* standardised extract and thereof on the toxicity of LPE and LLP. Singh *et al.* (2009), Mohd Fuad *et al.* (2007) and Mohd Fuad *et al.* (2005), reported sub-acute, teratogenicity and reproductive toxicity studies of *L.*

pumila water (H_2O) extract at 50, 1000 and 800 mg/kg, respectively without any side effect. While the present research has been designed to perform the acute toxicity and repeated dose toxicity studies of LPE and LLP. Therefore, the present research differs from reported studies in terms of parts of plant used, type of extract and method of plant extraction.

Furthermore, there is no report on stability, pharmacokinetic and bioavailability of *L. pumila* standardised extract, so, the present research has been undertaken to perform accelerated stability, pharmacokinetic and bioavailability on LPE and LLP. In addition, there is no reports on anti-obesity, anti-uterine fibroid and anti-cervical cancer effects of *L. pumila*. Therefore, anti-obesity, anti-uterine fibroid and anti-cervical cancer effects of *L. pumila* were studied. This may be helpful for herbal industries to prepare and dispense stable and effective herbal products for the treatment and management of various illnesses.

L. pumila is reported for reducing body weight in ovariectomised rats (Fazliana *et al.*, 2009), but no research study was performed on anti-obesity effects on high-fat diet (HFD) induced rat model, anti-uterine fibroid, and anti-cervical cancer. Hence, the present research was carried out to investigate the anti-obesity, anti-uterine fibroid and anti-cervical cancer effects of LPE and LLP.

1.7 Research hypothesis

The present research hypothesised that *L. pumila* standardised extract may be formulated as a nano-liposome to improve its stability and bioavailability.

Furthermore, this research hypothesised that LPE and LLP may have potential for the treatment and management of obesity, uterine fibroid, and cervical cancer.

1.8 General objective

This study generally seeks to standardise and assure the quality of *L. pumila* extract by developing new analytical techniques such as HPLC method to quantify the chemical markers in *L. pumila* extract. Furthermore, it seeks to isolate and identify the chemical markers related to anti-obesity, anti-uterine fibroid and anti-cervical cancer effects. Moreover, it seeks to prepare new formulation from standardised *L. pumila* extract using soybean phospholipids in order to improve the stability, pharmacokinetics and bioavailability of the active constituents with therapeutic activity and to determine the safety of *L. pumila* extracts thereof. In addition, it aims to demonstrate the anti-obesity, anti-uterine fibroid and anti-cervical cancer properties of standardised *L. pumila* extracts.

1.9 Research objectives

- 1- To isolate and identify of chemical markers from Labisia pumila.
- 2- To carry out quality control assay, standardise, optimise of extraction, prepare and characterise liposome of *Labisia pumila* extract.
- 3- To evaluate the stability, toxicity and pharmacokinetics of *Labisia pumila* extracts.
- 4- To determine the inhibition effects of *Labisia pumila* extracts on pancreatic lipase, adipocytes, uterine fibroid, cervical cancer cells and angiogenesis.
- 5- To determine the *in vivo* anti-obesity effect of *Labisia pumila* extracts.

1.10 Significance of present research work

Obesity is increasing at an alarming rate. In 2014 approximately 0.6 billion people were observed obese and 1.9 billion were overweight worldwide. In 2013, World Health Organisation (WHO) reported that in South-east Asia region, Malaysia has become the highest prevalence country for obesity and overweight of 14 and 42%, respectively. Uterine fibroids occur in 20-25% of the worldwide women (McDonald *et al.*, 2011). Cervical cancer is the second most commonly diagnosed cancer and third leading cause of cancer death among women in less developed countries, nearly 90% of cervical cancer deaths occurred in developing parts of the world (Torre *et al.*, 2015).

A study carried out on the effect of *L. pumila* ovariectomised rats found that the plant may break the adipocytes membrane via lipolysis process in adipocytes (Kershaw and Flier, 2004; Ayida *et al.*, 2007). Therefore, *L. pumila* extracts evaluated for the anti-obesity effect using high fat diet induced rats. It is believed that the plant contains phytoestrogen, which acts as the primary female sexual hormone. It is well known that phytoestrogens are essential to protect body against hormonal dependent cancers such as uterine and breast (Chua *et al.*, 2012). Therefore, *L. pumila* extracts evaluated for the anti-uterine and anti-cervical cancer effects using SK-UT-1(uterine fibroid cells) and HeLa cell lines, respectively. The present research introduces the potential of *L. pumila* extracts as a new herbal product for anti-obesity, anti-uterine fibroid and anti-cervical cancer offering a platform for the treatment and management to the existing worldwide obesity, uterine fibroid and cervical cancer problems. Figure 1.1 described the flow chart of the research study. Briefly, the plant authenticated, washed and dried before optimising the extraction process which involved different extraction method, part of the plant and extracting of the plant from different locations. After that, the plant analysed for foreign matters, moisture content, total ash, acid insoluble ash, extractive values, microbial limit test and heavy metals. Then, the plant was estimated for primary and secondary metabolites and standardised by using UV-Vis, FTIR and HPLC techniques.

Later, two marker compounds were isolated and identified using UV-Vis, FTIR, NMR, LC-MS/GC-MS and HPLC techniques. For the nano-formulation of the plant extract, soybean phospholipid used to formulate the extract and the characterisation involved zetasizer, zeta potential, TEM and FTIR methods. Next, LPE and LLP were evaluated for accelerated stability study according to International Conference on Harmonization (ICH) guidelines at four storage conditions for six months.

After that, LPE and LLP evaluated for the inhibition on pancreatic lipase and 3T3-L1 adipocytes effects. Furthermore, MTT assay was used to determine the activity of LPE and LLP on SK-UT-1 and HeLa cell lines, respectively. In addition, LPE and LLP were evaluated for the oral acute and repeated dose toxicity on Sprague-Dawley rats according to OECD guidelines. For the pharmacokinetics of LPE and LLP, HPLC method was used for the simultaneous plasma determination of the selected marker compounds after oral and i.v. administration. Finally, A 45 days high-fat diet induced rat model was used for the *in vivo* anti-obesity assay of LPE

and LLP and the body mass index, weight, daily food intake, TC, TG, LDL-C, liver

organ, adipose tissue weight, HDL-C and liver histology were determined.

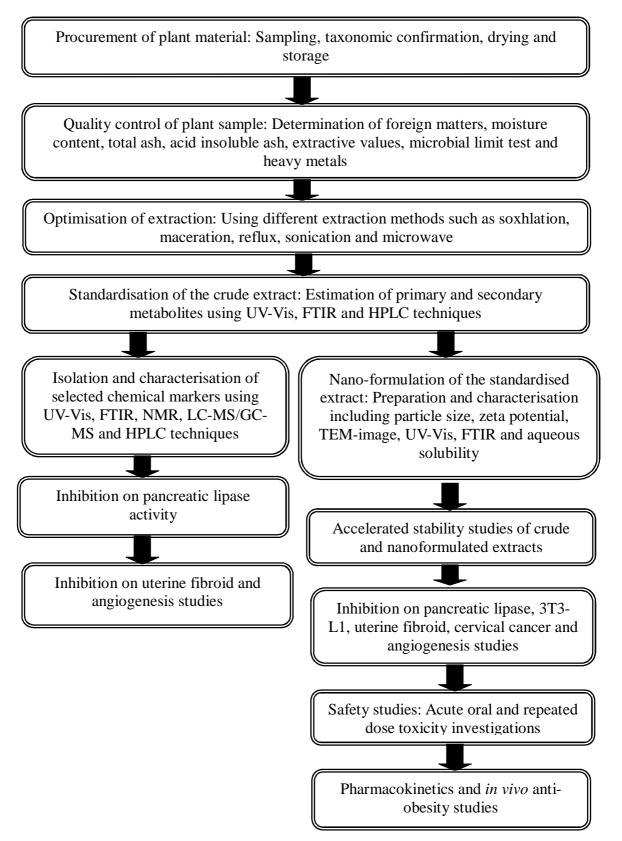


Figure 1:1: Flow chart of research study

CHAPTER TWO: LITERATURE REVIEW

2.1 Labisia pumila

2.1.1 Taxonomic classification

Family: Primulaceae

Genus: Labisia

Species: pumila

Scientific name: Labisia pumila Blume (Burkill and Haniff, 1930)

Local name: Kacip Fatimah

2.1.2 Plant description

L. pumila (synonym: *Marantodes pumilum*), is the queen of the herbs in Malaysia. It is a genus of small woody and leafy plants of the Primulaceae family that can widely be found in the tropical forest of South-East Asian countries (Chua *et al.*, 2012). Figure 2.1 shows photo of *L. pumila* var. alata.

Figure 2:1: Photo of L. pumila var. alata (Chua et al., 2012)

To the natives, this plant is also known as Selusuh Fatimah, Rumput Siti Fatimah, and Akar Fatimah. Among the various varieties of *L. pumila* distributed in Malaysia, *L. pumila* var. alata, var. lanceolata and var. pumila are widely found and investigated. Differentiation of these varieties from each other can be carried out by their leaf and petiole characteristics. *L. pumila* var. pumila has a marginate petiole and ovate leaf blade shape, while var. lanceolata has a long and non-winged petiole, and var. alata has a winged petiole and red veins. The var. alata is widely used in traditional medicine preparation because it is the most commonly encountered variety in Malaysia (Sunarno, 2005; Jamal *et al.*, 2003).

2.1.3 Traditional uses of *Labisia pumila*

L. pumila is traditionally used by generations of Malay women by decoction. The decoction drink is used to induce and facilitate childbirth, as well as being a post partum medication to help contract the birth channel, to regain body strength and to tone the abdominal muscles (Chua *et al.*, 2012). Till now, it is taken by local people to maintain a healthy female reproductive system, to enhance sexual function, as well as to treat menstrual irregularities. Although *L. pumila* is commonly used by the female, however, in Sarawak, Malaysia the males consumed it to maintain and increase stamina (Runi, 2000). Other traditional uses of the plant include treatment for dysentery, rheumatism, gonorrhoea and excessive gas elimination from the body. It was reported that plants from the same genus (Primulaceae) also used to treat menstrual disorders and respiratory tract infections.

2.1.4 Review of chemical constituents of Labisia pumila

Several scientific studies on *L. pumila* described the isolation and identification of chemical compounds that contribute to the pharmacological effects. Phenolic acids and flavonoids are the most reported compounds (Chua *et al.*, 2011; Karimi *et al.*, 2011 and Norhaiza *et al.*, 2009). Chua *et al.* (2011) reported the presence of quercetin, myricetin, kaempferol, catechin, epigallocatechin, salicylic acid, syringic acid, vanillic acid, protocatechin acid, coumaric acid, chlorogenic acid, gallic acid and caffeic acid. Ardisiacrispin A, ardisicrenoside B, ardisimamilloside H, $3-O-\alpha-L$ -rhamnopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucopyranosyl- $(1\rightarrow 4)-\alpha$ -L-arabinopynansyl cyclamiretin A, irisresorcinol, belamcandol B and labisiaquinone A were reported by Avula *et al.* (2011), while 1-O-methyl-6-acetoxy-5-(pentadec-10Z-enyl) resorcinol and labisiaquinone B were identified by Al-Mekhlafi *et al.* (2012).

Fatimahol, 13,28-epoxy-oleanane glycoside and dexyloprimulanin were reported in the plant by Ali and Khan (2011). Karimi and Jaafar (2011) identified pyrogallol, naringin, daidzein, genistein, apigenin, and rutin from *L. pumila*. The presence of ascorbic acid, β -carotene and anthocyanins were reported by Norhaiza *et al.* (2009). In addition, It has been presented that 5-(pentadec-4'enyl)-resorcinol, 5-(pentadec-8'-enyl)-resorcinol and 5-(pentadec-10'-enyl)-resorcinol (irisresorcinol) as alkenyl resorcinols were found in the plant (Jamal and Houghton, 1999). Furthermore, methyl gallate was identified by Hisham *et al.* (2011). Figure 2.2 summarise the chemical structures of phytochemicals identified from *L. pumila*.

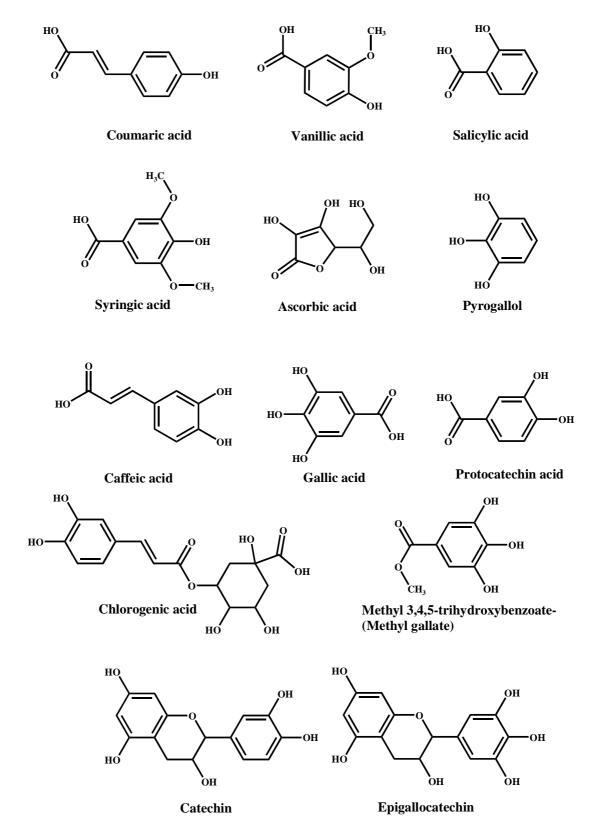


Figure 2:2: Chemical structures of phytochemicals identified from L. pumila

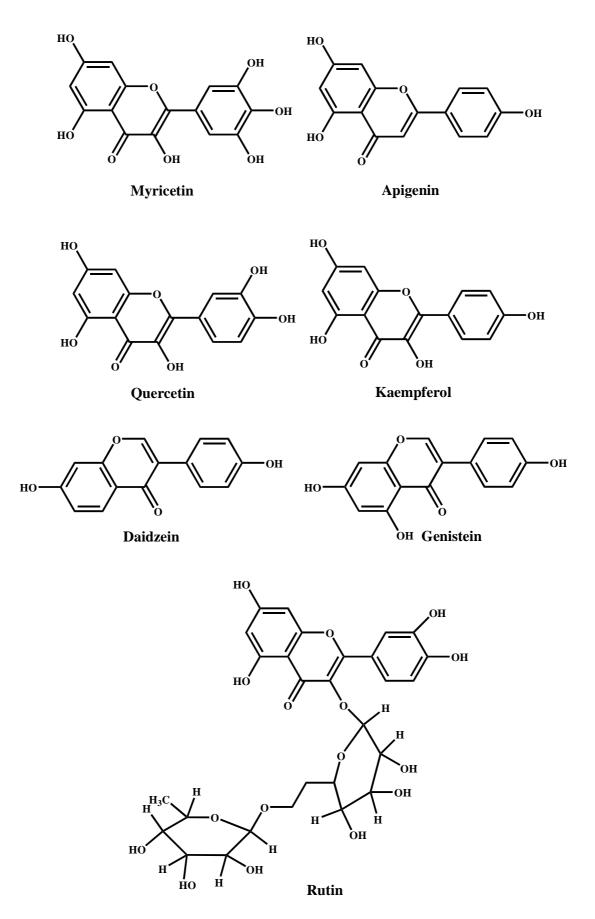


Figure 2.2: Continued.

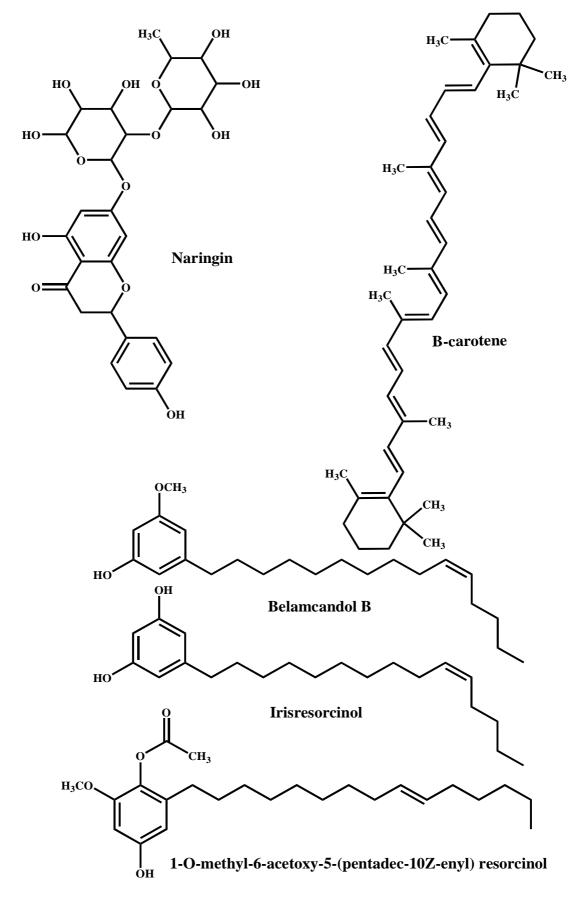


Figure 2.2: Continued

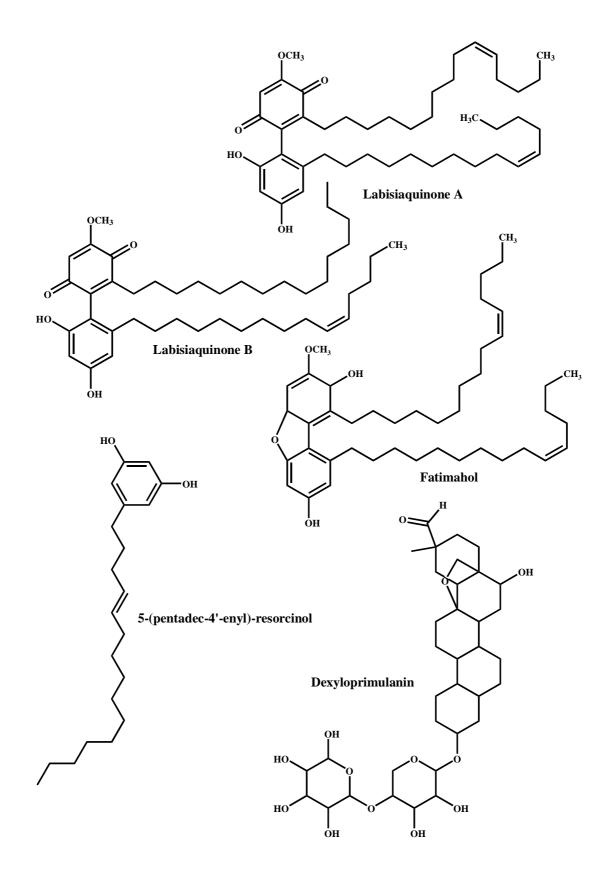


Figure 2.2: Continued

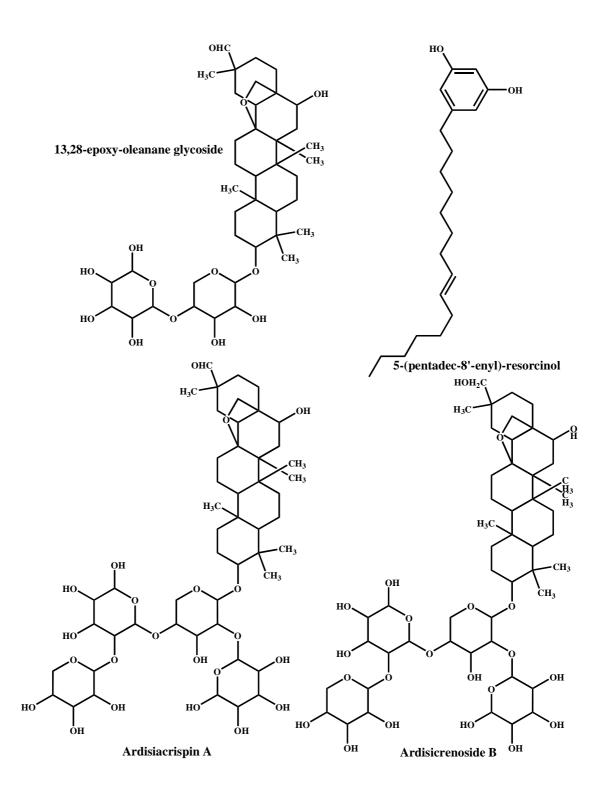


Figure 2.2: Continued

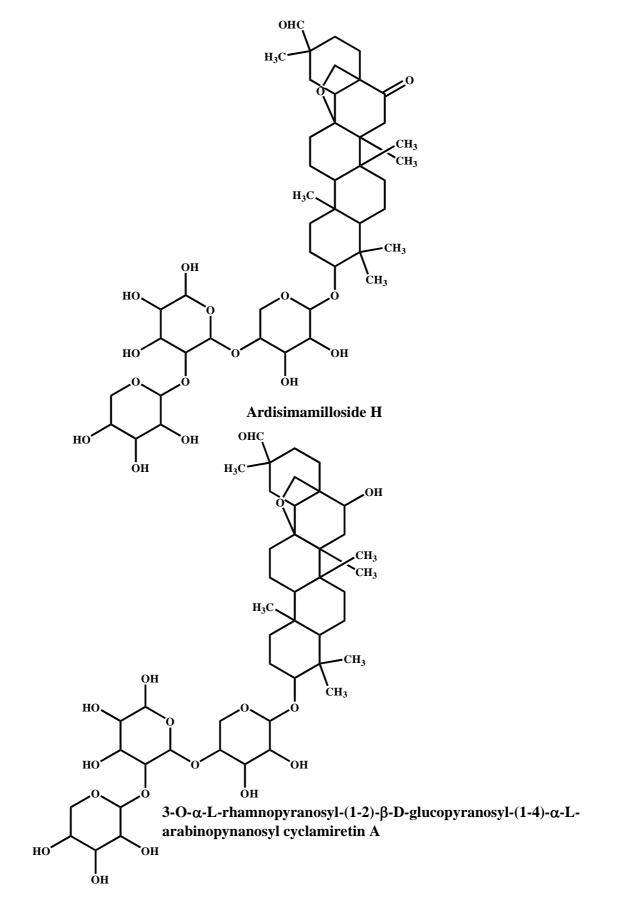


Figure 2.2: Continued