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KAJIAN PRINSIP-PERTAMA STRUKTUR DAN RESPONS SIFAT FASA

BARIUM TITANATE

ABSTRAK

Sifat keadaan asas BaTiO3 perovskite kristal dalam kedua-dua bentuk pukal dan

kepingan telah dikaji dengan menggunakan prinsip pertama Teori Fungsian Ketumpatan

(DFT) dan kaedah projektor gelombang imbuhan. Pengiraan kristal pukal BaTiO3

dalam semua empat fasa telah dilakukan dengan penghampiran ketumpatan tempat-

an (LDA) dan penghampiran kecerunan umum (GGA). Dua keupayaan PAW yang

berbeza berdasarkan set data yang diperkembangkan oleh Jollet-Torrent-Holzwarth

(JTH) dan Garrity-Bennett-Rabe-Vanderbilt (GBRV) telah digunakan dalam pengiraan.

Penekanan bahagian pertama diletakkan pada sifat elektronik, struktur dan sifat tindak

balas semua fasa BaTiO3 dengan menggunakan fungsian korelasi pertukaran (XC) dan

keupayaan PAW yang berbeza. Pengiraan dengan GGA didapati menghasilkan sifat

struktur yang lebih dekat dengan nilai eksperimen daripada LDA. Ciri-ciri getaran

yang diramal dengan teori fungsian ketumpatan usikan adalah konsisten dengan kajian

teori dan eksperimen terdahulu. Pengutuban spontan tiga fasa ferroelektrik yang dikira

dengan menggunakan teknik fasa Berry berbeza secara ketaranya dibandingkan dengan

nilai eksperimen tetapi selaras dengan keputusan teori lain. Fluktuasi parameter kekisi

yang dikira menggunakan fungsian XC yang berbeza secara langsung mempengaruhi

pengutuban spontan yang dikira. Kepingan BaTiO3 simetri dengan ketebalan yang

berbeza (6, 8 dan 10-unit-sel tebal) dan penamatan permukaan BaO (100) telah dikira

dengan menggunakan DFT dalam rangka fungsian PBE-GGA dan keupayaan JTH-PAW.
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Kesan-kesan pengenduran permukaan kepada perubahan parameter struktur telah dikaji.

Berbeza dengan penemuan sastera dahulu, semua jarak antara lapisan individu telah ber-

kembangan kecuali jarak antara permukaan dan lapisan yang berikutnya. Perbandingan

ketiga-tiga kepingan dengan pelbagai ketebalan mendedahkan magnitud sesaran antara

lapisan bagi kepingan dengan 8-unit-sel tebal adalah rendah daripada dua kepingan

lain. Had penembusan praktikal kesan pengenduran permukaan dianggarkan pada lima

lapisan daripad permukaan BaO (100), dan sesaran ferroelektrik satar setiap lapisan

didapati tidak dipengeruhi olek ketebalan kepingan. Setara dengan penemuan sastera

dahulu, kepingan simetri BaTiO 3 bersudut empat dengan penamatan permukaan BaO

(100) diramalkan memiliki nilai pengutuban spontan satar yang lebih kecil berbanding

dengan kes pukal. Ini menunjukkan kewujudan peranan faktor dominan lain dalam

penindasan pengutuban kerana nilai yang dikira dengan teknik fasa Berry adalah terlalu

kecil berbanding dengan sesaran ferroelektrik lapisan TiO2.
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FIRST-PRINCIPLES STUDY OF STRUCTURAL AND RESPONSE

PROPERTIES OF BARIUM TITANATE PHASES

ABSTRACT

Ground state properties of BaTiO3 perovskite crystal, both in bulk and slab form,

were studied using first-principles density functional theory (DFT) using the projector-

augmented wave methods. The computations on bulk BaTiO3 crystals, in all four

phases, were performed within the framework of local-density approximation (LDA)

and generalized-gradient approximation (GGA). Two different PAW potentials based

on the datasets developed by Jollet-Torrent-Holzwarth (JTH) and Garrity-Bennett-Rabe-

Vanderbilt (GBRV) are employed in the calculations. The emphasis of the first part

is placed on the electronic, structural and response properties of all phases of bulk

BaTiO3 using different exchange correlation (XC) functionals and PAW potentials. It

is observed that calculations with GGA yields structural properties much closer to re-

ported experimental values than LDA. The vibrational properties predicted from density

functional perturbation theory are consistent with experimental and previous theoretical

studies. Spontaneous polarization for the three ferroelectric phases, computed using

Berry phase, differ considerably from experimental values but are consistent with other

theoretical results. The fluctuation of lattice parameters computed using different XC

functionals directly affects the computed spontaneous polarization. Symmetric BaTiO3

slabs of different thickness (6, 8 and 10-unit-cell thick) with BaO (100) surface ter-

minations were computed using DFT within PBE-GGA functionals using JTH-PAW

potentials. The effects of surface relaxation on the structural parameters changes are
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studied. In contrast to previous literature findings, all interlayer spacings between the

individual layers were experiencing an expansion except of the spacing between the

surface and subsequent deeper layer. A comparison across the three slabs with varying

thickness revealed the expansion in interlayer spacings in the 8-unit-cell thick slab is

smaller than the other two slabs. The practical penetration limit of the surface relaxation

effects was estimated to be five layers from the BaO (100) surface, and the computed

in-plane ferroelectric displacements of each layer were relatively independent of the

slab thickness. In agreement with previous literature findings, symmetric tetragonal

BaTiO3 slab with BaO (100) surface terminations was predicted to possess a much

smaller value of in-plane spontaneous polarization than the corresponding quantity in

the bulk case. This suggests the role of another dominant factor in suppressing the

polarization. For the computed value using Berry phase formalism, it is too small with

regard to ferroelectric displacements in the TiO2 layers.
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CHAPTER 1

GENERAL BACKGROUND AND LITERATURE REVIEW

1.1 Introduction

Ferroelectricity is a classic scientific discovery that is continued to be studied to this

day since its discovery in 1921 (Valasek, 1921). With the intensive research interest

it is receiving, huge advancements have been made in the area from the identifica-

tion of numerous ferroelectric materials to novel experimental works and theoretical

understandings in various attempts to understand this phenomenon. In the simplest

terms, ferroelectricity is the existence of spontaneous polarization in a material which

can be reversed by the application of an electric field; the oscillations of electric field

vectors will result in a polarization hysteresis loop. Nowadays, ferroelectricity have

been revealed to exhibit complex interplay of dielectric and dynamical properties. In

the course of history of ferroelectricity, one of the major event is the discovery of

ferroelectricity in the perovskite crystals, where barium titanate (BTO) is the most well

known example.

The objective of this thesis is to investigate the structural and response properties

of the ferroelectric ceramic BTO from first-principles, and to make detailed studies

and comparisons between the four phases of BTO both from the theoretical and com-

putational perceptive. The thesis is mainly divided into 3 different part: theoretical,

computational and results sections, which will be further discussed later.
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1.2 Background of ferroelectricity

The subject of ferroelectricity began with the studies of sodium potassium tartrate

tetrahydrate (Rochelle Salt) by Valasek (1921), whose works leads to the coining of the

term ”ferroelectricity”, although it should be mentioned that the associated anamolous

dielectric response had been identified by Pockels (1894) earlier as mentioned by Cross

and Newnham (1987).

Nevertheless, it is found that Rochelle Salt is, among other major obstacles, struc-

turally complex with 112 atoms per unit cell, which poses difficulties in investiga-

tion in that era. The discovery of ferroelectricity in potassium dihydrogen phos-

phate (KDP) (Busch & Scherrer, 1987) leads to the progress in understanding the

phenomena in ferroelectrics, despite having constraint that ferroelectricity only mani-

fests at temperature below −150 ◦C. The origin of ferroelectricity in KDP lies in the

ordering of hydrogen bonds at the corners of phosphate. The presence of hydrogen

bond is then seen as a necessary condition for polar instabilities to occur in ferroelectric

materials.

When the ferroelectric properties of BTO were found, it was a significant break-

through for BTO is a simple oxide material belongs to the perovskite family. The

members of perovskite family ABO3 have the metallic A elements occupying cubic

lattice points, where each cubic unit cell in turns contains an embedded octahedron

having oxygen at its vertex and another metallic B element at its centre. Contrary

to KDP, BTO in cubic structure is paraelectric and it exhibits ferroelectric phase in

tetragonal, orthogonal and rhombohedral structures. It is natural that the then research

interests extend to other members of the perovskite family due to simplicity of the
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structure of the ABO3 family.

However, not all the phase transition occuring in ABO3 perovskite structures are

ferroelectric in nature, with some members exhibit non-polar structural phase transi-

tions. One such perovskite structure is strontium titanate (STO), which undergoes an

antiferrodistortive transition from cubic to tetragonal structure (Cowley & Shapiro,

2006). The particular phase transition in the form of relative rotations between the

oxygen octahedrals in adjacent cells, in other words a Brillouin zone boundary type

displacement.

Following the successes of experimental works and discovery, it is inevitable that

the theoretical efforts to understand ferroelectricity were carried out. Major contribu-

tions were made by several prominent figures, including but not limited to Anderson

(1960); Cochran (1960); Slater (1950) and Devonshire (1949, 1951). The role of the

competition of long-range coulomb forces and short-range local forces in determining

the ferroelectric instability, considered as conventional theoretical explanation nowa-

days, was proposed by Slater (1950). It is theorized that the long-range dipolar force

associated with the Lorentz field is in competition with the local short-range forces

which favour the high symmetry configuration, such as the paraelectric cubic phase of

BTO. The structural phase transitions affect the balance of these two competing forces,

determining which of the two forces will prevail and thus consequently the occurrence

of ferroelectric instabilities. This explanation underlies the proposal of “displacive” type

of phase transition for the perovskites, in contrast with the “order-disorder” description

of phase transition in KDP-type. Another breakthrough occurs a decade later in 1960,

when Cochran (1960), and also Anderson (1960) in another independent research,
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incorporate the lattice dynamics in the description of ferroelectric phase transition. The

formulation of soft-mode in the description of displacive phase transition is made by

taking one of the lattice mode as variable. This dynamical model extends the picture

of competing large-range and short-range force by considering it as the origin of the

softening of a particular lattice mode.

On the other hand, the theoretical model on the macroscopic level using thermody-

namic theory had been developed by Devonshire (1949, 1951). Devonshire’s model is a

phenomenological model built on the evaluation of free energy from the elastic, dielec-

tric, structural and thermal properties of BTO. The model is based on the earlier work

by Landau and Ginzberg and the resulting theory is now called Landau-Devonshire-

Ginzberg Theory (LDGT). With the later inclusion of crystal lattice dynamics in the

understanding of ferroelectric phase transition by Cochran (1960) and Anderson (1960),

the static phenomenological description by Devonshire was linked with atomistic de-

scriptions through atomic displacements and elementary crystal excitations.

Based on the foundational works by the pioneers, further experimental works and

theoretical models were devised, during which the field of ferroelectricity advanced

rapidly. Semi-empirical models were being used at this stage, following the realization

of the roles of lattice dynamics and soft mode in ferroelectricity. With the advent of

crystallography and spectroscopy methods and apparatus such as neutron scattering,

Raman measurement, Rayleigh scattering, and conventional X-ray diffraction and scat-

tering, the properties of soft modes of ABO3 materials were studied extensively. The

experimental data were studied and analysed by fitting into shell models. The work

of Migoni, Bilz, and Bäuerle (1976), leading to the “polarizability model” later, sug-
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gested the non-linearity and anisotropy of polarizability of oxygen atoms as the origin of

ferroelectric behaviour of perovskites. In particular, the anisotropy of polarizability of

oxygen atoms was suggested to be associated with the hybridization between O-p states

and transition metal d-states. This explanation was supported by the first-principles

calculations, as will be discussed later.

Despite the simplicity of the perovskite structure, the complexity of ferroelectric

phase transitions were unexpectedly higher as more and more experimental data and

different theoretical models were available. One of the most distracting, while intrigu-

ing, observation was that the phase transition is not purely displacive as envisaged

by Cochran (1960), but somehow contains a mixture of displacive and order-disorder

character especially near the transition temperature. In order to further investigate

the properties of perovskite, the traditional analytical analysis are complemented and

extended by various numerical computation methods with the advent and prevalence of

more powerful and much cheaper computing machines.

1.3 First-principles ab-initio approach

First-principles method, as performed by the density functional theory (DFT) (Ho-

henberg & Kohn, 1964; Kohn & Sham, 1965), is based on the established law of physics

unlike an empirical model requiring fitting of experimental data. Since the introduction

of the Noble prize winning DFT in about 1964, the properties of condensed matter

system can be investigated at the atomistic level by solving the fundamental equations

of quantum mechanics. While the formulation of DFT is exact in itself, its practical

application is hindered by the unknown exchange and correlation terms, and the amount
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of numerical computation is restricted by the limited efficient computing resources. The

application of DFT is observed to increase exponentially during the last two decades in

which computational power has improved dramatically leading to emergence of new

theoretical computing method.

The capability of DFT is well demonstrated in an influential work by Cohen (1992)

on the origin of ferroelectricity in perovskite oxides. The ferroelectric behaviours of

perovskites were not completely understood, where perovskites which are structurally

similar but chemically different exhibit different behaviours. One of the obvious

discrepancy is between BTO and lead titanate (LTO) where both have similar unit cell

volumes, but BTO undergoes three structural phase transitions (from cubic to tetragonal,

orthogonal and rhombohedral), whereas LTO has only one phase transition from cubic

to tetragonal phase. Using electronic structures calculations with the local density

approximation (LDA), Cohen managed to show that hybridization between Ti 3d states

and O 2p states are essential for ferroelectric, which is in line with that suggested

by Migoni et al. (1976). The different structural phase transitions between the two

materials are resolved by noting that LTO tetragonal phase contains large strains from

the hybridization of Pb and O states, whereas in BTO the Ba-O interaction is almost

ionic in nature, causing BTO to prefer a rhombohedral structure as its most stable form.

Unfortunately, the macroscopic polarization, a fundamental quantity for ferroelectric

material, cannot be directly computed using the conventional definition of polarization.

This difficulties had been resolved by King-Smith and Vanderbilt (1993); Resta (1994);

Vanderbilt and King-Smith (1993) with the modern theory of polarization. It is realized

that polarization is quantum phenomenon which cannot be expressed in the classical
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definition of charge dipole per unit space. Rather than the absolute value of polarization,

the difference in polarization with respect to a referenced state is found to be the more

basic quantity. In the new approach, the ionic polarization is still derived using the

established electromagnetic theory, but the remaining electronic part of the polarization

is obtained from the Berry phase of the electronic wavefunctions. The Berry phase

formalism had been implemented in the framework of DFT.

The functionality of DFT is further extended to calculate additional response prop-

erties apart from the structural properties through the use of linear response theory.

Various physical properties can be computed from the second derivatives of total en-

ergy with respect to different perturbations, where the perturbations can be phonons,

static homogeneous electric field or strain. The second derivatives of total energy are

collectively called the response functions. The linear responses connected to derivatives

of energy, implemented within density functional perturbation theory (DFPT), include

phonon dynamical matrices, dielectric tensor, Born effective charges, elastic constant,

internal strain and piezoelectricity constant. Non-linear response connected to the

third-order derivatives of the energy can also be calculated, which is an extension to the

linear response method.

1.4 Thesis outline

This thesis is divided into two main portions: i) theoretical and computational

methods part and ii) results and discussion part. Excluding this chapter which is

concerned with general background and basic existing literature review, the first part

covers from Chapter 2 to Chapter 5 whereas the second part of this thesis covers two
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chapters: Chapter 6 and Chapter 7. The last Chapter 8 is about the conclusion made

from interpretations of the obtained results.

The main computation methods used in this work, which are density functional the-

ory (DFT) and its extension, density function perturbation theory (DFPT), are discussed

in Chapter 2 and Chapter 3 respectively. The response properties are calculated by the

use of DFPT, of which basic principles are discussed in Chapter 3. Chapter 4 concerns

with the computation method for spontaneous polarization, an essential quantity in a

ferroelectric. The polarization from a microscopic perceptive is discussed, including the

limitations of conventional definition of macroscopic polarization leading the formula-

tion of modern theory of polarization. The computational flow chart is then illustrated

in Chapter 5. The detailed aspect of computations in this work including the potentials,

XC functionals and various convergence parameters are given. Both computational

work flows for the bulk and slab calculations are given.

The results of computations for the bulk BaTiO3 are presented in Chapter 6. Struc-

tural properties and electronic structure are first given for bulk BaTiO3 of all four phases

with comparisons to those of existing literatures, in addition to quantities essential for

the characterization of a ferroelectric such as the Born effective charge, spontaneous

polarization and the phonon modes and frequencies. On the other hand, Chapter 7

contains the results from structural relaxation of BaTiO3 of various thickness. The

polarization variation with respect to variation in three different slab thickness is then

presented. Finally, the last Chapter 8 is about the conclusions derived from this work

and some possible future works are suggested.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

2.1 The Schrödinger Equation

The DFT can be understood through a review of the quantum mechanics of a many

body system. In most cases the ultimate aim of solid state physics and quantum chem-

istry is the solution of the Schrödinger equation. Consider the basic time-independent,

non-relativistic Schrödinger equation:

ĤΨ = EΨ, (2.1)

where Ψ is the wave function of some collection of atoms in a well-defined boundary

region. The time-independent Schrödinger equation describes the evolution of energy

as a function of position of the constituting atoms, subjected to a background potential

and inter-particles interaction described by the Hamiltonian of the system, H. In the

description of the quantum mechanics, the position of an atom is not a absolute unit,

but rather the positions of both nucleus and its electrons.

Subjected to the charge neutrality of an atom, the forces acting on the nucleus and

electrons are of the same order of magnitude. Consequently the changes in momen-

tum due to these forces must be about the same. Considering the huge differences

between the mass of nucleus and electrons, the nucleus must have much smaller velocity

compared to electrons due to its relative massive size. It follows that the motions of

nucleus and electrons have different time scales, and that it can be assumed that at
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the time scale of the nucleus the electrons will relax to their lowest energy (ground

state) almost instantly. Hence, the solution of a quantum mechanical system can be

divided into nucleus and electrons components. The separation of motions of nuclear

and electrons into two mathematical problems is known as the Born-Oppenheimer

approximation (Born & Oppenheimer, 1927).

Born-Oppenheimer approximation thus enables us to solve the equations that de-

scribe the electron motion for fixed positions of the atomic nuclei. The eigenfunction of

the Hamiltonian is then assumed to take the following form:

Ψ({ri} ,{Rα}) = ψ ({ri} ;{Rα}) ·Φ{Rα} , (2.2)

where ri is the position of ith electron and Rα is the position of αth nuclei. ψ is

the electronic wave function whereas Φ is that of the nuclei part. From Eq. (2.2),

ψ ({ri} ;{Rα}) is a wave function dependent only on ri with Rα as parameters. The

ground state energy can then be expressed as a function of positions of the nuclei

E (R1, . . . ,RM), where M is the number of nuclei. The resulting energy function is

known as the adiabatic potential energy surface of the system, describing the changes

in energy with respect to positions of atoms.

Following the separation of nuclear and electronic motion, Eq. (2.1) can be simpli-

fied into

Ĥψ = Eψ, (2.3)

ψ is a set of quantum mechanical solutions of the electronic wave function correspond-

ing to the Hamiltonian H. Each of the solution ψn is associated to their eigenvalue En,
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which is a real number. In the case of a system with multiple nuclei with their respec-

tive electrons interacting with each other, the minimal description of the Schrödinger

Equation, which ignores the contributions from the spins of electrons, will be:

[
− h̄2

2m

N

∑
i=1

∇
2
i +

N

∑
i=1

Vext(ri)+
N

∑
i=1

∑
j<i

U(ri,r j)

]
ψ = Eψ, (2.4)

where m is the mass of electron. The first term in the bracket is the kinetic energy

of the electrons. V is the external potential energy, mainly due to the interaction

between electrons and the electrostatic potential of the nuclei, which are fixed in

position according to the Born-Oppenheimer approximation. The last term U refers to

the potential energy due to interaction between the electrons themselves. In the context

of Eq. (2.4), E corresponds to the ground state energy of the electrons of a particular

instant of configuration of the system.

2.2 Computation complexities

For a many-body system, the electronic wave function is shown to be a function of

the spatial coordinates of each of N electrons ψ = ψ(r1, . . . ,rN). The implication is

that for a N-electrons system there are 3N variables to be determined. The number of

electrons N is considerably larger than the number of nuclei M. The wave function is

thus a 3N dimensional function, which makes the solving of the Schrödinger equation

impractical except for a few exceptionally small systems. The ab-initio approach

assumes that the wave function of the system can be decomposed into combinations of

single individual electron wave functions. The wave function ψ is then approximated as

ψ = ψ1(r)ψ2(r) . . .ψN(r), a product of one-electron wave functions of the constituting
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electrons. The resulting expression is known as Hartree product.

An examination of the expression of the Hamiltonian of Eq. (2.4) will reveal that

the third terms U is the main obstacle to solving the equation. The electron-electron

interactions is expressed as the summation of the pair-wise inter-electron interaction

potential. The presence of this electron-electron interaction term makes the electronic

wave function a coupled equation. In other words, the individual wave function ψi(r)

cannot be defined without considering the positions of all other electrons at the same

time. This indicates exceptional difficulties in solving the wave function of a many-body

system, due to the presence of terms corresponding to interacting electrons.

It should be noted that the wave function is dependent on the positions of electrons,

the variables themselves are not exactly defined as a consequence of the position-

momentum uncertainty theorem. This make the definition of wave function of a system

of electrons at particular exact coordinates meaningless. According to the Copenhagen

interpretation, the measurable quantity is the probability that the N electrons are at a

particular set of position {r1,r2, . . . ,rN} instead, and this probability is proportional to

ψ∗(r1, . . . ,rN)ψ(r1, . . . ,rN). Coupling with the notion of indistinguishable electrons

in quantum mechanics, where electrons in a system are considered as identical, the

interested quantity is the probability of a set of electrons at locations {r1,r2, . . . ,rN}

without considering the order of elements in the set.

2.3 Electronic density

While the wave function contains all possible information of a system, its complexity

is overwhelming; a 3N-dimensional function (4N-dimensional if spin of electron is
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condidered). The problem shall be resolved through the use of electronic density, as

we have no direct use of the wave function. The solution can be brought back to

3-dimensional space, as will be shown later.

In quantum mechanics, electronic density is the probability of occupation of an

electron at an infinitesimal element of space surrounding a given point; a scalar quantity

depending upon three spatial variables. The definition of electron density is clear cut

for a system of one electron:

n(r) = |ψ(r)|2, (2.5)

which is known as Born’s statistical interpretation, absolute square of wave function.

This simple probabilistic interpretation does not directly hold for an ensemble of

electrons. Electron density is a 3D function about the expectation value of the density

of electrons. Using the conventional interpretation of observables from wave function,

we can write:

n(r) = 〈ψ|n̂(r)|ψ〉, (2.6)

where n̂(r) is an operator referring to electron number density.

Taken into account that electrons are point particles, the electronic density is defined

to be

n̂(r) =
N

∑
i=1

δ (r̂i− r), (2.7)

where the direct delta function is used and ri is the position operator for the ith electron.

The operator n̂(r) is then the summation of density of electron i at r over the number of

electrons.
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The expectation value of the electronic density, without considering electron spin,

is then:

n(r) =
∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)n̂(r)ψ(r1,r2, . . . ,rN)dr1 dr2 . . . drN

=
N

∑
i=1

∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)δ (r̂i− r)ψ(r1,r2, . . . ,rN)dr1 dr2 . . . drN

=
N

∑
i=1

∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)δ (r̂1− r)ψ(r1,r2, . . . ,rN)dr1 dr2 . . . drN

=
N

∑
i=1

∫
· · ·
∫

ψ
∗(r,r2, . . . ,rN)ψ(r,r2, . . . ,rN)dr2 . . . drN

= N
∫
· · ·
∫
|ψ(r,r2, . . . ,rN)|2 dr2 . . . drN . (2.8)

The substitution of ri by r1 in the third step of Eq. (2.8) is a consequence of Pauli

exclusion principle; all electrons are indistinguishable that an arbitrary electron can be

selected. The presence of N is from the sum over identical numbers.

Eq. (2.8) shows that the electronic density at a particular point reduces to the density

probability of a single electron, taken into account all possible configurations of the rest

of electrons. The constant number of electrons N ensures that the electronic density

over all space is preserved, which is equal to the N itself. This can be shown by an

integration of Eq. (2.8) over all space:

∫
n(r)dr = N. (2.9)

In Hatree Fock and DFT method the electronic density is typical expressed in terms

of one-electron representation. Under the assumption of non-interacting electrons, the
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total wave function can be approximated as a Slater determinant for N electrons. In this

case, Eq. (2.8) can be simplified to, in terms of orbital wave functions and assuming

doubly occupied spatial orbitals,:

n(r) = 2
N/2

∑
i
|ψi(r)|2, (2.10)

where the density of electron at a point is the summation of the squares of the orbital

wave functions. The presence of the factor 2 takes into account that the fact that

two electrons with different spin can occupy the same orbital, as stated by the Pauli

exclusion principle. The density of electrons thus encodes information obtainable from

the complex 3N dimensional solution of the Schrödinger equation, which is exploited

by the method of density functional theory.

2.4 The Hohenberg-Kohn theorems

The remarkable achievement of DFT lies in its ability to reduce the complexities

of many-body problem back to normal 3-dimensional space, without having to deal

with many-electron state directly. The core principles behind DFT is stated by the

Hohenberg-Kohn theorems (Hohenberg & Kohn, 1964).

2.4.1 Hohenberg-Kohn first theorem

Hohenberg-Kohn first theorem: The external potential Vext(r) is uniquely de-

termined by the corresponding ground-state electronic density, to within an additive

constant.

Before the proof is given, the definition of the external potential Vext(r) needs
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to be first given based on the previous discussion. The problem concerned here is

a simplified system of N electrons under a static external potential. Following the

Born-Oppenheimer approximation, the static external potential Vext(r), assumed to be

mainly the electrostatic Coulomb potential imposed by the surrounding nuclei, is

Vext(r) =−∑
α

Zα

|r− rα |
. (2.11)

In the context of Eq. (2.4), the Hamiltonian operator Ĥ is made up of three parts:

Ĥ = T̂ + V̂ext +Û , where T̂ is the kinetic energy operator, V̂ext is the potential energy

operator and Û is the interaction energy operators. The potential energy operator is then

V̂ext = ∑iVext(ri).

Let n0(r) be the non-degenerate ground state density of N electrons in the potential

Vext(r), with the wave function ψ0 and energy E0. Assume a second external potential

V ′ext(r), not equal to Vext(r) + constant, giving rise to a ground state ψ ′ not different

from ψ0 with a phase factor, but having the same electron density n0(r). Then the

ground state energy can be expressed as

E0 =〈ψ0|Ĥ0|ψ0〉= 〈ψ0|T̂ +V̂ext +Û |ψ0〉 ,

E ′ =
〈
ψ
′∣∣Ĥ ′∣∣ψ ′〉= 〈ψ ′∣∣T̂ +V̂ ′ext +Û

∣∣ψ ′〉 .

The T̂ and Û are the same for all N electrons systems as evident in the formulation

of the Hamiltonian operator, so the a state ψ is completely determined by N and Vext(r).

Taking advantage of indistinguishability of electrons again, it is observed that the
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expectation value of external potential operator is:

〈ψ|V̂ext|ψ〉

=
∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)

N

∑
i=1

Vext(ri)ψ(r1,r2, . . . ,rN)dr1 dr2 . . .drN

=
N

∑
i=1

∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)Vext(r1)ψ(r1,r2, . . . ,rN)dr1 dr2 . . .drN

= N
∫

Vext(r1)

[∫
· · ·
∫

ψ
∗(r1,r2, . . . ,rN)ψ(r1,r2, . . . ,rN)dr2 dr3 . . .drN

]
dr1

=
∫

Vext(r1)n0(r1)dr1

=
∫

Vext(r)n0(r)dr .

Since ψ0 is defined to be non-degenerate, the application of the variational principle,

which E0 is the minimal energy, will give rise to the following inequality:

E0 <
〈
ψ
′∣∣Ĥ0

∣∣ψ ′〉= 〈ψ ′∣∣Ĥ ′∣∣ψ ′〉+ 〈ψ ′∣∣(Ĥ0− Ĥ ′
)∣∣ψ ′〉

= E ′+
∫

n0(r)
[
Vext(r)−V ′ext(r)

]
dr . (2.12)

Similarly for the second Hamiltonian Ĥ ′,

E ′ < 〈ψ0|Ĥ ′|ψ0〉= 〈ψ0|Ĥ0|ψ0〉− 〈ψ0|
(
Ĥ0− Ĥ ′

)
|ψ0〉

= E0−
∫

n0(r)
[
Vext(r)−V ′ext(r)

]
dr . (2.13)
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Adding Eq. (2.12) and Eq. (2.13) together results in the contradiction:

E0 +E ′ < E ′+E0.

The assumption that the second potential V ′ext(r), which is not equal to Vext(r)+constant

but have the same electron density n0(r) must be wrong.

The ground-state density hence determine, to within a constant, the external potential

term in the Schrödinger Equation. Since the Hamiltonian is determined only by the

external potential and number of electrons (which is also determined by the electronic

density, see Eq. (2.9)), the electron density n(r) implicitly determines all properties of

the system, including the wave function ψ .

Since the wave function, and hence all the properties of the system, is a functional

of electronic density, it can be asserted that the kinetic energy and electron-electron

interaction energy are functionals of the density as well: T [n] and U [n]. Collectively

these two terms are grouped together into

F̂ = T̂ +Û , (2.14)

due to their independence of the potential and determined only by the forms of T̂ and

Û ; they are universal for a N-electrons system.

The total energy of the system can be expressed in terms of the density in principle:

EV [n] = T [n]+U [n]+V [n] = F [n]+
∫

V (r)n(r)dr , (2.15)
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where V is an arbitrary external potential in the general case.

2.4.2 Hohenberg-Kohn second theorem

Hohenberg-Kohn second theorem: The electron density that minimizes the energy

of the overall functional is the exact ground state density.

The proof of this theorem is straightforward by the use of the variational principle.

Let E0 be the ground state energy for N-electrons system in the external potential V (r)

with ground state density n0(r) in the Hamiltonian H. By the first theorem, an arbitrary

v-representable density n(r), which is a density that is ground state of an external

potential, determines its own V (r) and therefore a different wave function |ψ ′〉.

By variational principle,

〈
ψ
′∣∣Ĥ∣∣ψ ′〉> 〈ψ|Ĥ|ψ〉〈

ψ
′∣∣F̂∣∣ψ ′〉+ 〈ψ ′∣∣V̂ ∣∣ψ ′〉> 〈ψ|F̂ |ψ〉+ 〈ψ|V̂ |ψ〉
F [n]+

∫
V (r)n(r)dr > F [n]+

∫
V (r)n0(r)dr

EV [n]> EV [n0] = E0. (2.16)

By the Hohenberg-Kohn theorems, the problem of solving the Schrödinger equation

reduces to the minimization of the energy functional EV [n]. In non-degenerate case the

ground state density corresponds to a unique ground state wave function, which is not

true for the general degenerate case. The generalization to the degenerate case can be

done, but will not covered in our scope of work.
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2.5 Basic equation for DFT

Hohenberg-Kohn second theorem establishes a minimum principle for the energy

functional concerning electronic density. Specifically, EV [n] (see Eq. (2.15)) needs to

be minimized with the underlying constraint of constant number of electrons from the

integration of electronic density,
∫

n(r)dr = N (see Eq. (2.9)).

Using the method of Lagrange multiplier, the following Lagrangian needs to be

minimized:

LV,N [n] = EV [n]−µ

[∫
n(r)dr−N

]
, (2.17)

where µ is a Lagrange multiplier corresponding to the constraint imposed.

A routine minimization procedure will result in

0 =
δLV,N [n]

δn(r)
=

δEV [n]
δn(r)

−µ =
δF [n]
δn(r)

+V (r)−µ,

or

µ =
δF [n]
δn(r)

+V (r). (2.18)

This is the basic equation for DFT.

It can be immediately recognised that the approximation for the universal functional

F [n] determines the accuracy of the calculation. While the formulation is exact in

principle, the accuracy of the approximation serves as a bottleneck to the accuracy of

the whole calculation, thus compromising the reliability of the results. An alternative

approach is proposed by Kohn and Sham, which overcame the necessity of finding

an approximation for the universal functional by creating a system of non-interacting
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