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SINTESIS, PENCIRIAN DAN PENILAIAN POTENSI SITOTOKSIK IN 

VITRO KOMPLEKS ARGENTUM(I) MONO, DI, TRI DAN TETRA N-

HETEROSIKLIK KARBENA 

 

ABSTRAK 

Tesis ini memaparkan tentang sintesis, pencirian dan penilaian potensi 

sitotoksik in vitro untuk dua puluh enam kompleks baru mono, di, tri dan tetra NHC-

Ag(I) yang dihasilkan daripada dua puluh enam garam baru mono, bis, tris dan 

tetrakis benzimidazolium. Empat siri garam yang mempunyai terminal N-pergantian 

yang simetrikal telah disediakan. Lapan jenis garam baru bergantian mono 

benzimidazolium yang bersimetri (1-8) telah disintesis menggunakan N-n-alkilasyen 

(n=3-10) yang berperingkat, manakala lapan jenis garam baru bis benzimidazolium 

bergantian yang bersimetri N-alkil (9-16) telah dihasilkan daripada satu sistem 

tetrametilin yang bersilang. Sintesis untuk garam tris dan tetra benzimidazolium 

telah dijalankan menggunakan cadangan dan skema yang direka baru yang 

melibatkan generasi lima baru pelopor garam (17-21), antaranya 3-(2-bromoetil)-1-

bergantian benzimidazolium bromida (benzil/ n-butil/ cyclopentil/ 2-

methylenebenzonitril/ n-decil). Pelopor-pelopor ini telah bertindak balas dengan 

benzimidazol menghasilkan lima generasi baru garam benzimidazolium tris 

bersilang dimetilin (22-26). Tambahan lagi, lima garam benzimidazolium asiklik 

tetra baru telah didapati melalui tindak balas garam pelopor yang pada permulaan 

nya adalah 1,2-bis(benzimidazol-1-ilmetil)benzena yang telah disintesis. Garam 

untuk keempat-empat siri telah ditukar kepada kompleks NHC-Ag(I) masing-masing 

menggunakan kaedah in situ deprotonasi dan pengkompleksan melibatkan Ag2O, 
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menghasilkan pengasingan 26 kompleks baru NHC-Ag(I) (32-57). Struktur untuk 

semua garam dan kompleks NHC-Ag(I) telah dibuktikan menggunakan satu 

kombinasi spektra (FTIR, 1H, 13C-NMR) dan analisis (CHN) elemental. Kajian 

hablur sinaran-X untuk kompleks (38, 39, 45, 47 and 55) telah menunjukkan motif 

pengikatan untuk kompleks mono, di dan tetra NHC-Ag(I). Potensi antikanser in 

vitro untuk kesemua empat siri garam dan kompleks NHC-Ag(I) masing-masing 

telah diperiksa terlebih dahulu melawan bahagian sel kanser kolon (HCT116) 

manusia. Terdapat peningkatan dalam aktiviti antikanser apabila peningkatan 

panjang rantai penggantian dalam kes siri mono dan di, yang mana siri di telah 

dijumpai lebih aktif berbanding siri mono. Siri tri dan tetra menunjukkan aktiviti 

yang dipilih terhadap bahagian sel kanser kolon manusia, dan kemudiannya telah 

diperiksa melawan bahagian sel kanser payudara (MCF-7) dan kanser serviks 

(HeLa), di mana kesemua kompleks telah menunjukkan aktiviti antikanser. Dalam 

semua siri, kompleks NHC-Ag(I) telah dijumpai lebih aktif daripada proligan 

masing-masing. Pengkajian tentang kesan penggantian terhadap potensi antikanser 

melawan bahagian kanser sel yang dipilih telah membuktikan bahawa garam dan 

kompleks yang mempunyai rantai n-alkil yang paling panjang (n-dekil) daripada 

setiap siri yang dikaji adalah paling aktif. Aktiviti ini mungkin disebabkan oleh 

peningkatan lipofilisiti untuk penggantian n-dekil. Dalam untuk mendapatkan lebih 

pencerahan tentang mekanisma tindakan kompleks-kompleks baru tetra NHC-Ag(I) 

yang direka dan garam masing, kompleks 57 and garam 31-nya telah dipilih untuk 

pengkajian seteruskan dalam asas indeks pemilihan. Sebatian yang dipilih telah 

dikaji untuk mekanisma perencatan migrasi sel dan perencatan pembentukan koloni. 

Kompleks dan garamnya yang dipilih telah dijumpai untuk menunjukkan potensi 

antikanser dengan perencatan pembentukan koloni dan migrasi sel kanser.  
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SYNTHESIS, CHARACTERIZATION AND IN VITRO EVALUATION OF 

CYTOTOXIC POTENTIAL OF MONO, DI, TRI AND TETRA                         

N-HETEROCYCLIC CARBENE SILVER(I) COMPLEXES 

 

ABSTRACT 

This thesis presents the synthesis, characterization and in vitro evaluation of 

cytotoxic potential of twenty six new mono-, di-, tri- and tetra-NHC-Ag(I) 

complexes derived from twenty six new mono-, bis-, tris- and tetrakis- 

benzimidazolium salts. The four series of salts with symmetrical terminal N-

substitution were prepared. The eight new symmetrically substituted mono 

benzimidazolium salts (1-8) were prepared by stepwise N-n-alkylation (n=3-10), 

while the eight new symmetrically n-alkyl substituted bis benzimidazolium salts (9-

16) were derived from tetramethylene linked system. The synthesis of tris and 

tetrakis benzimidazolium salts was carried out by newly designed schemes that 

involved the generation of the five new precursor salts (17-21), namely 3-(2-

bromoethyl)-1-substituted benzimidazolium bromide (benzyl/ n-butyl/ cyclopentyl/ 

2-methylenebenzonitrile/ n-decyl). These precursors were reacted with 

benzimidazole thus resulting in the generation of five new dimethylene linked tris 

benzimidazolium salts (22-26). Another five new acyclic tetrakis benzimidazolium 

salts (27-31) were obtained by reacting the precursor salts (17-21) with the initially 

synthesized 1,2-bis(benzimidazol-1-ylmethyl)benzene. The salts of all the four series 

were converted to their respective NHC-Ag(I) complexes using the in situ 

deprotonation and complexation method involving Ag2O, thus resulting in the 

formation of twenty six new NHC-Ag(I) complexes (32-57). The structures of all the 
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salts and NHC-Ag(I) complexes were established by a combination of spectral 

(FTIR, 1H, 13C-NMR) and elemental (CHN) analysis, while the X-ray crystal studies 

of complexes (38, 39, 45, 47 and 55) revealed the bonding motifs of mono, di and 

tetra NHC-Ag(I) complexes. The in vitro cytotoxic potential of all the four series of 

salts and their respective NHC-Ag(I) complexes was preliminary tested against 

human colon cancer cell lines (HCT116). There was an increase in cytotoxic 

activities with increase in the alkyl chain length of substituents in the mono- and di-

NHC series, while the di-NHC series was found to be more active as compared to the 

mono-NHC series. On the other hand tri- and tetra-NHC series showed selective 

activities on human colon cancer cell line and were further tested against breast 

cancer (MCF-7) and cervical cancer cell line (HeLa) of which all the complexes in 

both series displayed anticancer activities. In all the above mentioned series, the 

NHC-Ag(I) complexes were found to be more active than their respective 

proligands. The investigation of the effect of substitutions on cytotoxic potential on 

the selected cancer cell lines showed that the salts and complexes having the longest 

n-alkyl chain (n-decyl) in each series were the most potent. That may be attributed to 

the increased lipophilicity of the n-decyl substituent. In order to gain preliminary 

insights into the mode of cytotoxic activity of the newly designed tetra NHC-Ag(I) 

complexes and their respective salts, complex 57 and its respective salt 31, were 

selected for investigation. The selected complex and its respective salt were found to 

display cytotoxic potential by inhibiting the colony formation and migration of 

cancer cells. 
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                                CHAPTER 1 

INTRODUCTION 

 

1.1 The Carbenes 

Carbenes are uncharged species comprising a divalent carbon atom with six 

valence electrons. Depending on the geometry at the carbene carbon atom, they can 

either be sp2 or sp hybridized. The carbene carbon atom with a linear geometry is sp 

hybridized with two energetically degenerated p orbitals whereas the sp2 hybridized 

carbon atom having a σ and a pπ orbital adopts a bent geometry. The carbon atom in 

most carbenes is sp2 hybridized state as it is energetically more stable as compared to 

those with sp hybridized carbon (Hahn & Jahnke 2008). 

The sp2 hybridized carbenes can be further distinguished as either singlet or 

triplet carbenes depending on the multiplicity of the ground state which is 

determined by the relative energies of the σ and pπ orbitals. If the energy difference 

between the two orbitals is large, then the two nonbonding electrons will occupy the 

σ orbital with an antiparallel spin orientation leading to the singlet ground state. 

Conversely, if there is less energy difference, the nonbonding electrons will occupy 

the independent σ and pπ orbitals with a parallel spin orientation resulting in a triplet 

ground state (Figure 1.1). The ground state multiplicity of carbenes determines their 

properties and reactivity (Schuster, 1987). 
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Figure 1.1: Representation of spin multiplicities of sp2 hybridized carbenes. 

It is generally thought that the substituents at the carbene carbon atom control 

the multiplicity of the ground state owing to their steric and electronic effects. In case 

of inductive effect, σ- electron withdrawing substituents favour the singlet ground 

state as they lower the energy of the nonbonding σ orbital through their negative 

inductive effect. Alternatively, σ-electron donating substituents favour the triplet 

ground state by decreasing the energy gap between the σ and pπ orbitals. In addition 

to the inductive effects, the mesomeric effect of the substituent also plays a vital role 

in determining the multiplicity of the carbene. The π-electron donating substituents 

raises only the energy of the pπ orbital, increasing the energy gap of σ and pπ orbitals 

which also results in a stable singlet ground state. On the other hand, the π-electron 

accepting substituents lend the carbene in a singlet ground state with almost linear 

geometry (Schoeller, 1980).   

The efforts for the synthesis and isolation of free carbenes started as early as 

1835 by J. B. Dumas who attempted to dehydrate methanol to get methylene. The 

first firm structural evidence for the formation of dichloro carbene was reported by 

Doering (von E. Doering & Hoffmann, 1954) as an intermediate in cyclopropanation 

reaction.  At that time, carbenes were considered as highly reactive, short lived 

intermediates in organic transformations. Soon after that, the concept of double bond 

between transition metals and carbon was introduced by Fischer with the first 
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recognized heteroatom stabilized carbene complex in organometallic chemistry 

(Scheme 1.1) (Fischer & Maasbol, 1964). Afterwards, a number of tantalum carbene 

complexes were reported by Schrock (Scheme 1.2) (Schrock, 1974). Around the 

same time Wanzlick introduced the concept of N-heterocyclic carbenes and later in 

1968, metal complexes with N-heterocyclic carbene ligands were reported. After the 

discovery of these metal carbene complexes, the exploration of their chemistry 

began. 

 

Scheme 1.1: Synthesis of the first Fischer carbene complex. 

 

Scheme 1.2: Synthesis of the first Schrock carbene complex. 

 

1.2 Classification of carbenes 

During the development of metal-carbene complexes, three different patterns 

of reactivity and bonding emerged resulting in their classification into different types 

as described below. 

1.2.1 Fischer carbenes 

Fischer carbenes are singlet carbenes with two nonbonding electrons in the σ 

orbital having a vacant pπ orbital and at least one good π-donor substituent. The 
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metal-carbene chemical bond is formed by the donation of the lone pair from the σ 

orbital of the carbene to an empty dσ orbital of that metal. The empty pπ orbital of 

carbene is stabilized by π-donation from the substituent as well as π-back-bonding 

from the filled dπ orbital of the metal. As the late transition metals (low oxidation 

state) have stabilized dπ orbitals and are good π-donors, they tend to stabilize the 

Fischer type carbenes. This bonding pattern leaves the carbon electrophilic because 

the direct carbene to metal donation is only partly compensated by metal to carbene 

π-back-donation (Figure 1.2). 

 

 

Figure 1.2: Carbene to metal bonding in Fischer carbene. 

1.2.2 Schrock carbenes 

Schrock carbenes are triplet carbenes with both σ and pπ orbitals singly 

occupied. These carbenes must have substituents that are not π-donors, such as alkyl 

groups, in order to inhibit the repulsions of electrons. In this case, the carbene forms 

two covalent bonds with the metal each polarized towards the carbon making it 

nucleophilic (Figure 1.3). Schrock carbenes form complexes with early transition 

metals (high oxidation state).  
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Figure 1.3: Carbene to metal bonding in Schrock carbene. 

1.2.3 N-heterocyclic carbenes 

N-heterocyclic carbenes (NHCs) are singlet carbenes and have two adjacent 

π-donating nitrogen atoms. The NHCs bond to metals through the σ-donation of the 

carbene lone pair. The empty pπ orbital of the carbene is strongly stabilized by π-

donation from the nitrogen atoms (Figure 1.4). This electron donation gives 

nucleophilic character to the NHCs and makes them excellent σ-donors to transition 

metals both in low and high oxidation states as well as to main group metals. 

Contrary to the Fischer and Schrock carbenes, the NHCs are stable, capable of 

independent existence and can be readily prepared. 

 

 

Figure 1.4: Carbene to metal bonding in N-heterocyclic carbene. 
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1.3 Emergence of N-heterocyclic carbenes  

H.W. Wanzlick was the pioneer bringing NHC into focus in 1960. He 

hypothesized that the carbenes could be stabilized by the presence of amino 

substituents in N-heterocyclic systems based on the fact that the delocalization of six 

π-electrons in such systems would stabilize the carbene. He therefore tried to prepare 

and isolate 1,3-diphenylimidazolidin-2-ylidene by thermal elimination of chloroform, 

instead of NHC, only its dimer, the enetetraamine was obtained and consequently the 

postulated equilibrium between the monomer and the dimer could not be proven.  

(Scheme 1.3) (Wanzlick, 1962; Wanzlick & Kleiner, 1961; Wanzlick & Schikora, 

1960). Furthermore, he attempted to prepare free NHC by the deprotonation of 

tetraphenyimidazolium perchlorate with potassium tert-butoxide, although the 

expected free NHC could not be isolated, yet its intermediate formation was 

demonstrated (Schonherr & Wanzlick, 1970).  

 

 

Scheme 1.3: Attempted synthesis of free carbene by Wanzlick. 

 In 1991, Arduengo and co-workers reported the successful synthesis and 

isolation of the first crystalline free carbene that was stable in the absence of oxygen 

and moisture. The stable 1,3-di-adamantyl-imidazol-2-ylidene was obtained by the 

deprotonation of 1,3-di-adamantyl-imidazolium chloride using one equivalent of 
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sodium hydride with a catalytic amount of DMSO anion or potassium tertiary 

butoxide in THF at room temperature (Arduengo III et al., 1991) (Scheme 1.4).  

 

 

Scheme 1.4: Synthesis of the first stable free carbene by Arduengo.  

The resulting carbene was found to be thermally stable with a melting point 

of 240-241°C without decomposition and it was also fully characterized and 

elucidated crystallographically. The isolation of this stable carbene initially led to the 

assumption that its stability is due to the steric bulk around it but further work by 

Arduengo negated this view where he successfuly isolated a carbene with only 

methyl substituents on the heterocycle (Figure 1.5(a)) along with  three more stable 

NHCs having different substitution patterns (Arduengo III, Dias, Harlow, et al., 

1992) [Figure 1.5(b, c, d)]. The aromaticity of the NHC system which was  initially 

considered as one of the necessary factors for the stability of free NHC was proven 

not to be of prime importance by the synthesis of stable imidazolin-2-ylidene (Figure 

1.5(e))  with non aromatic heterocycle (Arduengo III et al., 1995). All these NHCs 

were synthesized under the same experimental conditions. Later on, Arduengo and 
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co-workers were also successful in synthesizing free 1,3,4,5-tetraphenylimidazol-2-

ylidene (Figure 1.5(f)) by the modification of Wanzlick’s experimental procedure.  

The avenue opened up by Arduengo to the isolation of free carbene had led 

others to synthesize and isolate stable carbenes by applying different methods. Kuhn 

and co-worker reported the  synthesis of alkyl substituted imidazol-2-ylidene by the 

reduction of imidazole-2-(3H)-thione using potassium in boiling THF (Kuhn & 

Kratz, 1993). The first commercially available carbene derived from a triazole (1,2,4-

triazol-5-ylidene) was synthesized by Enders and co-workers (Enders et al., 1995). 

Herrmann and co-workers reported a number of functionalized imidazoline-2-

ylidenes by introducing a new synthetic strategy involving the use of liquid ammonia 

in aprotic organic solvent along with a base (Herrmann et al., 1996). This new 

method of carbene generation offers advantage over other reported methods in term 

of reaction time as carbenes can be generated in few minutes and in high yield. The 

use of liquid ammonia serves to increase the solubility of imidazolium salts in 

organic solvents and also increases the acidity of C-2 protons through hydrogen 

bonding. Danopoulos and co-workers reported the 2,6-bis(arylimidazol-2-

ylidene)pyridine which was the first stable pincer based bis carbene (Danopoulos et 

al., 2002). 

In addition to the cyclic amino carbenes, Alders and co-workers had 

successfully generated an acyclic amino carbene, bis(diisopropylamino)carbene thus 

showing that the amino substituent plays a vital role in the stabilization of carbenes 

without the need of a cyclic structure (Alder et al., 1996). In the studies focussing on 

NHC, apart from the five membered N-heterocyclic carbenes, a stable six-membered 

NHC, 1,3-diisopropyl-3,4,5,6-tetrahydropyrimid-2-ylidene was also reported (Alder 
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et al., 1999). The carbenes of the class imidazol-2-ylidene still form the major type of 

stable NHCs.  

 

 

Figure 1.5: Structures of reported stable carbenes (a-f) by Arduengo.   

From the above discussed literature, one can conclude that N-heterocyclic 

carbenes can be of different classes depending on the N-heterocyclic system, from 

which they are generated and therefore named accordingly. The systematical names 

of the parent heterocyclic compounds are given a suffix that is determined by the 
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kind of heterocyclic system, followed by the addendum –ylidene. The term “ylidene” 

refers to a compound in which two hydrogens are replaced by a pair of electrons 

hereby referring to the carbene and is mentioned along with the position of the 

carbene carbon in the N-heterocyclic system. Figure 1.6 depicts some of the most 

common classes of N-heterocyclic carbenes. 

 

 

Figure 1.6: Structures of some of the most commonly applied classes of NHCs. 

1.3.1 N-heterocyclic carbene complexes 

NHCs as strong nucleophiles and excellent σ-donors, form adducts with 

virtually all the elements of the periodic table. The NHC complexes with transition 

metals were brought into focus even before the synthesis and isolation of the first 

reported free N-heterocyclic carbene, while with main group elements, the 

complexes began to be explored soon after the discovery of free NHC. 

The most commonly used methods for the synthesis of NHC complexes are 

as follows:  
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1.3.1(a) In situ deprotonation of azolium salts 

This method is based on the in situ deprotonation of the carbene precursor 

(azolium salt) which is achieved either by the use of metal source of sufficient 

basicity to deprotonate the azolium salts such as metal hydrides, alkoxides and 

acetates or by the addition of external bases such as potassium tert-butoxide, sodium 

hydride, sodium hydroxide, triethylamine to the metal source (Weskamp et al., 

2000). The in situ deprotonation is the first known synthetic route for the formation 

of NHC transition metal complexes as demonstrated independently by Wanzlick and 

Öfele (Ofele, 1968; Wanzlick & Schonherr, 1968) [Scheme 1.5 (a,b)]. This method 

has also been reported for the synthesis of NHC complexes with rare earth metals 

(Clark et al., 2014; Gu et al., 2015; Lv & Cui, 2008; Wang et al., 2006). Most of the 

literature related to NHC transition metal complexes focuses on this method as it 

offers the advantage that the free carbene does not have to be isolated. 

 

 

 

Scheme 1.5: Synthesis of the first NHC transition metal complexes by (a) Wanzlick 

and (b) Öfele.  
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1.3.1(b) Free carbene route 

In this method, first the free NHC is generated by the deprotonation of 

azolium salts using strong bases such as KH, NaH or KOtBu and the subsequent 

reaction of the free carbene with appropriate metal/element source yields the NHC 

complex. This is a useful method for those azolium salts that could generate free 

NHCs. Arduengo and coworkers, soon after the isolation of the first free stable NHC,  

reported the synthesis of a variety NHC transition metal complexes of Ag, Cu, Ni, Pt 

and Zn by such method (Arduengo et al., 1993; Arduengo et al., 1994) and it is still 

in use for the synthesis of different transition metal complexes (Alcarazo, 2005; 

Tapu, 2016). The rare earth metals have also been reported to form stable adducts 

with NHCs in high yields by utilizing this method (Herrmann et al., 1994); 

(Arduengo et al., 1994; Ferrence et al., 2006; Herrmann et al., 1997; Mehdoui et al., 

2005; Schumann et al., 2007; Schumann et al., 1994a, 1994b). 

The free carbene route is most commonly used for the synthesis of NHC 

complexes with main group metals and elements. The derivatives of alkali and 

alkaline earth metals have been reported to form stable monomeric as well as dimeric 

adducts with NHCs (Alder et al., 1999; Arduengo et al., 1998; Maddock et al., 2015). 

NHCs strongly coordinate to a multitude of different p-block species, leading to 

adducts with a variety of different structures. For example, among group 13 the first 

NHC-alane adduct, imidazol-2-ylidene-AlH3 was reported by Arduengo (Arduengo 

et al., 1992) (Scheme 1.6). Imidazol-2-ylidenes form stable monomeric adducts with 

B, Al, Ga derivatives which have been isolated as trihydrides, trimethyl and 

trichlorides (Abernethy et al., 2000; Kuhn et al., 1993; Marion et al., 2007). From the 

group 14 species, 1,3-mesityl-imidazolin-2-ylidenes, when reacted with methyl 
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iodide, form stable olefin along with the formation of imidazolinium salt (Arduengo, 

Davidson, et al., 1997). The imidazol-2-ylidenes can form stable tetravalent, 

pentavalent and hexavalent adducts with silicon and tin derivatives (Filippou et al., 

2013; Jones et al.; Kuhn et al., 1995). The  cyclic oligomers of phosphorous and 

arsenic among group 15 species form stable adducts with 1,3-dimesitylimidazol-2-

ylidene (Arduengo, Calabrese, et al., 1997).The chalcogens (O, S, Se, Te) with 

imidazol-2-ylidenes have been reported to give stable imidazolium chalcogenides 

(Enders et al., 1995; Huffer et al., 2013). Among halogens, stable adducts with iodine 

and chlorine have been obtained by the reaction of imidazol-2-ylidenes with iodine 

and dichloroethane, respectively (Kuhn et al., 1998; Kuhn et al., 1993). 

 

 

Scheme 1.6: Synthesis of NHC alane adduct. 

1.3.1(c) Ligand transfer reactions 

It involves the transfer of NHC ligand from one labile metal to another. Liu 

and co-workers have reported the successful transfer of NHC ligand from the NHC 

complexes of W(0), Cr(0), Mo(0) to Pd(II), Pt(II), Rh(I) and Au(I) (Liu, 1998) 

(Scheme 1.7). The use of NHC-Ag(I) complexes as NHC transfer agents was 

introduced by Wang and Lin and is found promising in getting a variety of other 

transition metal complexes (Wang & Lin, 1998). Transmetallation involving the use 

of NHC-Ag(I) is discussed in detail under applications of NHC-Ag(I) complexes. 
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Apart from NHC-Ag(I), the use of NHC-Hg(II) complexes as NHC-transfer agents 

have also been reported to give successful transmetallation results (Baker et al., 

2009; Lin & Vasam, 2007; Meyer et al., 2012). The NHC-Cu(I) complexes have also 

been reported to readily transfer the NHC ligand to Pd(II) and Au(I) (Furst, 2010) as 

well as Rh(I) and Ir(I) (Bidal, 2016). Apart from transition metal complexes, NHC-Li 

complexes have also been reported as effective carbene transfer agents (Arnold et al., 

2003; Arnold et al., 2004; Liddle & Arnold, 2005). A variety of transition metal 

complexes such as Au(I), Cu(I), Cu(II), Ni(II), Pd(II), Pt(II), Rh(I), Rh(III), Ir(I), 

Ir(III), Ru(II), Ru(III) and Ru(IV) can be obtained by this method.  

 

 

Scheme 1.7: Ligand transfer reaction from W(0) to Au(I).  

1.3.1(d) Cleavage of enetetraamines 

This method was introduced by Lappert and coworkers (Cardin, 1971). It 

involves the cleavage of electron rich enetetraamines (tetraaminoethylenes) into 

carbene monomers in the presence of coordinatively unsaturated electrophilic metal 

sources, resulting in the coordination of carbene with the metal center. This method 

has been successfully used for the synthesis of mono, bis, tris and tetrakis carbene 

complexes of various metals such as Cr, Mo, W, Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, 

Pt, Au, Hg and Sn in different oxidation states (Cetinkaya et al., 1994; Hahn et al., 
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2001; Hitchcock et al., 1978; Karaca et al., 2015; Lappert, 2005; Lappert & Pye, 

1977) (Scheme 1.8). 

 

Scheme 1.8: Synthesis of NHC transition metal complex by the cleavage of electron 

rich enetetraamines. 

 

1.4 N-heterocyclic carbene silver(I) complexes 

Among the NHC-transition metal complexes, NHC-Ag(I) complexes have 

gained much focus due to their simpler synthetic strategies and stability, diverse 

structural architectures and various promising applications. All these aspects of 

NHC-Ag(I) complexes are discussed below.  

1.4.1 Synthesis of N-heterocyclic carbene silver(I) complexes 

NHC-Ag(I) complexes can be successfully synthesized by the following two 

methods: 

1.4.1(a) The free carbene method 

The first NHC-Ag(I) complex reported by Arduengo was obtained by the 

direct reaction of a preformed 1,3-dimesitylimidazol-2-ylidene with silver triflate, 

thus resulting in the formation of a bis(carbene) Ag(I) adduct  (Arduengo et al., 

1993) (Scheme 1.9). NHC-Ag(I) complexes derived from five, six and seven 

membered free NHCs have also been reported (Iglesias, 2008). As this method 
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requires the initial generation of free carbene, it is limited to those azolium salts that 

can generate stable carbenes. 

 

Scheme 1.9: Synthesis of the first NHC-Ag(I) complex by Arduengo using free 

carbene. 

1.4.1(b) The in situ deprotonation method 

The in situ deprotonation of azolium salt and complexation of resulting 

carbene with Ag(I) can be accomplished either by the use of a silver base, Ag2O or 

the basic silver salts like AgOAc and Ag2CO3 (Scheme 1.10).  

The first introduced in situ deprotonation method involved the use of silver 

acetate as a silver base to deprotonate 1,2,4-trisubstituted triazolium salt, resulting in 

the formation of a polymeric NHC-Ag(I) complex (Guerret et al., 1997). This 

method   has now been used for the preparation of NHC-Ag(I) acetate complexes 

(Hindi et al., 2008; Patil et al., 2011). In 1998, Wang and Lin introduced a new 

method which involved the use of silver oxide (Wang & Lin, 1998). This method has 

gained much popularity and is most commonly used for the preparation of NHC-

Ag(I) complexes. It involves the reaction of azolium salt with Ag2O, resulting in 

deprotonation of C2 carbon (precarbenic carbon) and complexation of the resulting 

carbene with Ag(I) at the same time. This reaction requires no external base and 

special reaction conditions like inert atmosphere and for the most part, it is carried 
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out at room temperature with the exception of azolium salts with steric bulk around 

C2 carbon that needs refluxing (Tulloch et al., 2000). For this method, a number of 

different solvents like dichloromethane, dichloroethane, acetone, methanol, 

acetonitrile, DMSO, DMF, water and solvent mixtures can also be used. The 

resulting NHC-Ag(I) complexes are stable, high in yield and have an added 

advantage of being excellent carbene transfer agents to obtain other transition metal 

complexes (Lin & Vasam, 2007; Lu et al., 2012).  

 

Scheme 1.10: A general representation of in situ deprotonation methods for the 

synthesis of imidazolium/benzimidazolium derived NHC-Ag(I) complexes. 

Another method of in situ deprotonation and complexation which involves 

the use of silver carbonate was reported in 2000 (Tulloch et al., 2000). This method 

offers longer reaction times and is of limited use, therefore the Ag2O route remaines 

the preferred one. Most of the literature known NHC-Ag(I) complexes have been 

reported to be synthesized utilizing Ag2O (Haque et al., 2013; Karataş et al., 2016; 

Samanta et al., 2015; Segarra et al., 2014)  
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1.4.2 Classification of N-heterocyclic carbene silver(I) complexes 

The NHC metal complexes can be classified taking into account either the 

number of NHC unit per ligand molecule or by considering the number of metal 

centers per complex. However, the review articles dealing with the structural 

diversity of NHC metal complexes classify them mostly on the basis of NHC units 

per ligand (Garrison & Youngs, 2005; Poyatos et al., 2009). The NHC metal 

complexes are broadly classified into two main categories namely the mono-NHC 

and the poly-NHC, the latter can further be subdivided into different types. 

 The present classification is based on the number of carbene centres per 

ligand, of which the NHC-Ag(I) complexes can be of the following types; 

1.4.2(a) Mono NHC-Ag(I) complexes 

The mono-NHC (monodentate) ligands have one NHC unit per ligand 

molecule in the complex. Different bonding motifs of mono NHC-Ag(I) complexes 

can be obtained depending on whether the anion is noncoordinating or coordinating. 

The mono NHC-Ag(I) complexes with noncoordinating anions exist as 

dimeric complexes with one Ag(I) ion bridging two NHC ligands giving rise to 

monometal diligand arrangement (Asekunowo & Haque, 2014) [Figure 1.7(a)]. 

Whereas with the coordinating anion, mainly halides, different structural variations 

are possible. The monomeric complexes with one Ag(I) ion coordinating to a carbene 

and an anion (Ramnial et al., 2003) [Figure 1.7(b)];  the mono NHC-Ag(I) 

complexes with bridging halides (Tulloch et al., 2000) [Figure 1.7(c)]; and the 

complexes forming staircases (Chen & Liu, 2003) (Figure 1.7(d)). 
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Figure 1.7: Structural variations of mono NHC-Ag(I) complexes.  

1.4.2(b) Di NHC-Ag(I) complexes 

The di-NHC (bidentate) ligands have a pair of NHC moieties connected via a 

bridging linker such as phenylene (Alcalde et al., 2007) (Haque et al., 2013), 

lutidinyl (Brown et al., 2009) (Haque et al., 2014), ether chain (Liu et al., 2007; 

Nielsen et al., 2003) or alkyl chain (Gil-Rubio et al., 2013) (Haque et al., 2013).  

Depending on the flexibility and the size of the bridging linker, NHC-Ag(I) 

complexes can have four structural variations: the monometal monoligand complex 

[Figure 1.8(a)]; the bidentate monoligand and dimetal complexes [Figure 1.8(b)]; the 

dimetal diligand complex [Figure 1.8(c)] and the di-NHC-Ag(I) complexes derived 

from imidazolium linked cyclophanes (Baker et al., 2004) [Figure 1.8(d)]. 

 


