SYNTHESIS, CHARACTERIZATION AND *IN VITRO* EVALUATION OF CYTOTOXIC POTENTIAL OF MONO, DI, TRI AND TETRA *N*-HETEROCYCLIC CARBENE SILVER(I) COMPLEXES

TABINDA FATIMA

UNIVERSITI SAINS MALAYSIA

2017

SYNTHESIS, CHARACTERIZATION AND *IN VITRO* EVALUATION OF CYTOTOXIC POTENTIAL OF MONO, DI, TRI AND TETRA *N*-HETEROCYCLIC CARBENE SILVER(I) COMPLEXES

by

TABINDA FATIMA

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

May 2017

Dedication

I dedicate this thesis to my loving husband, my parents and my sisters and brothers, their love and support enabled me to complete my PhD.

ACKNOWLEDGEMENT

First of all I would like to pay extensive thanks to Almighty ALLAH, for giving me an opportunity and strength to complete a doctoral research in one of the world's prestigious universities, Universiti Sains Malaysia.

I would like to pay my gratitude to my supervisor, Associate Prof. Dr Rosenani A. Haque for being such a great supervisor and a great human being. Her continuous encouragement during the challenging period of my research, her advice, guidance, availability of her experience and knowledge in this field have always been there for a smooth progression of the work. I am also thankful to her for her moral support and counselling at a personal level. She is indeed a source of inspiration for me and will always stay high in my heart as long as I live.

I greatly acknowledge the contribution of my co-supervisor Dr Mohd. Rizal Razali for his guidance and insightful, friendly discussions, throughout the research work and the writing process. Thank you Dr Rizal for being such a helpful cosupervisor.

I wish to thank the Dean of the School of Chemical Sciences for providing the necessary research facilities and also to the academic, non-academic, technical and the supporting staff for always been facilitating.

I would also like to thank the Dean of IPS and the staff who had helped me in one way or another. I would like to acknowledge IPS for providing me the USM Fellowship award (APEX (1002/JHEA/ATSG4001).

I thank my group fellows Dr Muhammad Adnan Iqbal, Dr Patrick O. Asekunowo, Choo Sii Zye, Noor Hafizah, Umie Fatiah, Sunusi Yahya and Yeap Choon Wan for their friendship and support, we all had a great time together. I am also very grateful to Nosheen Karamat for her moral support and to Zafar Iqbal and Arifa Zafar for their nice company during my stay in Malaysia. I would specially like to thank all the Hadhanah staff for taking good care of my daughter, thus enabling me to focus on my work.

I would like to express my very special thanks and love to my parents, sisters and brothers for their immense love and support. Last but not the least, my sincere thanks go to my beloved husband Ashfaq Ahmad and my daughter Zainab Fatima for their patience and sacrifices during my research time. The work would not be possible without their remarkable support and understanding.

TABLE OF CONTENTS

Ackr	nowledge	ement	ii	
Table	e of cont	ents	iv	
List	of Tables	S	xii	
List	of Figure	es	xiv	
List	of Schen	nes	xxiii	
List of Abbreviations				
Abst	rak		xxvii	
Abst	ract		xxix	
CI	HAPTEI	R 1-INTRODUCTION	1	
1.1	The Ca	arbenes	1	
1.2	Classif	fication of carbenes	3	
	1.2.1	Fischer carbenes	3	
	1.2.2	Schrock carbenes	4	
	1.2.3	N-heterocyclic carbenes	5	
1.3	Emerg	ence of <i>N</i> -heterocyclic carbenes	6	
	1.3.1	N-heterocyclic carbene complexes	10	
		1.3.1(a) In situ deprotonation of azolium salts	11	
		1.3.1(b) Free carbene route	12	
		1.3.1(c) Ligand transfer reactions	13	
		1.3.1(d) Cleavage of enetetraamines	14	
1.4	N-hete	erocyclic carbene silver(I) complexes	15	
	1.4.1	Synthesis of <i>N</i> -heterocyclic carbenes silver(I) complexes	15	

		1.4.1(a) Tl	he free	carb	ene method			15
		1.4.1(b) T	he <i>in s</i>	<i>itu</i> de	eprotonation meth	od		16
	1.4.2	Classificat complexes	tion S	of	N-heterocyclic	carbene	silver(I)	18
		1.4.2(a) M	lono N	HC-2	Ag(I) complexes			18
		1.4.2(b) D	i NHC	-Ag((I) complexes			19
		1.4.2(c) Ti	ri NHC	C-Ag	(I) complexes			20
		1.4.2(d) Te	etra NI	HC-A	Ag(I) complexes			21
1.5	Applic	ations of <i>N</i> -1	heteroo	cycli	c carbene silver(I)	complexes	3	22
	1.5.1	Carbene t	ransfei	r age	nts in transmetalla	ntion		22
	1.5.2	Catalysts						26
	1.5.3	Biologica	l activi	ity of	f silver compound	S		27
		1.5.3(a)	Med	icina	l importance of si	lver		27
		1.5.3(b)	Canc	er ar	nd anticancer ager	its		29
		1.5.3(c)	NHC for A	C-Ag Ag(I)	(I) complexes –metallodrugs	suitable c	andidates	30
		1.5.3(d)	NHC meta	C-Ag llodr	(I) complexes as rugs	potential	antitumor	31
		1.5.3(e)	Mecl NHC	hanis C-Ag	om of cancer ce (I) complexes	ll death c	aused by	34
1.6	Proble	m statement						35
1.7	Object	ives of the p	resent	resea	arch			36
СН	IAPTER	2-EXPER	IMEN	TAL	1			38
2.1	Materi	als						38
2.2	Charac	terization T	echniq	ues				39
	2.2.1	Melting po	oint de	term	ination			39

	2.2.2	CHN Elemental microanalysis		39
	2.2.3	Infra Red Spectroscopy		39
	2.2.4	Nuclear Magnetic Resonance Spectroscopy		39
	2.2.5	X-Ray Diffraction		40
2.3	Synthe	sis of mono benzimidazolium bromides (1-8)		40
	2.3.1	<i>N,N-n</i> -propylbenzimidazolium bromide (1)		41
	2.3.2	<i>N,N-n</i> -butylbenzimidazolium bromide (2)		41
	2.3.3	<i>N,N-n</i> -pentylbenzimidazolium bromide (3)		42
	2.3.4	<i>N,N-n</i> -hexylbenzimidazolium bromide (4)		43
	2.3.5	<i>N,N-n</i> -heptylbenzimidazolium bromide (5)		44
	2.3.6	<i>N,N-n</i> -octylbenzimidazolium bromide (6)		44
	2.3.7	<i>N,N-n</i> -nonylbenzimidazolium bromide (7)		45
	2.3.8	<i>N,N-n</i> -decylbenzimidazolium bromide (8)		46
2.4	Synthe	sis of bis benzimidazolium bromides (9-16)		47
	2.4.1	Tetramethylenebis(<i>N-n</i> -propylbenzimidazolium (9)	bromide)	47
	2.4.2	Tetramethylenebis(<i>N-n</i> -butylbenzimidazolium (10)	bromide)	48
	2.4.3	Tetramethylenebis(<i>N-n</i> -pentylbenzimidazolium (11)	bromide)	48
	2.4.4	Tetramethylenebis(<i>N-n</i> -hexylbenzimidazolium (12)	bromide)	49
	2.4.5	Tetramethylenebis(<i>N-n</i> -heptylbenzimidazolium (13)	bromide)	50
	2.4.6	Tetramethylenebis(<i>N-n</i> -octylbenzimidazolium (14)	bromide)	51
	2.4.7	Tetramethylenebis(<i>N-n</i> -nonylbenzimidazolium (15)	bromide)	51

	2.4.8	Tetramethylenebis(<i>N-n</i> -decylbenzimidazolium bromide)(16)	52
2.5	Synthes bromid	sis of 3-(2-bromoethyl)-1-substituted benzimidazolium es (17-21)	53
	2.5.1	3-(2-bromoethyl)-1-benzyl benzimidazolium bromide (17)	54
	2.5.2	3-(2-bromoethyl)-1- <i>n</i> -butyl benzimidazolium bromide (18)	55
	2.5.3	3-(2-bromoethyl)-1-cyclopentylbenzimidazolium bromide (19)	56
	2.5.4	3-(2-bromoethyl)-1-(2-methylene benzonitrile) benzimidazolium bromide (20)	57
	2.5.5	3-(2-chloroethyl)-1- <i>n</i> -decyl benzimidazolium bromide (21)	57
2.6	Synthes	sis of tris benzimidazolium bromides (22-26)	58
	2.6.1	benzyl substituted tris benzimidazolium bromide (22)	58
	2.6.2	<i>n</i> -butyl substituted tris benzimidazolium bromide (23)	59
	2.6.3	cyclopentyl substituted tris benzimidazolium bromide (24)	60
	2.6.4	2-methylenebenzonitrile substituted tris benzimidazolium bromide (25)	61
	2.6.5	<i>n</i> -decyl substituted tris benzimidazolium bromide (26)	61
2.7	Synthes	sis of tetrakis benzimidazolium bromides (27-31)	62
	2.7.1	Synthesis of 1,2-bis(benzimidazol-1-ylmethyl)benzene	62
	2.7.2	benzyl substituted tetrakis benzimidazolium bromide (27)	63
	2.7.3	<i>n</i> -butyl substituted tetrakis benzimidazolium bromide (28)	64
	2.7.4	cyclopentyl substituted tetrakis benzimidazolium bromide (29)	65
	2.7.5	2- methylenebenzonitrile substituted tetrakis benzimidazolium bromide (30)	66
	2.7.6	<i>n</i> -decyl substituted tetrakis benzimidazolium bromide (31)	66

2.8	Synthes	sis of mono NHC-Ag(I) complexes (32-39)	67
	2.8.1	<i>N,N-n</i> -propylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (32)	67
	2.8.2	<i>N</i> , <i>N</i> - <i>n</i> -butylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (33)	68
	2.8.3	<i>N,N-n</i> -pentylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (34)	69
	2.8.4	<i>N</i> , <i>N</i> - <i>n</i> -hexylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (35)	70
	2.8.5	<i>N,N-n</i> -heptylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (36)	71
	2.8.6	<i>N,N-n</i> -octylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (37)	72
	2.8.7	<i>N,N-n</i> -nonylbenzimidazol-2-ylidenesilver(I) hexafluorophosphate (38)	73
	2.8.8	<i>N,N-n</i> -decylbenzimidazol-2-ylidene silver(I) hexafluorophosphate (39)	74
2.9	Synthes	sis of di NHC-Ag(I) complexes (40-47)	75
	2.9.1	Tetramethylenebis{(<i>N</i> - <i>n</i> -propylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (40)	75
	2.9.2	Tetramethylenebis{(<i>N</i> - <i>n</i> -butylbenzimidazol-2-ylidene) silver hexafluorophosphate} (41)	76
	2.9.3	Tetramethylenebis{(<i>N</i> - <i>n</i> -pentylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (42)	77
	2.9.4	Tetramethylenebis{(<i>N</i> - <i>n</i> -hexylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (43)	78
	2.9.5	Tetramethylenebis{(<i>N</i> - <i>n</i> -heptylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (44)	79
	2.9.6	Tetramethylenebis{(<i>N</i> - <i>n</i> -octylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (45)	80
	2.9.7	Tetramethylenebis{(<i>N-n</i> -nonylbenzimidazol-2- ylidene)silver(I)hexafluorophosphate} (46)	81

	2.9.8	Tetramethylenebis{(<i>N</i> - <i>n</i> -decylbenzimidazol-2-ylidene)silver(I)hexafluorophosphate} (47)	82
2.10	Synthe	sis of tri NHC-Ag(I) complexes (48-52)	83
	2.10.1	benzyl substituted tri NHC-Ag(I) complex (48)	83
	2.10.2	<i>n</i> -butyl substituted tri NHC-Ag(I) complex (49)	84
	2.10.3	cyclopentyl substituted tri NHC-Ag(I) complex (50)	85
	2.10.4	2-methylenebenzonitrile substituted tri NHC-Ag(I) complex (51)	86
	2.10.5	<i>n</i> -decyl substituted tri NHC-Ag(I) complex (52)	87
2.11	Synthe	sis of tetra NHC-Ag(I) complexes (53-57)	88
	2.11.1	benzyl substituted tetra NHC-Ag(I) complex (53)	88
	2.11.2	<i>n</i> -butyl substituted tetra NHC-Ag(I) complex (54)	89
	2.11.3	cyclopentyl substituted tetra NHC-Ag(I) complex (55)	90
	2.11.4	2- methylenebenzonitrile substituted tetra NHC-Ag(I) complex (56)	91
	2.11.5	<i>n</i> -decyl substituted tetra NHC-Ag(I) complex (57)	92
2.12	In vitro	o cytotoxic studies	93
	2.12.1	Materials and equipments	93
	2.12.2	Cell lines and environmental conditions	93
	2.12.3	Preparation of cell culture	94
	2.12.4	MTT assay	94
	2.12.5	Construction of standard curves of 5-FU and tamoxifen	95
	2.12.6	Study of mode of cytotoxicity for tetra NHC dinuclear Ag(I) compounds	99
		2.12.6(a) Cell migration assay of MCF-7 cells treated	100

			with selected proligand and respective tetra NHC dinuclear Ag(I) complex	
		2.12.6(b)	Colony formation assay on MCF-7 cell line treated with selected proligand and respective tetra NHC Ag(I) complex	101
	2.12.7		Statistical analysis	102
СНА	PTER 3	B-RESULTS	S AND DISCUSSION	103
3.1	Prepara	ation		104
3.2	Charac	terization		114
	3.2.1	FTIR Anal	lysis	114
	3.2.2	¹ H & ¹³ C-1	NMR Analysis	117
	3.2.3	X-ray Crys	stallographic Analysis	132
СНА	PTER 4	-СҮТОТО	XICITY STUDIES	155
4.1	In vitro	o cytotoxicit	y studies	155
4.2	In vitre comple cancer	e cytotoxici exes and th (HCT-116)	ty activities of mono NHC mononuclear Ag(I) he respective proligands against human colon cell lines	158
4.3	<i>In vitro</i> and the (HCT1	o cytotoxicit eir respectiv 16) cell line	y activities of di NHC dinuclear Ag(I) complexes we proligands against the human colon cancer s	169
4.4	<i>In viti</i> comple	ro cytotoxi exes and thei	city activities of tri NHC trinuclear Ag(I) r respective proligands	181
	4.4.1	<i>In vitro</i> cy complexes human col	totoxicity activities of tri NHC trinuclear Ag(I) and their respective proligands against the on cancer (HCT-116) cell lines	181
	4.4.2	<i>In vitro</i> cy complexes breast can	totoxicity activities of tri NHC trinuclear Ag(I) and their respective proligands against the cer (MCF-7) cell lines	186

- 4.4.3 *In vitro* cytotoxicity activities of tri NHC trinuclear Ag(I) 190 complexes and their respective proligands against the human epitheloid cervix carcinoma (HeLa) cell lines
- 4.5 *In vitro* cytotoxicity activities of tetra NHC dinuclear Ag(I) 195 complexes and their respective proligands
 - 4.5.1 *In vitro* cytotoxicity activities of tetra NHC dinuclear Ag(I) 195 complexes and their respective proligands against the human colon cancer (HCT116) cell lines
 - 4.5.2 *In vitro* cytotoxicity activities of tetra NHC dinuclear Ag(I) 197 complexes and their respective proligands against the breast cancer (MCF-7) cell lines
 - 4.5.3 *In vitro* cytotoxicity activities of the tetra NHC dinuclear 201 Ag(I) complexes and their respective proligands against the human epitheloid cervix carcinoma (HeLa) cell lines
 - 4.5.4 Study of mode of the cytotoxic activity of the selected tetra 206 NHC dinuclear Ag(I) complex 57 and their respective proligand 31
 - 4.5.4(a) Cell migration assay for the proligand 31 and 206 the complex **57**
 - 4.5.4(b) Colony formation assay for the proligand 31 211 and the complex **57**
- 4.6 Comparison of cytotoxic activities between mono, di, tri and tetra 215 NHC-Ag(I) complexes and the respective proligands containing longest carbon chain length (C-10)

CHAPTER 5-CONCLUSIONS AND RECOMMENDATIONS FOR

FUT	URE WORK	221
5.1	Conclusions	221
5.2	Recommendations for future work	223
REFERENCES		226
LIS	T OF PUBLICATIONS AND CONFERENCES	247

LIST OF TABLES

		Page
Table 2.1	Spectrophotometric absorbance of known concentrations of 5-FU and Tamoxifen (0.78-25 μ g) for construction of calibration curve.	96
Table 3.1	Selected bond lengths [Å] and angles [°] for salts 3 and 7 .	133
Table 3.2	Selected bond lengths [Å] and angles [°] for complexes 38 and 39 .	136
Table 3.3	Selected bond lengths [Å] and angles [°] for complexes 45 and 47 .	141
Table 3.4	Selected bond lengths [Å] and angles [°] for salts 17 and 19 .	144
Table 3.5	Selected bond lengths [Å] and angles [°] for salts 18 and 21 .	146
Table 3.6	Selected bond lengths [Å] and angles [°] for salt 22.	148
Table 3.7	Selected bond lengths [Å] and angles [°] for complexes 55.	152
Table 4.1	IC ₅₀ values of the proligands/salts (1-8) and their respective NHC-Ag(I) complexes (32-39) on HCT 116 using the standard 5-FU (IC ₅₀ = 10.2μ M).	159
Table 4.2	IC ₅₀ values of the proligands/salts (9-16) and their respective NHC-Ag(I) complexes (40-47) on HCT 116 using the standard drug 5-FU (IC ₅₀ = 10.2 μ M) as positive control.	172
Table 4.3	IC ₅₀ values of the proligands (22-26) and their respective complexes (48-52) on HCT 116 and EA.hy926 using the standard drug 5-FU (IC ₅₀ = 10.2 μ M) as positive control.	183
Table 4.4	IC ₅₀ values of proligands (22-26) and complexes (48-52) on MCF-7 using the standard drug Tamoxifen (IC ₅₀ = 7.5μ M) as positive control.	186
Table 4.5	IC_{50} values of proligands (22-26) and complexes (48-52) on the HeLa cell lines using the standard drug 5-FU ($IC_{50} = 10.2 \ \mu M$) as positive control.	190
Table 4.6	IC ₅₀ values of proligand- 31 , and the complexes- 53 and 57 on HCT 116 using the standard drug 5-FU (IC ₅₀ = 10.2μ M) as positive control.	195

- Table 4.7 IC₅₀ values of proligand-**31** and complexes (**53-57**) on the 198 MCF-7 cell lines and the EA.hy926 cell lines using the standard Tamoxifen drug (IC₅₀ = 7.5μ M) as positive control.
- Table 4.8IC50 values of proligand-31 and complexes (53-57) on the
HeLa cell lines using the standard drug 5-FU (IC50 = 10.2
 μ M) as positive control.202
- Table 4.9 IC₅₀ values of proligands (8, 16, 26, 31) and complexes (39, 216 47, 52, 57) on the human colon cancer cell line (HCT 116) using the standard drug 5-FU (IC₅₀ = 10.2 μ M) as positive control.

LIST OF FIGURES

		Page
Figure 1.1	Representation of spin multiplicities of sp^2 hybridized carbenes.	2
Figure 1.2	Carbene to metal bonding in Fischer carbene.	4
Figure 1.3	Carbene to metal bonding in Schrock carbene.	5
Figure 1.4	Carbene to metal bonding in <i>N</i> -heterocyclic carbene.	5
Figure 1.5	Structures of reported stable carbenes (a-f) by Arduengo.	9
Figure 1.6	Structures of some most commonly applied classes of NHCs.	10
Figure 1.7	Structural variations of mono NHC-Ag(I) complexes.	19
Figure 1.8	Structural variations of di NHC-Ag(I) complexes.	20
Figure 1.9	Structural variations of tri NHC-Ag(I) complexes.	21
Figure 1.10	Some structural variations of tetra NHC-Ag(I) complexes.	22
Figure 1.11	Structures of some anticancer drugs (a) cisplatin (b) 5-fluorouracil.	30
Figure 1.12	Some NHC-Ag(I) complexes having anticancer activity comparable to cisplatin reported by (a) Youngs et al. (b) Gautier et al. (c) Tacke et al. (d) Willans et al.	33
Figure 2.1	96 wells microplate used in MTT assay.	97
Figure 2.2	Calibration curve for 5-FU.	97
Figure 2.3	Calibration curve for Tamoxifen.	98
Figure 3.1	Representative FTIR spectra of salt 7 (top) and respective mono NHC-Ag(I) complex 38 (bottom).	115
Figure 3.2	Representative FTIR spectra of salt 14 (top) and respective di NHC-Ag(I) complex 45 (bottom).	116
Figure 3.3	Representative FTIR spectra of salt 25 (top) and respective tri NHC-Ag(I) complex 51 (bottom).	116

- Figure 3.4 Representative FTIR spectra of salt **30** (top) and respective 117 tetra NHC-Ag(I) complex **56** (bottom).
- Figure 3.5 ¹H NMR spectrum (d_6 -DMSO, 500 MHz) of salt **2**, 118 indicating the chemical shifts of all types of protons highlighting the resonance of the C2-proton(He) which is an indication of a successful synthesis of mono benzimidazolium salt.
- Figure 3.6 ¹³C NMR spectrum (d_6 -DMSO, 125 MHz) of salt **2**, 119 highlighting the resonance of most deshielded C-2 carbon (precarbenic carbon).
- Figure 3.7 ¹H NMR spectrum (d_6 -DMSO, 500 MHz) of salt **16**, 120 indicating the chemical shifts of all types of protons highlighting the resonance of the C2-protons (Hg) which is an indication of a successful synthesis of bis benzimidazolium salt.
- Figure 3.8 13 C NMR spectrum (d_6 -DMSO, 125 MHz) of salt **16**, 121 highlighting the resonance of most deshielded C-2 carbon (precarbenic carbon).
- Figure 3.9 ¹H NMR spectrum (d_6 -DMSO, 500 MHz) of salt **22**, 122 indicating the chemical shifts of all types of protons, highlighting the resonance signals for two types of acidic protons (Hc and Hd) which is an indication of a successful synthesis of tris benzimidazolium salt.
- Figure 3.10 13 C NMR spectrum (*d*₆-DMSO, 125 MHz) of salt **22**, 123 highlighting the resonances of most deshielded C-2 carbons (precarbenic carbons).
- Figure 3.11 ¹H NMR spectrum (d_6 -DMSO, 500 MHz) of salt **29**, 125 indicating the chemical shifts of all types of protons highlighting the resonance of two types of the C2-acidic protons (Hf and Hg) which is an indication of a successful synthesis of tetrakis benzimidazolium salt.
- Figure 3.12 13 C NMR spectrum (*d*₆-DMSO, 125 MHz) of salt **29**, 125 highlighting the resonances of most deshielded C-2 carbons (precarbenic carbons).
- Figure 3.13 ¹³H NMR spectrum (d_3 -acetonitrile, 500 MHz) of mono 127 NHC-Ag(I) complex **33**, highlighting the disappearance of the resonance of the acidic proton (NCHN), which is an indication of a successful complexation.

- Figure 3.14 ¹³C NMR spectrum (d_3 -acetonitrile, 125 MHz) of mono 127 NHC-Ag(I) complex **33**, highlighting the appearance of the resonances for the carbene-Ag bond which is an indication of a successful complexation.
- Figure 3.15 ¹H NMR spectrum (d_3 -acetonitrile, 500 MHz) of di NHC- 129 Ag(I) complex **47**, highlighting the disappearance of resonances of the acidic protons (NCHN) of the proligand, which is an indication of a successful complexation.
- Figure 3.16 ¹³C NMR spectrum (d_3 -acetonitrile, 125 MHz) of di NHC- 129 Ag(I) complex **47**, highlighting the appearance of the resonances of the carbene-Ag bond which is an indication of a successful complexation.
- Figure 3.17 ¹³C NMR spectrum (d_3 -acetonitrile, 125 MHz) of tri NHC- 130 Ag(I) complex **48**, highlighting the appearance of the resonance signal for the two types of carbene-Ag bonds which is an indication of a successful synthesis of the tri NHC-Ag(I) complex.
- Figure 3.18 ¹³C NMR spectrum (d_3 -acetonitrile, 125 MHz) of tetra 132 NHC-Ag(I) complex **55**, highlighting the appearance of the resonances of the carbene-Ag bond which is an indication of a successful complexation.
- Figure 3.19 ORTEP diagram of salt **3**, showing 50% probability 134 ellipsoids.
- Figure 3.20 ORTEP diagram of salt **7**, showing 50% probability 134 ellipsoids.
- Figure 3.21 Crystal packing of salt **7** showing the hydrogen bonds as 135 dashed lines.
- Figure 3.22 ORTEP diagram of complex **38**, showing 50% probability 137 ellipsoids.
- Figure 3.23Crystal packing of complex 38.138
- Figure 3.24 ORTEP diagram of complex **39**, showing 50% probability 139 ellipsoids.
- Figure 3.25 ORTEP diagram of complex **45**, showing 50% probability 141 ellipsoids.
- Figure 3.26Crystal packing of complex 45.142
- Figure 3.27 ORTEP diagram of complex 47, showing 50% probability. 142

Figure 3.28	Crystal packing of complex 47.	143
Figure 3.29	ORTEP diagram of salt 17 , showing 50% probability ellipsoids.	145
Figure 3.30	ORTEP diagram of salt 19 , showing 50% probability ellipsoids.	145
Figure 3.31	ORTEP diagram of salt 18, showing 50% probability ellipsoids.	147
Figure 3.32	ORTEP diagram of salt 21 , showing 50% probability ellipsoids.	147
Figure 3.33	ORTEP diagram of salt 22 , showing 50% probability ellipsoids.	149
Figure 3.34	Crystal packing of salt 22.	150
Figure 3.35	(a) ORTEP diagram of complex 55 , showing 50% probability ellipsoids. (b) Hydrogen atoms are omitted for the purpose of clarity.	153
Figure 3.36	Crystal packing of complex 55.	154
Figure 4.1	Anatomical position of colon in the gastrointestinal tract (adapted from http://www.webmd.com/digestive-disorders).	155
Figure 4.2	Dose dependent proliferative effects of proligand 1 and complex 32 in comparison with the standard drug 5-FU.	160
Figure 4.3	Dose dependent proliferative effects of proligand 2 and complex 33 in comparison with the standard drug 5-FU.	161
Figure 4.4	Dose dependent proliferative effects of proligand 3 and complex 34 in comparison with the standard drug 5-FU.	161
Figure 4.5	Dose dependent proliferative effects of proligand 4 and complex 35 in comparison with the standard drug 5-FU.	163
Figure 4.6	Dose dependent proliferative effects of proligand 5 and complex 36 in comparison with the standard drug 5-FU.	163
Figure 4.7	Dose dependent proliferative effects of proligand 6 and complex 37 in comparison with the standard drug 5-FU.	164
Figure 4.8	Dose dependent proliferative effects of proligand 7 and complex 38 in comparison with the standard drug 5-FU.	164

- Figure 4.9 Dose dependent proliferative effects of proligand **8** and 165 complex **39** in comparison with the standard drug 5-FU.
- Figure 4.10-A Human colorectal tumor (HCT-116) cell images captured 166 under a light microscope at \times 200 magnification with a digital camera at 48 hours after the treatment with proligands1-3 and their respective complexes 32-34.
- Figure 4.10-B Human colorectal tumor (HCT 116) cell images taken 168 under a light microscope at \times 200 magnification with a digital camera at 48 hours after the treatment with proligands4-8 and their respective complexes 35-39.
- Figure 4.11 Dose dependent proliferative effects of proligand **9** and 173 complex **40** in comparison with the standard drug 5-FU.
- Figure 4.12 Dose dependent proliferative effects of proligand **10** and 173 complex **41** in comparison with the standard drug 5-FU.
- Figure 4.13 Dose dependent proliferative effects of proligand **11** and 174 complex **42** in comparison with the standard drug 5-FU.
- Figure 4.14 Dose dependent proliferative effects of proligand **12** and 174 complex **43** in comparison with the standard drug 5-FU.
- Figure 4.15 Dose dependent proliferative effects of proligand **13** and 175 complex **44** in comparison with the standard drug 5-FU.
- Figure 4.16 Dose dependent proliferative effects of proligand **14** and 175 complex **45** in comparison with the standard drug 5-FU.
- Figure 4.17 Dose dependent proliferative effects of proligand **15** and 176 complex **46** in comparison with the standard drug 5-FU.
- Figure 4.18 Dose dependent proliferative effects of proligand **16** and 176 complex **47** in comparison with the standard drug 5-FU.
- Figure 4.19-A Human colorectal tumor (HCT 116) cell images taken 179 under a light microscope at \times 200 magnification with a digital camera at 48 hours after treatment with the proligands (9-11) and their respective complexes (40-42).
- Figure 4.19- Human colorectal tumor (HCT 116) cell images taken under 180 B a light microscope at × 200 magnification with a digital camera at 48 hours after treatment with the proligands (12-16) and their respective complexes (43-47).
- Figure 4.20 Dose dependent proliferative effects of complex **51** against 184 the human colon cancer cell lines in comparison with the standard drug 5-FU.

- Figure 4.21 Dose dependent proliferative effects of proligand **26** and 184 complex **52** against the human colon cancer cell lines in comparison with standard drug 5-FU.
- Figure 4.22 Images of human colorectal cancer cell lines and human 185 endothelial cell lines showing the effects of proligands **26** and complexes **51** & **52**. (cell images were taken under a light microscope at \times 200 magnification with a digital camera at 48 hours after treatment).
- Figure 4.23 Dose dependent antiproliferative effects of complex **49** 188 against the breast cancer cell lines in comparison with the standard drug Tamoxifen.
- Figure 4.24 Dose dependent antiproliferative effects of complex **50** 188 against the breast cancer cell lines in comparison with the standard drug Tamoxifen.
- Figure 4.25 Dose dependent antiproliferative effects of complex **51** 189 against the breast cancer cell lines in comparison with the standard drug Tamoxifen.
- Figure 4.26 Dose dependent antiproliferative effects of proligand **26** and 189 complex **52** against the breast cancer cell lines in comparison with the standard drug Tamoxifen.
- Figure 4.27 Dose dependent antiproliferative effects of complex **48** in 192 comparison with the standard drug 5-FU.
- Figure 4.28 Dose dependent antiproliferative effects of complex **49** in 192 comparison with the standard drug 5-FU.
- Figure 4.29 Dose dependent antiproliferative effects of complex **50** in 193 comparison with the standard drug 5-FU.
- Figure 4.30 Dose dependent antiproliferative effects of complex **51** in 193 comparison with the standard drug 5-FU.
- Figure 4.31 Dose dependent antiproliferative effects of proligand **26** 194 and complex-**52** in comparison with the standard drug 5-FU.
- Figure 4.32 Dose dependent antiproliferative effects of complex **53** in 196 comparison with the standard drug 5-FU on the human colon cancer cell lines.
- Figure 4.33 Dose dependent antiproliferative effects of proligand **31** and 196 its respective complex **57** in comparison with the standard drug 5-FU on the human colon cancer cell lines.

Figure 4.34	Images of human colorectal cell lineshowing the effects of	197
	proligand-31 and complexes 53 & 57. (cell images taken	
	under a light microscope at ×200 magnifications with a	
	digital camera).	

- Figure 4.35 Dose dependent antiproliferative effects of proligand **27** and 199 the respective complex **53** in comparison with the standard drug Tamoxifen on the breast cancer cell lines.
- Figure 4.36 Dose dependent antiproliferative effects of proligand **28** and 199 the respective complex **54** in comparison with the standard drug Tamoxifen on the breast cancer cell lines.
- Figure 4.37 Dose dependent antiproliferative effects of proligand **29** and 200 the respective complex **55** in comparison with the standard drug Tamoxifen on the breast cancer cell lines.
- Figure 4.38 Dose dependent antiproliferative effects of proligand **30** and 200 the respective complex **56** in comparison with the standard drug Tamoxifen on the breast cancer cell lines.
- Figure 4.39 Dose dependent antiproliferative effects of proligand **31** and 201 the respective complex **57** in comparison with the standard drug Tamoxifen on the breast cancer cell lines.
- Figure 4.40 Dose dependent antiproliferative effects of complex **53** in 203 comparison with the standard drug 5-FU against the human epitheloid cervix carcinoma (HeLa) cell lines.
- Figure 4.41 Dose dependent antiproliferative effects of complex **54** in 204 comparison with the standard drug 5-FU against the human epitheloid cervix carcinoma (HeLa) cell lines.
- Figure 4.42 Dose dependent antiproliferative effects of complex **55** in 204 comparison with the standard drug 5-FU against the human epitheloid cervix carcinoma (HeLa) cell lines.
- Figure 4.43 Dose dependent antiproliferative effects of complex **56** in 205 comparison with the standard drug 5-FU against the human epitheloid cervix carcinoma (HeLa) cell lines.
- Figure 4.44 Dose dependent antiproliferative effects of proligand **31** and 205 respective complex **57** in comparison with the standard drug 5-FU against the human epitheloid cervix carcinoma (HeLa) cell lines.

Figure 4.45 Antimigration of the cancer cells data for proligand **31** after 207 6h and 12 h of administration of doses.

- Figure 4.46 Images of the breast cancer cell line (MCF-7) in the cell 208 migration assay. The cells were grown in 6-well cell culture plates and a wound was created in the center of each well when the wells were confluent. These were then treated with proligand **31** in two concentrations: 6.25 and 12.5 μ g/mL, and the images of the cells were taken under an inverted phase-contrast microscope at ×4 magnification at 0 h (zero), 6 h and 12 h after the treatment with proligand **31**.
- Figure 4.47 Antimigration of the cancer cells data for complex **57** after 209 6h and 12 h of administration of doses.
- Figure 4.48 Images of the breast cancer cell line (MCF-7) in the cell 210 migration assay. The cells were grown in 6-well cell culture plates and a wound was created in the center of each well after the wells were confluent. The cells were then treated with complex **57** in two concentrations 2.5 and 5 μ g/mL and the images of the cells were taken under an inverted phase-contrast microscope at ×4 magnification at 0 h (zero), 6 h and after 12 h of treatment with the complex **57**.
- Figure 4.49 Percentages of cell survival after administration of different 211 doses 6.25, 12.5 and 25 µg/ml of proligand **31** on the breast cancer cell line.
- Figure 4.50 Photographs of the cell culture plates showing cell survival 212 after administration of different doses 6.25-25 µg/mL of proligand **31** on breast cancer cell line.
- Figure 4.51 Percentages of cell survival after administration of different 213 doses 2.5, 5 and 10µg/ml of complex **57** on breast cancer cell line.
- Figure 4.52 Photographs of the cell culture plates showing the cell 214 survival after administration of different doses 2.5-10 µg/mL of complex **57** on breast cancer cell line.
- Figure 4.53 Comparison between the anticancer activities of mono, di, 217 tri and tetra NHC proligands and their respective Ag(I) complexes against the human colon cancer cell lines.
- Figure 4.54 Data showing the overall mean percentage inhibition of 219 proliferation of proligands and complexes of the mono, di, tri and tetra NHC compounds having 10 carbon chain substitutions against the human colon cancer cell lines.
- Figure 4.55 Plasma membrane structure and composition (adapted from 220 onlinetutoring.edublogs.org).

Figure 5.1 Structures of proposed NHC-Ag(I) complexes for future 225 studies.

LIST OF SCHEMES

Page

Scheme 1.1	Synthesis of first Fischer carbene complex.	3
Scheme 1.2	Synthesis of first Schrock carbene complex.	3
Scheme 1.3	Attempted synthesis of free carbene by Wanzlick.	6
Scheme 1.4	Synthesis of first stable free carbene by Arduengo.	7
Scheme 1.5	Synthesis of first NHC transition metal complexes by (a) Wanzlick and (b) Öfele.	11
Scheme 1.6	Synthesis of NHC alane adduct.	13
Scheme 1.7	Ligand transfer reaction reaction from W(0) to Au(I).	14
Scheme 1.8	Synthesis of NHC transition metal complex by the cleavage of electron rich enetetraamines.	15
Scheme 1.9	Synthesis of first NHC-Ag(I) complex by Arduengo using free carbene.	16
Scheme 1.10	General representation of <i>in situ</i> deprotonation methods for the synthesis of imidazolium/benzimidazolium derived NHC-Ag(I) complexes.	17
Scheme 1.11	Some transmetallation reactions involving NHC-Ag(I) complexes (a) (Huang et al., 2014), (b) (Simons et al., 2003), (c) (Chianese et al., 2003).	25
Scheme 3.1	Synthesis of <i>N</i> , <i>N</i> - <i>n</i> -alkylbenzimidazolium bromides (1-8).	104
Scheme 3.2	Synthesis of tetramethylene bis(<i>N</i> - <i>n</i> -alkylbenzimidazolium bromide) (9-16).	105
Scheme 3.3	Synthesisof 3-(2-bromoethyl)-1substitutedbenzimidazolium bromides (17-21).	106
Scheme 3.4	Synthesis of tris benzimidazolium bromides (22-26).	107
Scheme 3.5	Synthesis of 1,2-bis(benzimidazol-1-ylmethyl)benzene.	108

Scheme 3.6	Synthesis of tetrakis benzimidazolium bromides (27-31).	109
Scheme 3.7	Synthesis of mono NHC-Ag(I) complexes (32-39).	111
Scheme 3.8	Synthesis of di NHC-Ag(I) complexes (40-47).	111
Scheme 3.9	Synthesis of tri NHC-Ag(I) complexes (48-52).	112

Scheme 3.10 Synthesis of tetra NHC-Ag(I) complexes (**53-57**). 113

LIST OF ABBREVIATIONS

NHC	N-heterocyclic carbene
Ar	Arene
Mes	Mesityl
DMSO	Dimethyl sulfoxide
THF	Tetrahydrofuran
DCM	Dicholoromethane
OAc	Acetate
^t Bu	Tertiary butoxide
Cod	Cyclooctadiene
h/hr	Hour
RT	Room temperature
Anal.	Analysis
Calc.	Calculated
J	Coupling constant
Å	Angstrom
HIFBS	Heat inactivated foetal bovine serum
PBS	Phosphate buffer saline
PS	Penicillin/streptomycin
DMEM	Dulbecco's Modified Eagle Medium
MTT	Methylthiazolyldiphenyl-tetrazolium bromide
IC ₅₀	Half maximal inhibitory concentration
RPMI	Roswell Park Memorial Institute

ORTEP	Oak Ridge Thermal Ellipsoid Plot
NA	Not active

SINTESIS, PENCIRIAN DAN PENILAIAN POTENSI SITOTOKSIK *IN VITRO* KOMPLEKS ARGENTUM(I) MONO, DI, TRI DAN TETRA *N*-HETEROSIKLIK KARBENA

ABSTRAK

Tesis ini memaparkan tentang sintesis, pencirian dan penilaian potensi sitotoksik in vitro untuk dua puluh enam kompleks baru mono, di, tri dan tetra NHC-Ag(I) yang dihasilkan daripada dua puluh enam garam baru mono, bis, tris dan tetrakis benzimidazolium. Empat siri garam yang mempunyai terminal N-pergantian yang simetrikal telah disediakan. Lapan jenis garam baru bergantian mono benzimidazolium yang bersimetri (1-8) telah disintesis menggunakan *N-n*-alkilasyen (n=3-10) yang berperingkat, manakala lapan jenis garam baru bis benzimidazolium bergantian yang bersimetri N-alkil (9-16) telah dihasilkan daripada satu sistem tetrametilin yang bersilang. Sintesis untuk garam tris dan tetra benzimidazolium telah dijalankan menggunakan cadangan dan skema yang direka baru yang melibatkan generasi lima baru pelopor garam (17-21), antaranya 3-(2-bromoetil)-1bergantian benzimidazolium bromida (benzil/ *n*-butil/ cyclopentil/ 2methylenebenzonitril/ n-decil). Pelopor-pelopor ini telah bertindak balas dengan benzimidazol menghasilkan lima generasi baru garam benzimidazolium tris bersilang dimetilin (22-26). Tambahan lagi, lima garam benzimidazolium asiklik tetra baru telah didapati melalui tindak balas garam pelopor yang pada permulaan nya adalah 1,2-bis(benzimidazol-1-ilmetil)benzena yang telah disintesis. Garam untuk keempat-empat siri telah ditukar kepada kompleks NHC-Ag(I) masing-masing menggunakan kaedah in situ deprotonasi dan pengkompleksan melibatkan Ag2O,

xxvii

menghasilkan pengasingan 26 kompleks baru NHC-Ag(I) (32-57). Struktur untuk semua garam dan kompleks NHC-Ag(I) telah dibuktikan menggunakan satu kombinasi spektra (FTIR, ¹H, ¹³C-NMR) dan analisis (CHN) elemental. Kajian hablur sinaran-X untuk kompleks (38, 39, 45, 47 and 55) telah menunjukkan motif pengikatan untuk kompleks mono, di dan tetra NHC-Ag(I). Potensi antikanser in vitro untuk kesemua empat siri garam dan kompleks NHC-Ag(I) masing-masing telah diperiksa terlebih dahulu melawan bahagian sel kanser kolon (HCT116) manusia. Terdapat peningkatan dalam aktiviti antikanser apabila peningkatan panjang rantai penggantian dalam kes siri mono dan di, yang mana siri di telah dijumpai lebih aktif berbanding siri mono. Siri tri dan tetra menunjukkan aktiviti yang dipilih terhadap bahagian sel kanser kolon manusia, dan kemudiannya telah diperiksa melawan bahagian sel kanser payudara (MCF-7) dan kanser serviks (HeLa), di mana kesemua kompleks telah menunjukkan aktiviti antikanser. Dalam semua siri, kompleks NHC-Ag(I) telah dijumpai lebih aktif daripada proligan masing-masing. Pengkajian tentang kesan penggantian terhadap potensi antikanser melawan bahagian kanser sel yang dipilih telah membuktikan bahawa garam dan kompleks yang mempunyai rantai *n*-alkil yang paling panjang (*n*-dekil) daripada setiap siri yang dikaji adalah paling aktif. Aktiviti ini mungkin disebabkan oleh peningkatan lipofilisiti untuk penggantian *n*-dekil. Dalam untuk mendapatkan lebih pencerahan tentang mekanisma tindakan kompleks-kompleks baru tetra NHC-Ag(I) yang direka dan garam masing, kompleks 57 and garam 31-nya telah dipilih untuk pengkajian seteruskan dalam asas indeks pemilihan. Sebatian yang dipilih telah dikaji untuk mekanisma perencatan migrasi sel dan perencatan pembentukan koloni. Kompleks dan garamnya yang dipilih telah dijumpai untuk menunjukkan potensi antikanser dengan perencatan pembentukan koloni dan migrasi sel kanser.

xxviii

SYNTHESIS, CHARACTERIZATION AND *IN VITRO* EVALUATION OF CYTOTOXIC POTENTIAL OF MONO, DI, TRI AND TETRA *N*-HETEROCYCLIC CARBENE SILVER(I) COMPLEXES

ABSTRACT

This thesis presents the synthesis, characterization and *in vitro* evaluation of cytotoxic potential of twenty six new mono-, di-, tri- and tetra-NHC-Ag(I) complexes derived from twenty six new mono-, bis-, tris- and tetrakisbenzimidazolium salts. The four series of salts with symmetrical terminal Nsubstitution were prepared. The eight new symmetrically substituted mono benzimidazolium salts (1-8) were prepared by stepwise N-n-alkylation (n=3-10), while the eight new symmetrically *n*-alkyl substituted bis benzimidazolium salts (9-16) were derived from tetramethylene linked system. The synthesis of tris and tetrakis benzimidazolium salts was carried out by newly designed schemes that involved the generation of the five new precursor salts (17-21), namely 3-(2bromoethyl)-1-substituted benzimidazolium bromide (benzyl/ n-butyl/ cyclopentyl/ 2-methylenebenzonitrile/ *n*-decyl). These precursors were reacted with benzimidazole thus resulting in the generation of five new dimethylene linked tris benzimidazolium salts (22-26). Another five new acyclic tetrakis benzimidazolium salts (27-31) were obtained by reacting the precursor salts (17-21) with the initially synthesized 1,2-bis(benzimidazol-1-ylmethyl)benzene. The salts of all the four series were converted to their respective NHC-Ag(I) complexes using the in situ deprotonation and complexation method involving Ag₂O, thus resulting in the formation of twenty six new NHC-Ag(I) complexes (32-57). The structures of all the

xxix

salts and NHC-Ag(I) complexes were established by a combination of spectral (FTIR, ¹H, ¹³C-NMR) and elemental (CHN) analysis, while the X-ray crystal studies of complexes (38, 39, 45, 47 and 55) revealed the bonding motifs of mono, di and tetra NHC-Ag(I) complexes. The *in vitro* cytotoxic potential of all the four series of salts and their respective NHC-Ag(I) complexes was preliminary tested against human colon cancer cell lines (HCT116). There was an increase in cytotoxic activities with increase in the alkyl chain length of substituents in the mono- and di-NHC series, while the di-NHC series was found to be more active as compared to the mono-NHC series. On the other hand tri- and tetra-NHC series showed selective activities on human colon cancer cell line and were further tested against breast cancer (MCF-7) and cervical cancer cell line (HeLa) of which all the complexes in both series displayed anticancer activities. In all the above mentioned series, the NHC-Ag(I) complexes were found to be more active than their respective proligands. The investigation of the effect of substitutions on cytotoxic potential on the selected cancer cell lines showed that the salts and complexes having the longest *n*-alkyl chain (*n*-decyl) in each series were the most potent. That may be attributed to the increased lipophilicity of the *n*-decyl substituent. In order to gain preliminary insights into the mode of cytotoxic activity of the newly designed tetra NHC-Ag(I) complexes and their respective salts, complex 57 and its respective salt 31, were selected for investigation. The selected complex and its respective salt were found to display cytotoxic potential by inhibiting the colony formation and migration of cancer cells.

CHAPTER 1

INTRODUCTION

1.1 The Carbenes

Carbenes are uncharged species comprising a divalent carbon atom with six valence electrons. Depending on the geometry at the carbene carbon atom, they can either be sp^2 or sp hybridized. The carbene carbon atom with a linear geometry is sp hybridized with two energetically degenerated p orbitals whereas the sp^2 hybridized carbon atom having a σ and a $p\pi$ orbital adopts a bent geometry. The carbon atom in most carbenes is sp^2 hybridized state as it is energetically more stable as compared to those with sp hybridized carbon (Hahn & Jahnke 2008).

The sp^2 hybridized carbenes can be further distinguished as either singlet or triplet carbenes depending on the multiplicity of the ground state which is determined by the relative energies of the σ and $p\pi$ orbitals. If the energy difference between the two orbitals is large, then the two nonbonding electrons will occupy the σ orbital with an antiparallel spin orientation leading to the singlet ground state. Conversely, if there is less energy difference, the nonbonding electrons will occupy the independent σ and $p\pi$ orbitals with a parallel spin orientation resulting in a triplet ground state (Figure 1.1). The ground state multiplicity of carbenes determines their properties and reactivity (Schuster, 1987).

Figure 1.1: Representation of spin multiplicities of sp^2 hybridized carbenes.

It is generally thought that the substituents at the carbene carbon atom control the multiplicity of the ground state owing to their steric and electronic effects. In case of inductive effect, σ - electron withdrawing substituents favour the singlet ground state as they lower the energy of the nonbonding σ orbital through their negative inductive effect. Alternatively, σ -electron donating substituents favour the triplet ground state by decreasing the energy gap between the σ and $p\pi$ orbitals. In addition to the inductive effects, the mesomeric effect of the substituent also plays a vital role in determining the multiplicity of the carbene. The π -electron donating substituents raises only the energy of the $p\pi$ orbital, increasing the energy gap of σ and $p\pi$ orbitals which also results in a stable singlet ground state. On the other hand, the π -electron accepting substituents lend the carbene in a singlet ground state with almost linear geometry (Schoeller, 1980).

The efforts for the synthesis and isolation of free carbenes started as early as 1835 by J. B. Dumas who attempted to dehydrate methanol to get methylene. The first firm structural evidence for the formation of dichloro carbene was reported by Doering (von E. Doering & Hoffmann, 1954) as an intermediate in cyclopropanation reaction. At that time, carbenes were considered as highly reactive, short lived intermediates in organic transformations. Soon after that, the concept of double bond between transition metals and carbon was introduced by Fischer with the first recognized heteroatom stabilized carbene complex in organometallic chemistry (Scheme 1.1) (Fischer & Maasbol, 1964). Afterwards, a number of tantalum carbene complexes were reported by Schrock (Scheme 1.2) (Schrock, 1974). Around the same time Wanzlick introduced the concept of *N*-heterocyclic carbenes and later in 1968, metal complexes with *N*-heterocyclic carbene ligands were reported. After the discovery of these metal carbene complexes, the exploration of their chemistry began.

$$(CO)_5W-CO \xrightarrow{MeLi} \left[(CO)_5W-C_{O} \xrightarrow{Me} \right]^{-} \xrightarrow{CH_2N_2} (CO)_5W=C_{OMe} \xrightarrow{Me}$$

Scheme 1.1: Synthesis of the first Fischer carbene complex.

$$Ta(CH_2CMe_3)_3Cl_2 \xrightarrow{2LiCH_2CMe_3} (CMe_3CH_2)_3Ta = C \xrightarrow{H} CMe_3$$

Scheme 1.2: Synthesis of the first Schrock carbene complex.

1.2 Classification of carbenes

During the development of metal-carbene complexes, three different patterns of reactivity and bonding emerged resulting in their classification into different types as described below.

1.2.1 Fischer carbenes

Fischer carbenes are singlet carbenes with two nonbonding electrons in the σ orbital having a vacant $p\pi$ orbital and at least one good π -donor substituent. The

metal-carbene chemical bond is formed by the donation of the lone pair from the σ orbital of the carbene to an empty d_{σ} orbital of that metal. The empty $p\pi$ orbital of carbene is stabilized by π -donation from the substituent as well as π -back-bonding from the filled d_{π} orbital of the metal. As the late transition metals (low oxidation state) have stabilized d_{π} orbitals and are good π -donors, they tend to stabilize the Fischer type carbenes. This bonding pattern leaves the carbon electrophilic because the direct carbene to metal donation is only partly compensated by metal to carbene π -back-donation (Figure 1.2).

Figure 1.2: Carbene to metal bonding in Fischer carbene.

1.2.2 Schrock carbenes

Schrock carbenes are triplet carbenes with both σ and $p\pi$ orbitals singly occupied. These carbenes must have substituents that are not π -donors, such as alkyl groups, in order to inhibit the repulsions of electrons. In this case, the carbene forms two covalent bonds with the metal each polarized towards the carbon making it nucleophilic (Figure 1.3). Schrock carbenes form complexes with early transition metals (high oxidation state).

Figure 1.3: Carbene to metal bonding in Schrock carbene.

1.2.3 N-heterocyclic carbenes

N-heterocyclic carbenes (NHCs) are singlet carbenes and have two adjacent π -donating nitrogen atoms. The NHCs bond to metals through the σ -donation of the carbene lone pair. The empty $p\pi$ orbital of the carbene is strongly stabilized by π -donation from the nitrogen atoms (Figure 1.4). This electron donation gives nucleophilic character to the NHCs and makes them excellent σ -donors to transition metals both in low and high oxidation states as well as to main group metals. Contrary to the Fischer and Schrock carbenes, the NHCs are stable, capable of independent existence and can be readily prepared.

Figure 1.4: Carbene to metal bonding in *N*-heterocyclic carbene.

1.3 Emergence of N-heterocyclic carbenes

H.W. Wanzlick was the pioneer bringing NHC into focus in 1960. He hypothesized that the carbenes could be stabilized by the presence of amino substituents in *N*-heterocyclic systems based on the fact that the delocalization of six π -electrons in such systems would stabilize the carbene. He therefore tried to prepare and isolate 1,3-diphenylimidazolidin-2-ylidene by thermal elimination of chloroform, instead of NHC, only its dimer, the enetetraamine was obtained and consequently the postulated equilibrium between the monomer and the dimer could not be proven. (Scheme 1.3) (Wanzlick, 1962; Wanzlick & Kleiner, 1961; Wanzlick & Schikora, 1960). Furthermore, he attempted to prepare free NHC by the deprotonation of tetraphenyimidazolium perchlorate with potassium *tert*-butoxide, although the expected free NHC could not be isolated, yet its intermediate formation was demonstrated (Schonherr & Wanzlick, 1970).

Scheme 1.3: Attempted synthesis of free carbene by Wanzlick.

In 1991, Arduengo and co-workers reported the successful synthesis and isolation of the first crystalline free carbene that was stable in the absence of oxygen and moisture. The stable 1,3-di-adamantyl-imidazol-2-ylidene was obtained by the deprotonation of 1,3-di-adamantyl-imidazolium chloride using one equivalent of

sodium hydride with a catalytic amount of DMSO anion or potassium tertiary butoxide in THF at room temperature (Arduengo III et al., 1991) (Scheme 1.4).

Scheme 1.4: Synthesis of the first stable free carbene by Arduengo.

The resulting carbene was found to be thermally stable with a melting point of 240-241°C without decomposition and it was also fully characterized and elucidated crystallographically. The isolation of this stable carbene initially led to the assumption that its stability is due to the steric bulk around it but further work by Arduengo negated this view where he successfully isolated a carbene with only methyl substituents on the heterocycle (Figure 1.5(a)) along with three more stable NHCs having different substitution patterns (Arduengo III, Dias, Harlow, et al., 1992) [Figure 1.5(b, c, d)]. The aromaticity of the NHC system which was initially considered as one of the necessary factors for the stability of free NHC was proven not to be of prime importance by the synthesis of stable imidazolin-2-ylidene (Figure 1.5(e)) with non aromatic heterocycle (Arduengo III et al., 1995). All these NHCs were synthesized under the same experimental conditions. Later on, Arduengo and co-workers were also successful in synthesizing free 1,3,4,5-tetraphenylimidazol-2ylidene (Figure 1.5(f)) by the modification of Wanzlick's experimental procedure.

The avenue opened up by Arduengo to the isolation of free carbene had led others to synthesize and isolate stable carbenes by applying different methods. Kuhn and co-worker reported the synthesis of alkyl substituted imidazol-2-ylidene by the reduction of imidazole-2-(3H)-thione using potassium in boiling THF (Kuhn & Kratz, 1993). The first commercially available carbene derived from a triazole (1,2,4)triazol-5-ylidene) was synthesized by Enders and co-workers (Enders et al., 1995). Herrmann and co-workers reported a number of functionalized imidazoline-2ylidenes by introducing a new synthetic strategy involving the use of liquid ammonia in aprotic organic solvent along with a base (Herrmann et al., 1996). This new method of carbene generation offers advantage over other reported methods in term of reaction time as carbenes can be generated in few minutes and in high yield. The use of liquid ammonia serves to increase the solubility of imidazolium salts in organic solvents and also increases the acidity of C-2 protons through hydrogen bonding. Danopoulos and co-workers reported the 2,6-bis(arylimidazol-2ylidene)pyridine which was the first stable pincer based bis carbene (Danopoulos et al., 2002).

In addition to the cyclic amino carbenes, Alders and co-workers had successfully generated an acyclic amino carbene, bis(diisopropylamino)carbene thus showing that the amino substituent plays a vital role in the stabilization of carbenes without the need of a cyclic structure (Alder et al., 1996). In the studies focussing on NHC, apart from the five membered *N*-heterocyclic carbenes, a stable six-membered NHC, 1,3-diisopropyl-3,4,5,6-tetrahydropyrimid-2-ylidene was also reported (Alder

et al., 1999). The carbenes of the class imidazol-2-ylidene still form the major type of stable NHCs.

Figure 1.5: Structures of reported stable carbenes (**a-f**) by Arduengo.

From the above discussed literature, one can conclude that *N*-heterocyclic carbenes can be of different classes depending on the *N*-heterocyclic system, from which they are generated and therefore named accordingly. The systematical names of the parent heterocyclic compounds are given a suffix that is determined by the

kind of heterocyclic system, followed by the addendum –ylidene. The term "ylidene" refers to a compound in which two hydrogens are replaced by a pair of electrons hereby referring to the carbene and is mentioned along with the position of the carbene carbon in the *N*-heterocyclic system. Figure 1.6 depicts some of the most common classes of *N*-heterocyclic carbenes.

(a) imidazol-2-ylidene (b) imidazolidin-2-ylidene (c) 1,2,4-triazolin-5-ylidene

(d) benzimidazol-2-ylidene (e) tetra

(e) tetrahydropyrimid-2-ylidene

Figure 1.6: Structures of some of the most commonly applied classes of NHCs.

1.3.1 N-heterocyclic carbene complexes

NHCs as strong nucleophiles and excellent σ -donors, form adducts with virtually all the elements of the periodic table. The NHC complexes with transition metals were brought into focus even before the synthesis and isolation of the first reported free *N*-heterocyclic carbene, while with main group elements, the complexes began to be explored soon after the discovery of free NHC.

The most commonly used methods for the synthesis of NHC complexes are as follows:

1.3.1(a) In situ deprotonation of azolium salts

This method is based on the *in situ* deprotonation of the carbene precursor (azolium salt) which is achieved either by the use of metal source of sufficient basicity to deprotonate the azolium salts such as metal hydrides, alkoxides and acetates or by the addition of external bases such as potassium *tert*-butoxide, sodium hydride, sodium hydroxide, triethylamine to the metal source (Weskamp et al., 2000). The *in situ* deprotonation is the first known synthetic route for the formation of NHC transition metal complexes as demonstrated independently by Wanzlick and Öfele (Ofele, 1968; Wanzlick & Schonherr, 1968) [Scheme 1.5 (a,b)]. This method has also been reported for the synthesis of NHC complexes with rare earth metals (Clark et al., 2014; Gu et al., 2015; Lv & Cui, 2008; Wang et al., 2006). Most of the literature related to NHC transition metal complexes focuses on this method as it offers the advantage that the free carbene does not have to be isolated.

Scheme 1.5: Synthesis of the first NHC transition metal complexes by (a) Wanzlick and (b) Öfele.

1.3.1(b) Free carbene route

In this method, first the free NHC is generated by the deprotonation of azolium salts using strong bases such as KH, NaH or KO'Bu and the subsequent reaction of the free carbene with appropriate metal/element source yields the NHC complex. This is a useful method for those azolium salts that could generate free NHCs. Arduengo and coworkers, soon after the isolation of the first free stable NHC, reported the synthesis of a variety NHC transition metal complexes of Ag, Cu, Ni, Pt and Zn by such method (Arduengo et al., 1993; Arduengo et al., 1994) and it is still in use for the synthesis of different transition metal complexes (Alcarazo, 2005; Tapu, 2016). The rare earth metals have also been reported to form stable adducts with NHCs in high yields by utilizing this method (Herrmann et al., 1994); (Arduengo et al., 1994; Ferrence et al., 2006; Herrmann et al., 1997; Mehdoui et al., 2005; Schumann et al., 2007; Schumann et al., 1994b).

The free carbene route is most commonly used for the synthesis of NHC complexes with main group metals and elements. The derivatives of alkali and alkaline earth metals have been reported to form stable monomeric as well as dimeric adducts with NHCs (Alder et al., 1999; Arduengo et al., 1998; Maddock et al., 2015). NHCs strongly coordinate to a multitude of different *p*-block species, leading to adducts with a variety of different structures. For example, among group 13 the first NHC-alane adduct, imidazol-2-ylidene-AlH₃ was reported by Arduengo (Arduengo et al., 1992) (Scheme 1.6). Imidazol-2-ylidenes form stable monomeric adducts with B, Al, Ga derivatives which have been isolated as trihydrides, trimethyl and trichlorides (Abernethy et al., 2000; Kuhn et al., 1993; Marion et al., 2007). From the group 14 species, 1,3-mesityl-imidazolin-2-ylidenes, when reacted with methyl

iodide, form stable olefin along with the formation of imidazolinium salt (Arduengo, Davidson, et al., 1997). The imidazol-2-ylidenes can form stable tetravalent, pentavalent and hexavalent adducts with silicon and tin derivatives (Filippou et al., 2013; Jones et al.; Kuhn et al., 1995). The cyclic oligomers of phosphorous and arsenic among group 15 species form stable adducts with 1,3-dimesitylimidazol-2-ylidene (Arduengo, Calabrese, et al., 1997). The chalcogens (O, S, Se, Te) with imidazol-2-ylidenes have been reported to give stable imidazolium chalcogenides (Enders et al., 1995; Huffer et al., 2013). Among halogens, stable adducts with iodine and chlorine have been obtained by the reaction of imidazol-2-ylidenes with iodine and dichloroethane, respectively (Kuhn et al., 1998; Kuhn et al., 1993).

Scheme 1.6: Synthesis of NHC alane adduct.

1.3.1(c) Ligand transfer reactions

It involves the transfer of NHC ligand from one labile metal to another. Liu and co-workers have reported the successful transfer of NHC ligand from the NHC complexes of W(0), Cr(0), Mo(0) to Pd(II), Pt(II), Rh(I) and Au(I) (Liu, 1998) (Scheme 1.7). The use of NHC-Ag(I) complexes as NHC transfer agents was introduced by Wang and Lin and is found promising in getting a variety of other transition metal complexes (Wang & Lin, 1998). Transmetallation involving the use of NHC-Ag(I) is discussed in detail under applications of NHC-Ag(I) complexes. Apart from NHC-Ag(I), the use of NHC-Hg(II) complexes as NHC-transfer agents have also been reported to give successful transmetallation results (Baker et al., 2009; Lin & Vasam, 2007; Meyer et al., 2012). The NHC-Cu(I) complexes have also been reported to readily transfer the NHC ligand to Pd(II) and Au(I) (Furst, 2010) as well as Rh(I) and Ir(I) (Bidal, 2016). Apart from transition metal complexes, NHC-Li complexes have also been reported as effective carbene transfer agents (Arnold et al., 2003; Arnold et al., 2004; Liddle & Arnold, 2005). A variety of transition metal complexes such as Au(I), Cu(I), Cu(II), Ni(II), Pd(II), Pt(II), Rh(I), Rh(III), Ir(I), Ir(III), Ru(II), Ru(III) and Ru(IV) can be obtained by this method.

Scheme 1.7: Ligand transfer reaction from W(0) to Au(I).

1.3.1(d) Cleavage of enetetraamines

This method was introduced by Lappert and coworkers (Cardin, 1971). It involves the cleavage of electron rich enetetraamines (tetraaminoethylenes) into carbene monomers in the presence of coordinatively unsaturated electrophilic metal sources, resulting in the coordination of carbene with the metal center. This method has been successfully used for the synthesis of mono, bis, tris and tetrakis carbene complexes of various metals such as Cr, Mo, W, Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Au, Hg and Sn in different oxidation states (Cetinkaya et al., 1994; Hahn et al., 2001; Hitchcock et al., 1978; Karaca et al., 2015; Lappert, 2005; Lappert & Pye, 1977) (Scheme 1.8).

Scheme 1.8: Synthesis of NHC transition metal complex by the cleavage of electron rich enetetraamines.

1.4 *N*-heterocyclic carbene silver(I) complexes

Among the NHC-transition metal complexes, NHC-Ag(I) complexes have gained much focus due to their simpler synthetic strategies and stability, diverse structural architectures and various promising applications. All these aspects of NHC-Ag(I) complexes are discussed below.

1.4.1 Synthesis of N-heterocyclic carbene silver(I) complexes

NHC-Ag(I) complexes can be successfully synthesized by the following two methods:

1.4.1(a) The free carbene method

The first NHC-Ag(I) complex reported by Arduengo was obtained by the direct reaction of a preformed 1,3-dimesitylimidazol-2-ylidene with silver triflate, thus resulting in the formation of a bis(carbene) Ag(I) adduct (Arduengo et al., 1993) (Scheme 1.9). NHC-Ag(I) complexes derived from five, six and seven membered free NHCs have also been reported (Iglesias, 2008). As this method

requires the initial generation of free carbene, it is limited to those azolium salts that can generate stable carbenes.

Scheme 1.9: Synthesis of the first NHC-Ag(I) complex by Arduengo using free carbene.

1.4.1(b) The *in situ* deprotonation method

The *in situ* deprotonation of azolium salt and complexation of resulting carbene with Ag(I) can be accomplished either by the use of a silver base, Ag_2O or the basic silver salts like AgOAc and Ag_2CO_3 (Scheme 1.10).

The first introduced *in situ* deprotonation method involved the use of silver acetate as a silver base to deprotonate 1,2,4-trisubstituted triazolium salt, resulting in the formation of a polymeric NHC-Ag(I) complex (Guerret et al., 1997). This method has now been used for the preparation of NHC-Ag(I) acetate complexes (Hindi et al., 2008; Patil et al., 2011). In 1998, Wang and Lin introduced a new method which involved the use of silver oxide (Wang & Lin, 1998). This method has gained much popularity and is most commonly used for the preparation of NHC-Ag(I) complexes. It involves the reaction of azolium salt with Ag₂O, resulting in deprotonation of C2 carbon (precarbenic carbon) and complexation of the resulting carbene with Ag(I) at the same time. This reaction requires no external base and special reaction conditions like inert atmosphere and for the most part, it is carried

out at room temperature with the exception of azolium salts with steric bulk around C2 carbon that needs refluxing (Tulloch et al., 2000). For this method, a number of different solvents like dichloromethane, dichloroethane, acetone, methanol, acetonitrile, DMSO, DMF, water and solvent mixtures can also be used. The resulting NHC-Ag(I) complexes are stable, high in yield and have an added advantage of being excellent carbene transfer agents to obtain other transition metal complexes (Lin & Vasam, 2007; Lu et al., 2012).

Scheme 1.10: A general representation of *in situ* deprotonation methods for the synthesis of imidazolium/benzimidazolium derived NHC-Ag(I) complexes.

Another method of *in situ* deprotonation and complexation which involves the use of silver carbonate was reported in 2000 (Tulloch et al., 2000). This method offers longer reaction times and is of limited use, therefore the Ag₂O route remaines the preferred one. Most of the literature known NHC-Ag(I) complexes have been reported to be synthesized utilizing Ag₂O (Haque et al., 2013; Karataş et al., 2016; Samanta et al., 2015; Segarra et al., 2014)

1.4.2 Classification of N-heterocyclic carbene silver(I) complexes

The NHC metal complexes can be classified taking into account either the number of NHC unit per ligand molecule or by considering the number of metal centers per complex. However, the review articles dealing with the structural diversity of NHC metal complexes classify them mostly on the basis of NHC units per ligand (Garrison & Youngs, 2005; Poyatos et al., 2009). The NHC metal complexes are broadly classified into two main categories namely the mono-NHC and the poly-NHC, the latter can further be subdivided into different types.

The present classification is based on the number of carbene centres per ligand, of which the NHC-Ag(I) complexes can be of the following types;

1.4.2(a) Mono NHC-Ag(I) complexes

The mono-NHC (monodentate) ligands have one NHC unit per ligand molecule in the complex. Different bonding motifs of mono NHC-Ag(I) complexes can be obtained depending on whether the anion is noncoordinating or coordinating.

The mono NHC-Ag(I) complexes with noncoordinating anions exist as dimeric complexes with one Ag(I) ion bridging two NHC ligands giving rise to monometal diligand arrangement (Asekunowo & Haque, 2014) [Figure 1.7(a)]. Whereas with the coordinating anion, mainly halides, different structural variations are possible. The monomeric complexes with one Ag(I) ion coordinating to a carbene and an anion (Ramnial et al., 2003) [Figure 1.7(b)]; the mono NHC-Ag(I) complexes with bridging halides (Tulloch et al., 2000) [Figure 1.7(c)]; and the complexes forming staircases (Chen & Liu, 2003) (Figure 1.7(d)).

(a) dimeric with non coordinating anion

X = halide ion(c) with bridging halides

(b) with coordinating anion

(d) staircases

Figure 1.7: Structural variations of mono NHC-Ag(I) complexes.

1.4.2(b) Di NHC-Ag(I) complexes

The di-NHC (bidentate) ligands have a pair of NHC moieties connected via a bridging linker such as phenylene (Alcalde et al., 2007) (Haque et al., 2013), lutidinyl (Brown et al., 2009) (Haque et al., 2014), ether chain (Liu et al., 2007; Nielsen et al., 2003) or alkyl chain (Gil-Rubio et al., 2013) (Haque et al., 2013).

Depending on the flexibility and the size of the bridging linker, NHC-Ag(I) complexes can have four structural variations: the monometal monoligand complex [Figure 1.8(a)]; the bidentate monoligand and dimetal complexes [Figure 1.8(b)]; the dimetal diligand complex [Figure 1.8(c)] and the di-NHC-Ag(I) complexes derived from imidazolium linked cyclophanes (Baker et al., 2004) [Figure 1.8(d)].