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PEMBANGUNAN KAEDAH PENGEKSTRAKAN MIKRO HIJAU BAGI 

PENENTUAN ASID FENOLIK DI DALAM MADU DAN MINUMAN 

 

ABSTRAK 

 

 

        Teknik bantuan ultrabunyi-penyerakan matrik fasa pepejal (UAMSPD) telah 

dibangunkan bagi penentuan dua belas asid fenolik (sinnamik, m-komerik, klorogenik, 

siringik, ferulik, o-komerik, benzoik, p-komerik, vanilik, p-hidroksibenzoik, kafeik, 2,4-

dihidroksibenzoik) di dalam madu menggunakan elektroforesis zon rerambut (CZE) dan 

pengesan pancaran foto diod. Dalam keadaan optimum, sampel (0.5 g) diserakkan dengan 

Amberlite XAD-2 (2 g), diikuti dengan cucian dengan air berasid (pH 2.0) dan seterusnya 

dibilas dengan metanol (8 mL). Purata perolehan semula kaedah UAMSPD–CZE bagi madu 

yang ditambahkan larutan piawai adalah di dalam julat 71.0-106 %. Had pengesanan 

(LODs) adalah daripada 0.036-0.132 µg g-1. Kaedah ini telah berjaya digunakan bagi 

beberapa jenis madu Malaysia. Kaedah pengekstrakan yang selektif, ringkas, efisien dan 

mesra alam yang berasaskan kepada setiltrimetilammonium bromida-bentonit yang telah 

diubahsuai (CTAB-bentonit) sebagai penjerab di dalam pengekstrakan fasa pepejal-mikro 

(µ-SPE) telah dibangunkan bagi penentuan dua belas asid fenolik di dalam sampel jus. 

Pengubahsuaian permukaan bentonit telah disahkan menggunakan FTIR, TEM dan BET. 

Beberapa parameter yang mempengaruhi pengekstrakan telah dikaji dan dioptimumkan 

(amaun penjerab, pH sampel, masa pengekstrakan, kelajuan pengacauan, pelarut 

penyahserapan, isipadu dan masa). LODs dan had pengkuantitian masing-masing adalah 

0.21-2.1 dan 0.63-0.62 µg L-1. Kaedah yang dicadangkan telah berjaya digunakan bagi 
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penentuan asid fenolik di dalam sampel jus. Teknik penyediaan sampel lain menggunakan 

pasangan ion bantuan vortek pengekstrakan mikro cecair-cecair-cecair (IPVALLLME) bagi 

penentuan asid ellagik di dalam sampel madu telah berjaya dibangunkan. Asid ellagik di 

dalam larutan sampel telah ditukarkan kepada larutan kompleks pasangan ion 

(menggunakan tridesilamina sebagai reagen pasangan ion yang telah dilarutkan di dalam 

pentanol) dan diekstrak menggunakan bantuan vorteks diikuti dengan pengekstrakan semula 

ke dalam fasa akues 0.03 M KOH. Faktor pengkayaan dan LOD masing-masing adalah 184 

dan 0.2 µg L-1. Kaedah yang dicadangkan telah digunakan bagi penentuan asid ellagik di 

dalam sembilan belas madu Malaysia dengan berlainan jenis bunga. Kaedah pengekstrakan 

mikro cecair-cecair-cecair bantuan vorteks diikuti dengan kromatografi cecair berprestasi 

tinggi-pengesan pancaran diod (HPLC-DAD) telah dibangunkan bagi penentuan empat 

belas asid fenolik di dalam sampel madu, teh ais, dan minuman kopi. Pengekstrakan telah 

dijalankan menggunakan pelarut organik ternari (1-pentanol, propil asetat dan 1-heksanol) 

dengan isipadu yang kecil (400 µL) telah diserakkan ke dalam sampel akues (10 mL) dan 

dibantu dengan goncangan vorteks (2500 rpm selama 45 saat). Analit telah diekstrak semula 

daripada pelarut organik menggunakan 0.02 M KOH (40 µL) dengan kelajuan dan masa 

vorteks masing-masing adalah 2500 rpm dan 60 saat. Dalam keadaan ini, faktor pengkayaan 

sebanyak 30-193 telah tercapai. Secara keseluruhannya kaedah pengekstrakan mikro ini 

adalah bersesuaian dengan prinsip kimia analitsis yang hijau, terutamanya di dalam 

pengurangan pelarut organik, masa dan juga ringkas. 
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THE DEVELOPMENT OF GREEN MICROEXTRACTION METHODS FOR THE 

DETERMINATION OF PHENOLIC ACIDS IN HONEY AND BEVERAGES 

 

ABSTRACT 

 

        Ultrasound-assisted matrix solid phase dispersion (UAMSPD) technique was 

developed for the determination of twelve phenolic acids (cinnamic, m-coumaric, 

chlorogenic, syringic, ferulic, o-coumaric, benzoic, p-coumaric, vanillic, p-hydroxybenzoic, 

caffeic, 2, 4-dihydroxybenzoic) in honey by using capillary zone electrophoresis (CZE) with 

photodiode array detector. Under the optimum conditions, sample (0.5 g) was dispersed with 

Amberlite XAD-2 (2 g), followed by washing with acidified water (pH 2.0) and 

subsequently rinsed with water to remove sugars and were finally eluted with methanol ( 8 

mL). The average recoveries of the UAMSPD-CZE method from samples spiked to honey 

were within the range (71.0- 106 %). The limits of detection (LODs) ranged from 0.036 to 

0.132 μg g-1. The method was successfully applied to several Malaysia honey. A selective, 

simple, efficient and environmental friendly extraction method based on 

cetyltrimethylammonium bromide-modified bentonite (CTAB–bentonite) as sorbent in the 

micro-solid phase extraction (µ-SPE) has been developed for the determination of twelve 

phenolic acids in juice samples. The surface modification of bentonite was confirmed using 

FTIR, TEM and BET. Several parameters that affected the extraction were studied and 

optimized (i.e., sorbent amount, pH of sample, extraction time, stirring speed, desorption 

solvent, volume and time). The limit of detection and limit of quantitation were 0.21 – 2.1, 

0.63 - 0.62 µg L-1, respectively. The proposed method was successfully applied for the 

determine of phenolic acid in juice samples. Another sample preparation technique using 
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ion-pair vortex assisted liquid – liquid- liquid microextraction (IPVALLLME) for the 

determination of ellagic acid in honey samples was successfully developed. Ellagic acid in 

the sample solution was converted into an ion-pair complex (using tridecylamine as ion-

pairing reagent that was dissolved in pentanol) and then extracted using the assistance of 

vortex, followed by back-extraction in the aqueous phase with 0.03 M KOH. Enrichcement 

factor and limit of detection were 184 and 0.2 µg L-1, respectively. The proposed method 

was applied for the determination of ellagic acid in twenty one Malaysian honey with 

different floral origins. A vortex-assisted liquid-liquid–liquid microextraction method 

followed by high performance liquid chromatography-diode array detection (HPLC-DAD) 

has been developed for the determination of fourteen phenolic acids in honey, iced tea and 

canned coffee drink samples. The extraction was performed using a small volume (400 μL) 

of ternary organic solvents (1-pentanol, propyl acetate and 1-hexanol) dispersed into the 

aqueous sample (10 mL) and assisted by vortex agitation (2500 rpm for 45 s), the analytes 

were next back-extracted from the organic solvent using 0.02 M KOH (40 µL) with vortex 

speed and time of 2500 rpm and 60 s, respectively. Under these conditions, enrichment 

factors of 30–193-fold were achieved. On the whole, these microextraction methods are in 

agreement with green analytical chemistry principles, especially in terms of reduction of 

organic solvent, time and simplicity. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Green Analytical Chemistry 

 

Green chemistry uses different chemistry techniques to improve and develop the 

process, synthesis and use chemicals which reduce or eliminate products and by-

products that reduce risks to humans and the environment (Anastas, 1999). Green 

Chemistry technologies were recently developed for the industrial sector for both 

economic benefits as well as environmental benefits by chemical companies in the 

world. Different sectors such as pharmaceuticals, organic, inorganic and analytical 

chemistry recently successfully applied green chemistry technologies (Anastas, 1999). 

Green analytical chemistry (GAC) term has been introduced for the first time by 

Namiesnik (Namieśnik, 2001). Over the last few years, tremendous research 

concentrated on all aspects of sample analysis to improve existing techniques so that 

they are effective, cheap, efficient, fast and environmentally friendly. Therefore, GAC 

is key to convert the chemurgical paradigm to ecological paradigm in analytical 

chemistry field as shown in Figure 1.1. 
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Fig. 1.1 The transfer of Green Analytical Chemistry from chemurgical paradigm to 

ecological paradigm (Armenta et al, 2015). 

 

 1.1.1 Principle of green analytical chemistry 

 

Twelve principles of green chemistry were suggested by Anastas and Warner (Anastas 

et al., 1998) from these twelve principles of green chemistry only six of them can be 

applied to GAC, which are: 

(i) Prevention. 

It is better to prevent waste generation rather than cleaning-up or treating of waste after 

being formed. 

(ii) Safer Solvents and Auxiliaries. 

   The auxiliary substances that are mainly used (e.g., separation agents, solvents, etc.) 

should be eliminated or reduced wherever possible. 

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc-principle-of-the-month-1.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--5.html
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(iii)  Design for Energy Efficiency. 

 The energy used should be minimized and recognized for their economic and 

environmental impacts (e.g., synthetic procedure should be conducted at ambient 

pressure and temperature if that are possible). 

(iv)  Reduce Derivatives. 

      Derivatization process should be avoided or reduced if possible.   

(v)  Real-Time Analysis for Pollution Prevention. 

    Analytical methodologies have to be improved so that the analysis can be 

conducted in real time to minimize the generation of hazardous substances. 

(vi)  Inherently Safer Chemistry for Accident Prevention. 

     Inert chemical substances should be chosen and preferred to minimize the risk of 

chemical accidents such as explosion and fire. 

Thus, the main goals of new analytical methods  is to reduce and eliminate  chemical 

substances (e.g.,  reagents, solvents, additives, preservatives) which can reduce the 

production of wastes, to improve the reliability of method, to minimize the energy 

consumption, to reduce analysis time, and  reduce cost (Tiwari et al., 2015). Common 

strategies to achieve these goals are using micro scale sample preparation, new 

separation and detection methods. 

 

 

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--6.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--8.html#articleContent_headingtext
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--11.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--12.html
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The modern instrumental methods is also preferred to reduce energy and amount of 

chemical reagents consumed especially when the analytical method is automated, 

miniaturized, and safety in operation with minimum waste production (GAC principles 

# ii, iii, vi). Moreover, the combination between modern sample treatment with new 

separation methods and innovative methods of detection can improve the efficiency and 

reduce the energy (GAC principles # iii, v). Direct analytical techniques with universal 

detectors such as mass spectrum or evaporative light scattering or solventless sample 

treatment can also be used.  

Reducing or elimination of toxic organic solvents in analytical methods is an important 

principle in GAC (principle # vi). The main target of using alternative solvents such as 

ionic liquids and supercritical fluids is not only the replacement the toxic solvent (e.g., 

benzene, chloroform) but also improving the sensitivity, reliability, selectivity and 

reduce the analysis time (Liu et al.,2005). Moreover, the alternative solvents are safe to 

the operator. Classifications of some common organic solvents (Table 1.1) were 

reported by Furusawa (Furusawa et al., 2004).  
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Table 1.1 Classification of common organic solvents used in analytical chemistry 

(Furusawa, 2004). 

 

Toxicity classification, 1 = very strong toxin (mutagenic, carcinogenic and teratogenic), 

2 = very strong toxin, 3 = strong toxin, 4 = solvent considered harmful. 5 = solvent with 

low hazard potential (negligible hazard), - = not toxic classification, Harmful 

classification based on Japanese Reagent Chemical Association, Xn = harmful, T= 

toxic, - = not toxic   

 

 

 

1.1.2 Green Approaches in Sample Preparation Techniques 

 

 

In spite of progress in instrumentation, they still cannot handle complex samples. 

Sample preparation remain as important step in the analytical process. The main 

objectives of sample preparation is to convert or remove the matrix and interferents so 

that they are suitable for analysis. Removing the matrix and potential interferents not 

only increases the selectivity but also increases the sensitivity of the method. 

 

 

 

Solvent Poison classa Harmful classb 

Acetone  5 Xn 

Acetonitrile 2 T 

Chloroform 1 T 

Dichloromethane 4 Xn 

Diethyl ether  4 Xn 

Ethanol  - - 

Ethyl acetate 4 T 

n-Heptane 5 - 

n-Hexane 4 Xn 

Methanol 3 T 
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Usually, the analytical procedure involves four major steps, i.e.,   sample preparation, 

separation, detection and identification, as shown in Fig. 1.2.       

 

 

 

 

 

Fig. 1.2 Steps that are involved in analytical procedure (Koel et al., 2006) 

 

Unfortunately, there is no universal sample preparation that is available due to variation 

of sample matrices. Sample preparation has long been recognized as bottleneck in 

analytical analysis. Classical sample preparation techniques such as liquid liquid 

extraction (LLE) and solid phase extraction (SPE) are time consuming, slow, consumes 

large amounts of organic solvents, generate wastes and are labor intensive.  

Over the past several decades, more attention has been placed on the development of 

simple, fast, accurate, inexpensive, environmental friendly and automated analytical 

methods to replace the existing methods. 

Miniaturized extraction techniques (referred to as microextraction) involve the use of 

small amounts of sample and extraction solvents.  
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Two categories of microextraction techniques were developed:  

(i) Solid-based microextraction   (e.g., matrix solid phase dispersion (MSPD), micro-

solid phase extraction (µ-SPE), solid phase microextraction (SPME)) 

(ii) Liquid-based microextraction (e.g., single drop microextraction (SDME), hollow 

fiber liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction 

(DLLME), vortex assisted liquid-liquid microextraction (VALLME). 

A short description of these microextraction methods are next discussed. 

 

1.1.2.1 Solid-Based Microextraction Techniques 

 

 1.1.2.1 (a) Matrix Solid Phase Dispersion (MSPD) 

 

The MSPD technique was introduced for the first time in 1989 by Barker and Long 

(Barker et al., 1989) for the extraction of organic compounds from solid, semi-solid and 

viscous samples. The technique is widely used for extraction and purification due to its 

selectivity, flexibility and the ability to perform the extraction and clean-up in one step 

(Capriotti et al., 2013) The method is based on the disruption and dispersion of the 

sample by mechanical blending with solid support material (e.g, octadecylsilyl silica 

C18, florisil, silica gel, carbon nanotubes).  The mechanical forces generated by 

dispersing the sample over the surface of the support solid material (hydrophobic and 

hydrophilic interaction) to produce a new phase material which is suitable for the 

extraction process.  
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The homogenous blended mixture is then transferred and packed into a MSPD column. 

Suitable solvent is used for the elution of interferents and target analytes by using a 

vacuum manifold (Capriotti et al., 2010) (Fig. 1.3).  The method offers several 

advantages over the traditional extraction methods such as being simple, flexible, 

requiring small amount of solvent and sorbent, and low costs. The MSPD method has 

been frequently applied in different fields particularly for the analysis of pesticides, 

drugs, herbicides and other pollutants from vegetables, fruits and animal tissues (Wu et 

al., 2008). Recently, different sorbent materials with large surface area such as multi-

walled carbon nanotubes (MWCNTs) or high selective sorbents such as molecularly-

imprinted polymers (MIP) (Capriotti et al., 2013) were used. Furthermore, solvent at 

high pressure and temperature to enhance the extraction efficiency can be used.   

Extraction of the target analyte with solvent under sonication bath before the elution 

process improves the extraction (Moreda-Piñeiro et all., 2009).  Miniaturization of the 

MSPD method has been reported (Moreda-Piñeiro et al., 2009) by using small amount 

of sample and solvent. 
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Fig. 1.3 Schematic diagram of the MSPD procedure (Ferrer et al., 2005) 

 

 

 

 

 

1.1.2.1 (b) Micro Solid Phase Extraction  (µ-SPE) 

 

The µ-SPE technique involves the trapping of small amount of sorbent (about 5 mg) in 

a porous polypropylene membrane (Fig. 1.4). Due to the porosity and hydrophobicity 

character of the membrane, interferences from macro-molecules are minimised. During 

the extraction process, µ-SPE device is tumbled into the stirred sample and analytes are 

able to diffuse from the sample solution to the sorbent. After the extraction process is 

completed, desorption (often assisted by ultrasonication) is carried out by immersing the 

µ-SPE device in a suitable organic solvent.  The µ-SPE technique is simple and 

effective for the extraction of compounds from complex samples.  
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Distinct advantages over the traditional  SPE  is the  omitting of time consuming  steps 

such as conditioning, cleaning, wetting and elution,  reducing the  solvents consumption 

(Asgharinezhad et al., 2014). Moreover, µ-SPE technique exhibits high reusability 

where single extraction device can be used for up to 30 extraction times. The µ-SPE 

technique was successfully applied for the determination of drug residues in wastewater 

(Basheer et al., 2007), organochlorine pesticides in drinking and agriculture waters 

(Ahmadi et al., 2008), ochratoxin A (OTA) in coffee (Lee et al., 2012 A), estrogens in 

cyst fluid samples (Kanimozhi et al., 2011), biogenic amines (BAs) in orange juice 

(Basheer et al., 2011) and persistent organic pollutants (POPs) in tissues (Basheer et al., 

2008). Newer sorbents such as multi-walled carbon nanotubes (Basheer et al., 2006), 

molecularly imprinted polymer (Feng et al., 2009), graphite fibers (Xu et al., 2008) have 

been used. 

 

 
 

 

Fig. 1.4 Schematic of µ-SPE device preparation (Pelden, et al., 2014) 
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1.1.2.1 (c) Solid Phase Microextraction   (SPME) 

 

The SPME technique was first introduced in 1990 by Arthur and Pawliszyn (Liu and 

Dasgupta, 1996). The technique uses a polymer coated fiber that can be used to extract 

the compounds from liquid solution (direct immersion mode) or gas samples (headspace 

mode) headspace region or solution (Fig. 1.5) (Flanagan et al., 2008). The SPME 

method uses two main steps: (i) partitioning of the analytes between sample solution 

and stationary phase which is coated on the SPME fiber, (ii) desorption of the analyte 

from the SPME fiber to a gas chromatography injector or stripped with special interface 

at the high performance liquid chromatography inlet (Risticevic et al., 2009). 

 

Fig. 1.5 Design of commercial SPME device (Chen et al., 2008). 

 



12 

 

The SPME technique was classified into two types:  

(i) Direct immersed solid phase microextraction (DI-SPME) 

In DI-SPME, the SPME fiber is directly immersed into the extraction vial during the 

extraction.  It can be applied with or without derivatization process. 

(ii) Head space solid phase microextraction (HS-SPME)  

  In this technique, the SPME fiber is exposed in head space region of sample vial and 

thereby, preventing the contamination on the surface of fiber from sample matrices. 

(Nováková et al., 2009). SPME technique widely used with GC but less was reported 

with HPLC.  This is due to the stripping step that is needed to extract the analytes from 

the fiber and inject into the HPLC system. The in-tube SPME technique was developed 

by Eisert and Pawliszyn 1997 to overcome these problems (Eisert et al., 1997). It is 

based on the use of a short piece of fused silica capillary GC column which was 

internally coated with specific stationary phase. The analytes are adsorbed in the open 

tube short column by the repeated aspirating and dispensing sample solution. The 

sorbed analyte is desorbed and transferred from the tube to the HPLC column (Fig 1.6) 

(Eisert et al., 1997). The SPME technique was applied for the determination of analytes 

in biological, pharmaceutical, clinical, environmental and food samples (Nerín et al., 

2009). The technique offers several advantages over the classical method such as 

simple, rapid, easily automated, solvent free, small volume of sample used, ability to 

extract polar and non-polar analytes in different sample matrices (Nováková et al., 

2009). However, the range of coated fiber stationary phases and their capacity are 
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limited. The fiber itself is fragile and have limited lifetime. In addition, sample 

carryover effects from sample to sample is often encountered (Risticevic et al., 2009). 

 

Fig. 1.6 Set-up of the on-line SPME-HPLC interface based on an in-tube SPME 

capillary technique (Eisert, et al., 1997). 

 

 

1.1.2.2 Liquid Phase Microextraction Techniques 

 

1.1.2.2 (a) Single Drop Microextraction (SDME) 

 

The SDME technique was first introduced by Liu and Dasgupta in 1996 (Xu et al., 

2007). It uses an immiscible single drop of organic solvent (1-3 µL) that was suspended 

at the tip of micro-syringe needle which is immersed in the aqueous solution with 

continues stirring during the extraction process (Fig 1.7). After the extraction is 

completed, the organic micro-drop is retracted back into the micro-syringe and injected 

directly into either capillary electrophoresis (CE), GC or HPLC column (Xu et al., 

2007). Similar to the LLE, the extraction of compounds from the sample depends on the 

partition and diffusion of analytes between the aqueous phase (sample solution) and 
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organic phase (single organic micro-drop).  Therefore, the extraction process depends 

mainly on equilibrium principle rather than on exhaustive extraction. Different 

parameters such as extraction temperature, stirring rate, type of solvent, salt-out effects, 

pH of solution and volume of single organic drop can also effect the extraction 

efficiency.  

The SDME technique is simple, inexpensive, efficient, uses minimum organic solvent, 

fast without any sample carryover effects, low cost, preconcentration and extraction in 

one single step (Xu et al., 2007, Psillakis et al., 2002). Therefore, it has been used for 

the determination of analytes in biological application (Li et al., 2005), food (Zhao et 

al., 2006) and water samples (Ahmadi et al., 2006). Details of SDME applications and 

developments have been reported in several reviews (Psillakis and  Kalogerakis , 2002, 

Xu et al., 2007).  

On the other hand, the main problems of the  SDME is the stability of the hanging 

single organic drop with high stirring rates that may dislodged the drop from the tip of 

mico-syringe needle (Psillakis and  Kalogerakis , 2002). Moreover, air bubble formation 

due to the stirring process may hinder it automation to preconcentrate the analyte (Xu et 

al., 2007). 

 

 

 



15 

 

 
 

 

Fig 1.7. Schematic of the single-drop microextraction system (Psillakis and Kalogerakis 

, 2002). 

 

1.1.2.2 (b)  Hollow Fiber -Liquid Phase Microextraction (HF-LPME) 

 

In 1999, Pedersen and Rasmussen introduced the HF-LPME technique.  It uses a porous 

hollow fiber membrane (made from polypropylene) (Pedersen-Bjergaa et al., 1999). 

The major advantages of HF-LPME are its  low cost, requiring minute amounts  of 

organic solvent (2- 30 µL), good clean-up ability, high analyte enrichments (pre-

concentration) within a relatively short time (Carasek and Merib , 2015). Moreover, the 

fibers are inexpensive and disposed after used, thereby overcome the sample carry-over 

problems between extractions. Additionally, the HF-LPME technique can be conducted 

over wide pH range (cannot be done using SPE technique that uses silica support) 

(Richoll and Colon, 2006). 

 In the HF-LPME technique, an organic solvent is immobilized in the pores of a 

polypropylene hollow fiber, hence, forming a supported liquid membrane. In the two 
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phase HF-LPME mode, the extract organic solvent is immobilized in pores of the 

hollow fiber. An aqueous acceptor phase is placed into its lumen (three phase-HF-

LPME) (Fig 1.8).  

 

 

 
 

Fig. 1.8 Schematic of the HF-LPME (A) three phase and (B) two phase. (Han and Row, 

2012). 

 

 

The analytes are extracted from the aqueous sample solution through thin layer of 

organic solvent in the pores of the HF (SLM) into the acceptor solution (organic or 

aqueous) in the lumen of the HF (Fig. 1.9). After the extraction, the extract can be 

directly injected into the GC unit (for two phase-HF LPME) or the acceptor phase is 

aqueous solution (three phase-HF-LPME) which is suitable for HPLC or CE analysis 
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(Pedersen-Bjergaard and Rasmussen, 2008).   The HF-LPME technique has been 

applied for the extraction and clean-up for a wide range of analytes in biomedical, food 

and environmental samples (Pedersen-Bjergaard and Rasmussen, 2008). This technique, 

however, is time consuming (≈ 20- 60 min). Furthermore, the leakage of organic solvent 

in the HF pores into the sample solution reduced the reproducibility of HF-LPME 

(Sarafraz-Yazdi and Amiri, 2010).  

Additionally, using complex sample matrices can block the HF pores, thus reducing the 

repeatability of the extraction process (Sarafraz-Yazdi and Amiri, 2010).   

 

 
 

Fig. 1.9 Schematic HF-LPME diagram with the enlargement of the HF (modified from 

Ghambarian et al., 2012) 

 

 

 

 

 

 

 

 



18 

 

1.1.2.2 (c) Dispersive Liquid-Liquid Microextraction (DLLME) 

 

The DLLME technique was proposed by Rezaee and co-workers in 2006 (Rezaee et al., 

2006). In this technique, a mixture of extracting organic solvent (high density organic 

solvent) and small amount of water miscible organic solvent (dispersive solvent) was 

rapidly added into an aqueous sample. A cloudy solution (emulsion) due to the 

formation of micro droplets was formed. The analytes are rapidly extracted from the 

aqueous sample (donor phase) into organic extracting solvent (acceptor phase) due to 

the large contact surface between the donor and acceptor phases. After the extraction, 

the two phases were separated by centrifugation (the organic phase containing the 

analytes settled at the bottom of the conical centrifuge tube, collected) and subsequently 

analysed using appropriate technique (Rezaee et al., 2006). A schematic diagram of the 

DLLME technique is shown in Fig. 1.10. 

DLLME offer several advantages such as rapid, simple, low cost, relatively high 

enrichment factor and good recovery. The DLLME principle, applications and 

developments have been reviewed (Rezaee et al., 2010, Zgoła-Grześkowiak and 

Grzes´kowiak, 2011). DLLME technique has been applied to the extraction of analytes 

from different fields (e.g., food, environmental, biological) (Rezaee et al., 2010). 

However, there are some drawbacks such as using dispersion solvent that may reduce 

the partition coefficient and mass transfer of the analytes into the organic solvent. 

Furthermore, the high density organic solvent (e.g., carbon tetrachloride, chloroform 

and chlorobenzene), are considered as highly toxic and environmentally unfriendly. 
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Fig. 1.10    Schematic diagram of the DLLME procedure (Grześkowiak, et al., 2011) 

 

 

 

1.1.2.2 (d)  Vortex-Assisted Liquid–Liquid Microextraction (VALLME) 

 

 

The VALLME technique was introduced by Psillakis and Yiantzi et al. in 2010 (Yiantzi 

et al., 2010). In this method (Fig. 1.11), the dispersion of the organic solvent (lower 

density than water) into the aqueous sample solution is achieved by using vortex 

agitation, which forms a mild emulsion. This process enables the  extraction of  the  

analyte from the sample  solution  in a short time due to the large contact surface area 

and  short diffusion distance between the two phases  (organic and aqueous) (Bosch 

Ojeda and Rojas, 2014). This technique has been successfully applied for the extraction 

of analytes such as aliphatic amines (Chang et al., 2012), furfurals (Abu-Bakar et al., 

2014)], polychlorinated biphenyls (Ozcan, 2011) pesticides (Yan et al., 2013; 
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Vichapong et al., 2013), herbicides (Li et al., 2012) alkyl phenols (Yiantzi et al., 2010) 

and phthalate esters (Zhang and Lee, 2013). As the extracts are organic-based, they are 

mostly analysed using GC (Zhang and Lee, 2012; Guo et al., 2013; and Yang et al., 

2013) although HPLC (Yiantzi et al., 2010, Román et al., 2014) is also used to a small 

extent.     

Problems that arise when analysed by HPLC are the extra peaks or broad analyte peaks 

were found due to the extracted organic solvent (Yiantzi et al., 2010, Chang et al., 

2012). Alternatively, extra step such as evaporation, centrifugation and filtration before 

analysis or extending the conditioning of column by using gradient system after each 

run were attempted (Yiantzi et al., 2010, Lian et al., 2013, Chang et al., 2012). Based on 

these reasons, a three phase vortex-assisted liquid–liquid microextraction was 

introduced (Makahleh et al., 2015). In this technique, the analytes are extracted from the 

sample (aqueous) to the organic solvent (organic) by using vortex agitation and 

subsequently back-extracted into the acceptor phase (aqueous). Consequently, the 

acceptor phase is directly injected into the HPLC unit.  

 

 

 

 

 

 

 

 


