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PENCIRIAN ANTIBODI REKOMBINAN YANG MENSASARKAN 

PROTEIN KAPSID HIV-1 (P24): KE ARAH PEMBANGUNAN ANTIBODI 

TERAPEUTIK TERHADAP HIV/AIDS 

 
 

ABSTRAK 

 

Virus imunodifisiensi manusia (HIV) adalah agen penyebab sindrom kurang 

daya tahan terhadap penyakit (AIDS). Peningkatan morbiditi dan kematian akibat 

HIV/AIDS dalam beberapa dekad kebelakangan ini telah mencetuskan perhatian untuk 

memerangi penyakit berkenaan. Walau bagaimanapun, penyelidikan yang dijalankan 

secara berterusan didapati masih gagal untuk membasmi jangkitan HIV/AIDS. 

Pengenalan terhadap terapi anti-retroviral yang sangat aktif (HAART) pada awal 

tahun 1990 telah mengurangkan kadar kematian HIV/AIDS, namun ia mewujudkan 

strain HIV yang mempunyai rintangan terhadap dadah/ ubat-ubatan. Oleh itu, terdapat 

keperluan yang mendesak untuk membangunkan kaedah terapeutik baharu yang lebih 

baik. HIV-1 kapsid protein (p24) memainkan peranan penting dalam kedua-dua 

peringkat replikasi awal dan lewat virus HIV-1. Molekul kecil Inhibitor dan peptida 

yang mensasarkan p24 membuktikan jangkitan virus berkenaan dapat dihalang. Walau 

bagaimanapun, faktor perembesan pantas dan ketoksikan molekul/peptide tersebut 

merupakan kelemahan utama yang berkaitan dengan kaedah terapeutik di atas. Potensi 

antibodi monoklon (mAbs) yang berupaya mensasarkan p24 telah diterokai. Antibodi 

monoklon berkenaan dapat dibangunkan sebagai modaliti terapeutik yang baharu. 

Walau bagaimanapun, antibodi monoklon semula jadi atau yang diperoleh dari 

hybridoma merupakan molekul bersaiz besar yang sukar untuk menembusi sel. 

Teknologi DNA rekombinan membolehkan kejuruteraan antibodi dibangunkan dalam 

pelbagai format. Oleh itu, matlamat kajian ini adalah untuk menjana, mencirikan, dan 
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menilai antibodi rekombinan yang mensasarkan HIV-1 p24. Antibodi rekombinan 

anti-p24 dijana dari kombinasi pelbagai kumpulan domain yang diklon daripada sel 

hybridoma dan seterusnya dihasilkan pada permukaan filamen bakteriofaj. ScFvs 

rekombinan yang bertindak secara spesifik terhadap p24 HIV-1 telah diperoleh dan 

dikenal pasti. Daripada 50 klon, tiga scFvs yang spesifik telah dikenal pasti melalui 

ujian ELISA. scFvs tersebut telah disahkan melalui competitive ELISA dan klon-klon 

berkenaan kemudiannya dihasilkan di dalam E. coli. ScFvs rekombinan didapati 

berupaya menghalang pempolimeran p24 secara in vitro dan replikasi HIV di dalam 

beberapa jujukan Jurkat T sel apabila dihasilkan sebagai antibodi intrasel 

(intrabodies). ScFvs anti-p24 yang dihasilkan daripada kajian ini mempunyai potensi 

untuk dibangunkan sebagai kaedah terapeutik baharu yang berasaskan antibodi 

terhadap HIV. 
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CHARACTERIZATION OF RECOMBINANT ANTIBODIES TARGETING 

HIV-1 CAPSID PROTEIN (P24): TOWARDS THE DEVELOPMENT OF 

ANTIBODY-BASED THERAPY AGAINST HIV/AIDS 

 
 

ABSTRACT 
 

Human immunodeficiency virus (HIV) is the causative agent of acquired 

immune deficiency syndrome (AIDS) disease. Increasing morbidity and mortality due 

to HIV/AIDS in decades has sparked an interest to combat HIV/AIDS. However, 

ongoing research against the HIV/AIDS pandemic has failed to completely eradicate 

the infection. Introduction of highly active anti-retroviral therapy (HAART) in early 

1990s has reduced the death rate of HIV/AIDS, but it has also resulted in the 

development of drug-resistant strains of HIV. Therefore, there is a pressing need to 

develop new and improved therapeutic modalities. HIV-1 capsid protein (p24) plays 

important roles in both early and late stages of HIV-1 replication. Small molecule 

inhibitors and peptides targeting p24 have shown to inhibit viral infection. However, 

rapid clearance and toxicity are major drawbacks associated with the above-mentioned 

therapeutic modalities. The potential of monoclonal antibodies (mAbs) targeting p24 

was discovered and found out that p24-targeting antibodies can be developed into 

novel therapeutic modalities. However, natural or hybridoma-derived mAbs are large 

molecules and difficult to engineer. Recombinant DNA technology allows the 

engineering of antibodies in multiple formats. Therefore, the aim of this study was to 

generate, characterize, and evaluate recombinant antibodies targeting HIV-1 

p24. Recombinant anti-p24 antibodies were generated from a combinatorial library of 

variable domains cloned from a hybridoma cell line and subsequently expressed on the 

surface of filamentous bacteriophage. Recombinant scFvs reacting specifically with 
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HIV-1 p24 were isolated, expressed, and characterized. Out of 50 clones, three specific 

binders were identified via initial ELISA screening. Specificity of the binders was 

confirmed through competition studies and the selected clones were expressed in E. 

coli. The recombinant scFvs markedly inhibited p24 polymerization in vitro and HIV 

replication in Jurkat T cell lines when expressed as intracellular antibodies 

(intrabodies). The anti-p24 scFvs engineered in this study have potential to be 

developed into novel antibody–based therapeutics against HIV. 
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CHAPTER 1: INTRODUCTION 

1.1. Background of the study 

1.1.1. HIV and AIDS 

Human immunodeficiency virus (HIV) is categorized into two types: HIV-1 and HIV-

2. The routes of transmission for both types are similar and are causative agents for 

acquired immunodeficiency disease syndrome (AIDS). HIV-1 is more pathogenic as 

compared to HIV-2 thus making it the more predominant virus. There are three HIV-

1 groups which composed of M, N, and O groups. Among these groups, M is the main 

group that covers 90% of the HIV-1 infection. Recently, a new group was identified 

known as group P. Within group M, there are nine subtypes with 15-20% genetic 

variations (A, B, C, D, F, G, H, J, and K) in which Subtype C was identified as the 

cause of 50% of the total HIV-1 infections in 2004 (Kurth & Bannert, 2010).  

HIV is transmitted by several ways; predominantly from sexual intercourse, from 

mother to child, intravenous drug injection or contaminated blood transfusion. In 

Malaysia, until 2015, the number of people living with HIV was 92,895 or almost 0.5% 

of the entire population (MOH reports). This number has increased from 91,362 cases 

of HIV infections at the end of 2010. Choy (2014) reported that the development of 

highly active antiretroviral therapy (HAART) in the 1990s had reduced or slowed 

down the death rate of the HIV/AIDS patients in Malaysia. The most-at-risk-

populations for HIV transmission in Malaysia are, injecting drug users (IDUs), 

transgender people, sex workers, and migrant workers (Choy, 2014).  
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1.1.2. HIV Pathogenesis 

The HIV-1 genome is approximately 9.8 kb in length that encode for structural, 

regulatory, and accessory proteins which flanked by repeated sequence known as long 

terminal repeats (LTRs) (Figure 1.1.1). By having these proteins, HIV-1 is considered 

a complex retrovirus. HIV-1 LTRs are composed of promoter and enhancer sequences 

as well as polyadenylation site. They are important for reverse transcription, 

integration and gene expression steps. The HIV genome contains nine genes. In 

addition to the gag, pol, and env genes coding for structural proteins (Matrix, Capsid, 

Nucleocapsid, p6) and enzymes (protease, reverse transcriptase, integrase), there are 

two regulatory (tat and rev) and four accessory genes (vif, vpr, vpu, and nef) which are 

present in the HIV as a complex retrovirus (Li et al., 2015).   
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Figure 1.1.1. HIV-1 genome. HIV-1 genome consists of structural, regulatory and 

accessory genes flanked by the promoters in LTRs (Suzuki & Suzuki, 2011). 

MA (matrix), CA (capsid), NC (nucleocapsid), PR (protease), RT(reverse 

transcriptase), IN (integrase), SU (gp120), TM (gp41). 
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Pathogenesis of the virus is attributed to the direct and indirect mechanism of all the 

viral genes. They are involved differently at each step of the viral replication – from 

the early stage until the release of the virus from the host cell (Figure 1.1.2). Firstly, 

the viral gp120 will recognize the host cell surface receptor, CD4. The glycoprotein 

undergoes conformational changes that allows binding to the co-receptor (either CCR5 

or CXCR4, depending on the HIV tropism). This is followed by fusion with the cell 

membrane which is mediated by the transmembrane gp41 protein. The viral capsid is 

subsequently released into the cytoplasm. Once in the cell, the viral capsid is partially 

disassembled and reverse transcription takes place. This process is facilitated by the 

reverse transcriptase enzyme to form viral DNA. Viral DNA, p17 Gag, integrase, and 

Vpr are contained in the preintegration complex (PIC). The viral DNA is transported 

to the nucleus and with the assistance of integrase and Vpr protein, the DNA integrates 

with the host DNA to produce a provirus (Fauci, 2007).  

In the nucleus, the provirus DNA is transcribed by the host RNA polymerase into 

RNA. This process is mediated by Tat that binds at the LTR sequence to promote 

transcription of longer copies of the viral genome. RNA splicing takes place either 

singly or multiply or otherwise remain unspliced. Singly spliced and multiply spliced 

RNA which are then exported from the nucleus are called virion proteins. This is 

assisted by the Rev protein. Meanwhile, the unspliced RNA is translated into viral 

RNA by the host ribosomes which are also released into the cytoplasm. During this 

step, the new viral RNA and proteins are brought together and move towards the 

plasma membrane. These components are together known as immature virion when 

released from the host cell. Finally, the capsid is formed  
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Figure 1.1.2. HIV replication cycle. HIV replication cycle consists of 6 essential 

steps: 1) host cell binding and entry, 2) uncoating of the capsid, 3) reverse transcription 

of the viral RNA, 4) integration of the viral DNA complex into host DNA, 5) virus 

protein synthesis and assembly, 6) exocytosis or storage of viral RNA in the host cell. 

The virus matures and starts infecting uninfected cells. Figure retrieved from 

http://www.niaid.nih.gov/SiteCollectionImages/topics/hivaids/hivReplicationCycle.g

if. 
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by the P24 protein and the virus matures and becomes infectious to uninfected cells 

(Reitz & Gallo, 2010). 

A marked increase in immune activation of the host is a feature of HIV infection, 

including both innate and adaptive immunity. These two immune systems are 

important components to eradicate the virus once the host is infected. Innate immune 

response also known as natural immune response triggers the typical general immune 

events against many pathogens with no specificity of the particular invader. 

Conversely, an adaptive immune response specifically attacks the invader. CD4+ T 

cells are included in the adaptive immunity together with CD8+ T cells and B cells. 

HIV is capable of manipulating the host immune system to its advantage. For instance, 

infected CD4+ T cells will reach the lymph nodes, where activated T cells are located. 

Thus, the immune cells can be further infected resulting in depletion of CD4+ T cells 

(Swanstrom & Coffin, 2012; Maartens et al., 2014). 

The host cell has counteracting mechanisms to block the virus. Tetherin is a 

transmembrane protein of the host to inhibit the release of viral products. However, 

one of the viral proteins, Vpu, degrades tetherin to allow the release of viral particles. 

Another significant antiviral activity by the host is APOBEC-3G (apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like 3G). APOBEC is an intracellular 

host defense mechanism against retroviruses which inhibits replication of the viruses. 

However, the Vif protein of HIV prevents incorporation of APOBEC into the virions.  

Vif functions by depleting cytoplasmic APOBEC thus promotes degradation of 

APOBEC3G via proteasomal pathway. Researchers had discovered new intracellular 

antiviral mechanism mediated by the tripartite motif (TRIM) family. The alpha 

isoform of TRIM (TRIM5α) is a retrovirus restriction factor that provides an early 

block to retrovirus infection. It binds to viral capsid hexamers and inhibits capsid 



7 
 

uncoating and reverse transcription. The mechanism of TRIM5α antiviral activity is 

not yet reported in details (Poli & Erfle, 2010). 

 

1.1.3. Development of vaccines and new HIV therapies 

In the absence of antiretroviral therapy, HIV infection will lead to the development of 

AIDS. The therapy is not a cure for the infection but delays the symptoms from 

worsening. To eradicate the virus, a protective vaccine is required. The development 

of a HIV vaccine has been very challenging. The most advanced vaccine to date is 

known as RV144. It has been tested up to phase III by a Thai group. They have tested 

a combination of two vaccines, ALVAC® HIV as the primary vaccine and AIDSVAX® 

B/E as the booster, which were based on the virus strains commonly found in Thailand. 

Haynes et al. (2012), mentioned that the tested vaccine protected some volunteers. The 

mechanism involved was the binding of immunoglobulin G antibodies to variable 1 

and 2 (V1/V2) regions of HIV-1 Env protein which resulted in non-functional Env 

protein.  

Several HIV-1 enzymes have been targeted for drug development such as integrase, 

reverse transcriptase (RT), and protease (PR) enzymes. Antiretroviral drugs have been 

developed since the introduction of zidovudine (AZT) at the National Cancer Institute 

in 1987. AZT is one of the nucleoside reverse transcriptase inhibitors (NRTIs) drugs 

besides retrovir. This group of drug inhibits reverse transcriptase activity during viral 

DNA production which acts as monotherapy to the patients. Another class of 

antiretroviral drugs is non-nucleoside reverse transcription inhibitors (NNRTIs) that 

also block the reverse transcription. The approved drugs in this class include 

nevirapine, delavirdine, and efavirenz. Then, protease inhibitors were introduced 
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namely ritonavir, saquinavir, and indinavir. HIV-1 protease plays a role in the viral 

gag and gag-pol polyprotein cleavage during virion maturation (Arts & Hazuda, 2012; 

Emamzadeh-Fard et al., 2013). These inhibitors were then used in combination with 

the RT inhibitors and are known as HAART. HAART has the ability to efficiently 

lower the viral activity and delay progression to AIDS despite its toxicity, side effects 

and antiviral drug resistance that follow after therapy (Arts & Hazuda, 2012). Integrase 

inhibitors are another class of antiretrovirals that block the formation of a 

preintegration complex of viral DNA and host DNA. Raltegravir is one of the approved 

integrase inhibitors introduced in 2007 followed by elvitegravir. Later, fusion or entry 

inhibitors were designed and approved clinically. Fuzeon, T20, and maraviroc are 

included in preventing fusion or entry of the HIV into the cells. The antiretroviral 

targets are depicted in Figure 1.1.3. 

Low adherence to HAART or extensive use of antiretroviral drugs among HIV-1 

patients is now a major challenge. The patients would slowly develop poor drug 

tolerability and cross-reactivity among the antiretroviral agents and other medications. 

This can lead to the evolution of drug resistance and consequently treatment failure. 

Due to this problem, there is always a pressing need for new HIV-1 treatments (Arts 

& Hazuda, 2012; Paydary et al., 2013).  
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Figure 1.1.3. HIV life cycle and antiretroviral targets. Image above shows the sites 

of action of different classes of antiretroviral drugs (Maartens et al., 2014). 
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The discovery of antibodies against HIV-1 has increased progressively due to a better 

understanding of viral structures and mechanism of infection. This is especially against 

the HIV-1 Env protein which could prevent viral entry. With increasing knowledge on 

the glycoproteins, many more neutralizing antibodies (NAbs) were able to be 

developed (Ringe & Bhattacharya, 2013) such as the first broadly neutralizing human 

monoclonal antibody (mAb) b12. This mAb was found to neutralize clade B viral 

isolates at the rate of 50%. The Ab targets the CD4 binding site of gp120. It was 

reported in 1994 that b12 was selected by phage display library method from the bone 

marrow of HIV-1 infected patient (Barbas & Barbas, 1994). In 1992, mAbs against the 

P24 protein were produced from hybridomas by Konovalov and group (Konovalov et 

al., 1992). Their binding activities were examined and the antigenic epitopes of p24 

were determined. However, these antibodies were only used to study the antigenic 

properties of the P24 protein.  

HIV-1 CA protein structure consists of two independently folded domains, C-terminus 

and N-terminus domains, which are connected by a flexible linker (Sticht et al., 2005; 

Thenin-Houssier & Valente, 2016). The CA protein structure is depicted in Figure 

1.1.4. Tang et al. (2003) reported that viral particles with unstable capsid due to 

mutations would severely reduce infectivity. They discovered a potent molecule 

inhibitor of HIV-1 CA, called CAP-1 (Tang et al., 2003; Kelly et al., 2007; Adamson 

et al., 2009). This compound was found to inhibit capsid assembly during the 

maturation step which resulted in impaired virus production.  
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Figure 1.1.4. Organization and structure of HIV-1 Gag and CA proteins. The left 

panel shows a schematic secondary structure of HIV-1 Gag polyprotein. Individual 

domains are represented in different colors. Protease cleavage sites are indicated by 

the arrowheads. The right panel shows an illustrative representation of the HIV-1 

capsid structure with highlighted ligand binding sites (Machara et al., 2015; Thenin-

Houssier & Valente, 2016). 

MA (matrix), CA (capsid), NC (nucleocapsid), SP (spacer peptides), and p6 (protein 

of 6 kDa). 
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However, it was found not affecting the stability of pre-assembled CA-NC 

(nucleocapsid) complex in vitro (Fricke et al., 2013). More recent publications 

reported the details of specific inhibitors of HIV CA assembly by binding to the C-

terminal domain (CTD) (Sticht et al., 2005; Bocanegra et al., 2011; Zhang et al., 2011; 

Marchara et al., 2015; Thenin-Houssier et al., 2016) and N-terminal domain (NTD) 

(Kortagere et al., 2012; Lemke et al., 2012; Kortagere et al., 2014) of the CA protein. 

A capsid assembly inhibitor (CAI) was reported to bind the CA-NTD and acted at the 

late stage of the HIV-1 life cycle (Sticht et al., 2005). However, due to its low cell 

permeability, it was not suitable for blocking HIV-1 replication in cells. Several years 

after that, a modified peptide was designed based on the CAI peptide to overcome its 

limitation. Zhang et al. (2008) successfully produced a cell-penetrating peptide known 

as NYAD-1 by using hydrocarbon stapling technique. This technique stabilized the 

peptide to penetrate the cells, but the compound has drawbacks of poor inhibitory 

effect and short half-life. PF74 is another CA inhibitor that displayed inhibitory 

activities at the early and late stages of virus life cycle, and can bind to both CA-NTD 

and -CTD (Blair et al., 2010). Then, a PF74-resistant mutant virus that alters the 

interaction with the host factors required for viral entry was developed (Zhou et al., 

2015). Machara et al. (2015) identified a CA-CTD specific inhibitor, 2-

arylquinazolines, which is capable of blocking viral replication. However, it was doubt 

to have rapid clearance in the cells which thus makes it inefficient. The most recent 

CA inhibitor is Ebselen (Thenin-Houssier et al., 2016). It was shown to covalently 

bind to the CA-CTD and inhibit dimerization of the CA at the early stage of HIV-1 

life cycle, by impairing the uncoating events. However, it was reported to have low 

specificity.  
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The above-mentioned studies had shown that the HIV-1 CA protein is an attractive 

target for drug development. However, there is still a pressing need to continue the 

search of therapeutic molecules against the HIV-1 which are more stable, less-

resistant, and able to intracellularly inhibit viral infection.   
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1.1.4. Antibody Molecule 

Antibodies are produced in response to infections and foreign bodies. They are also 

known as immunoglobulin (Ig) which is the folding of the amino acid residues in a 

globular motif. Ig is attached to foreign substances called antigens, to be destroyed by 

the immune system. Antibodies are synthesized by B cells in two forms, membrane-

bound antibodies, and secreted antibodies. This large molecule with molecular weight 

of ~150 kDa comprises two identical units of heavy- and light-chains which are 

produced by rearranged germline variable (V), diversity (D) and joining (J) gene 

segments at the heavy chain locus while V and J gene segments at the light chain locus 

(Liao et al., 2009). Figure 1.1.5 shows different antibody structures that are composed 

of heavy and light chains covalently linked by disulfide bonds. The heavy chain 

consists of one V region and three or four C (constant) regions. The light chain is 

composed of one V region and one C region. The V region of heavy chain (VH) and 

the adjoining V region of the light chain (VL) form the antigen binding domain 

(Janeway et al., 2001; Hudson & Souriau, 2003; Lo et al., 2008).  

There are five classes of antibodies that differ in their heavy-chain, termed as IgG, 

IgM, IgA, IgD, and IgE. Most of them are distributed or transported to the 

compartments of the body with appropriate effector functions for each antibody class 

which are determined by their isotypes (Elgert, 1998; Janeway et al., 2001; Abbas et 

al., 2015).  

IgG contains gamma (ɣ) chain in the heavy chain region and is the most abundant Ig 

present in serum. IgG subclasses are including IgG1, IgG2, IgG3, and IgG4. It 

responds directly to toxins and viruses. In HIV, it was reported that IgG3 antibodies 

are more effective in neutralizing the virus than IgG1 antibodies. IgG is the only  
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Figure 1.1.5. Schematic representations of the antibody structure. (a) Domain 

organization of IgG. Antigen binding area is composed of variable heavy (VH) and 

light (VL) chains. Constant domains CH2 and CH3 function as the effector component 

of the antibody for receptor binding. (b) The dimeric secretory IgA (SIgA) and 

pentameric IgM structures. SIgA is a dimer in which monomers are disulfide-linked 

via J-chain. IgM monomer with a pair of Cµ2 domains replacing the hinge, unpaired 

Cµ3 domains, and C-terminal tailpieces (Little et al., 2000). 
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antibody type that is capable of crossing the placenta and is also involved in secondary 

immune response. 

IgM normally exists as a pentamer which contains mu (µ) chain as the heavy chain. It 

is the first type of antibody expressed on the surface of B cells during an immune 

response. It provides early fight against pathogens. Its pentameric structure is essential 

for effective activation of the complement system (Abbas et al., 2015). 

IgD is composed of delta (δ) chain in the heavy chain region. It works with IgM in the 

B cell development (Abbas et al., 2015). However, it circulates at very low levels in 

the serum with a short serum half-life.  

IgE is a monomer type antibody with epsilon (ε) chain. It binds to allergens and is 

associated with hypersensitivity reactions as well as protects against parasitic worms 

(Abbas et al., 2015).  

IgA is a highly produced Ig that can be found at mucosal surfaces like the gut, 

respiratory and urogenital tracts. It protects against toxins, virus, and bacteria by 

neutralization or prevention of binding to the mucosal surface (Abbas et al., 2015). It 

can also be found in secretions of breast milk as the ‘first milk’ given to the neonate 

by the mother.   
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1.1.5. Generation of scFv antibodies 

The high molecular weight of immunoglobulins (Ig) limit not only their use in high 

throughput of biochemical and structural studies but also less efficient as biological 

therapy (Farajnia et al., 2014). There are various types of recombinant antibody 

formats that have been engineered over the last two decades. Being the most popular 

one, scFv consists of antibody variable domains connected by a flexible linker and is 

the mostly used to overcome this drawback (Wӧrn & Plückthun, 2001).  

 ScFv is described as a single-chain antibody fragment, a smaller version of the 

antibody with the complete antibody antigen-binding site. The smallest Ig fragment 

containing the antigen-binding site is the Fv fragment. It consists of the variable heavy 

(VH) and –light (VL) chains. The linker between Fv holds higher stability than the Fv 

itself. It is then recognized as a single-chain Fv (scFv). The length of linker would 

determine the formation of multimeric forms of the scFv (Figure 1.1.6). Linkers can 

be incorporated in either VL – linker – VH or VH – linker – VL orientation. Usually, the 

linker is composed of 15 amino acids with (Gly4Ser)3. In order to produce scFv, 

enzymatic cleavage can be done but it is considerably a difficult and less stable 

process.  

ScFvs can be constructed by amplifying the variable regions from mRNA of 

hybridoma cells using PCR (Toleikis et al., 2004). ScFvs can be produced in E. coli 

using different types of promoters; phage λ, LAC, TAC, or phage T7 (Bird and Walker, 

1991). However, there were reports that scFv proteins were usually insoluble in E. coli 

(Sodoyer, 2004), thus they require solubilization and refolding steps. This would be 

time consuming and laborious. Even with these problems, there were reports of 

successful scFv expressions  
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Figure 1.1.6. Recombinant antibody constructs. (a) Monovalent fragments of the 

antibody molecule capable of binding antigen. Fab, Fv, and disulphide-stabilized Fv 

(dsFv) fragments consist of two separate chains while scFv and single VH fragments 

are composed of a single polypeptide. (b) ScFv with a peptide linker that connects VH 

and VL domains, or fused directly without a linker. Different structure formations exist 

with different length of the linker. Shorten linker may develop a diabody (scFv dimer), 

triabody (trimer), and tetrabody (tetramer) (Little et al., 2000). 

Ag (antigen) and L (linker). 
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of soluble scFv in Bacillus subtilis which did not require the refolding step (Bird and 

Walker, 1991).  

ScFv has become the first option for therapeutic purposes nowadays for having lower 

retention time in nontarget tissues than Fab. In addition, scFv has more rapid blood 

clearance and better tumor penetration due to its small size (Bird and Walker, 1991; 

Kipriyanov et al., 1997; Little et al., 2000; Chadd & Chamow, 2001; Hagemeyer et al., 

2009; Farajnia et al., 2014). A previous experiment showed that the use of scFv was 

better than the larger antibody (Fab) (Bird et al., 1988). There was a study of scFv and 

Fab being injected into tumor-bearing mice. It was observed that clearance of the scFv 

was 7 times faster than the Fab molecules. This demonstrated that scFv reaches the 

tissues and organs faster than the Fab. It could target and localize the tumor tissue 

better than the Fab (Bird et al. 1988).  

Besides, some properties can be easily tailored such as antigen-binding affinity, 

stability, and expression level of the antibody fragment as compared to the full-length 

Ig (Mazor et al., 2007). It has become a promising alternative to monoclonal antibodies 

(Farajnia et al., 2014; Yan et al., 2014). ScFv provides many other applications. Apart 

from being used as in vivo diagnosis and treatment of diseases, it can be used in 

biomarker validation (Baird et al., 2010), in vitro diagnosis, biosensors, catalytic 

antibodies and can be genetically engineered to enhance its functions.  
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1.1.6. Phage display technology 

Phage display is a highly powerful technology for producing a large amount of 

peptides, proteins, and antibodies with novel selection methods to screen the 

polypeptides with novel functions. This technology applies the physical linkage 

between phenotype and genotype of the polypeptides that are fused to the 

bacteriophage coat proteins (Fagerlund et al., 2008; Bazan et al., 2012). The phenotype 

of the protein is displayed by the bacteriophage while the genotype encoding that 

molecule is packaged within the same virion (Figure 1.1.7). This criterion allows the 

selection and amplification of specific clones with the desired binding specificity from 

diverse phage clones. In addition, this technique allows easy determination of the 

specific binder through DNA sequencing. It was first introduced by George Smith in 

1985 and has become an effective tool with applications in the discovery of ligands 

for affinity chromatography and drugs, in the study of protein/protein interactions, and 

in epitope mapping (Ehrlich et al., 2000; Fagerlund et al., 2008) thus allowing 

development of new drugs, vaccines, genetic mapping, and biosensing (Qi et al., 

2012).  

 

 

 

 

 

 

 


