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SARINGAN MAYA DAN IN VITRO UNTUK PERENCAT BERPOTENSI  

TERHADAP PROTEASE NS2B-NS3 DENGGI- 2 

 

Abstrak 

Walaupun penyakit denggi merupakan beban global semasa yang tinggi, 

namun sehingga kini tidak ada penawar yang pasti untuk denggi. Walaupun terdapat  

usaha-usaha pembangunan vaksin yang dijalankan , cabaran imunisasi yang sukar 

diatasi adalah perlindungan lengkap terhadap kesemua empat serotype di mana 

perlindungan imunisasi yang tidak lengkap boleh menyebabkan pesak it yang 

mempunyai risiko untuk menghidapi Demam Hemoragik Denggi (DHF) dan 

Sindrom Kejutan Denggi (DSS). Berdasarkan faktor- faktor ini , kepentingan terapi 

antivirus masih amat diperlukan.Namun begitu, proses penemuan dan pembangunan 

ubat yang memakan masa menambah lagi kepada beban ini. NS2B / NS3 enzim 

protease mempunyai peranan penting dalam pembelahan pelopor poliprotein - satu 

proses yang penting untuk replikasi flavivirus - menjadikannya sasaran terapeutik 

yang sesuai. Kajian ini menggunakan kaedah bantuan komputer, melalui penggunaan 

AutoDock Vina untuk melakukan penyaringan maya terhadap sebatian dari NCI 

Kepelbagaian Set Data dan juga dari  Sistem Penemuan Produk Semulajadi 

pangkalan data (NADI) terhadap protein sasaran, NS2B / NS3  denggi jenis 2. 

Keputusan penyaringan maya telah di analisa untuk mendapatkan maklumat 

mengenai interaksi yang menyumbang kepada setiap pertalian mengikat. Ujian in 

vitro  telah dilakukan untuk menentukan aktiviti perencatan daripada empat puluh 

sebatian NCI terhadap enzim protease dan tujuh ekstrak tumbuhan terhadap DEN-2 

NS2B / NS3 dengan menggunakan substrat peptida Boc-Gly- Arg-Arg-MCA. Dua 

sebatian NCI di kodkan NSC127133 dan NSC 343256 merencatkan protease pada 

5.73μM dan 30μM, masing-masing. Americanin A, sejenis sebatian neo- lignan yang 
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di asingkan daripada buah Morinda citrifolia menunjukkan aktiviti perencatan 

dengan nilai IC50 pada 167 μM.. Kajian ini juga mengandaikan bahawa tapak 

alosterik juga boleh memainkan peranan dalam aktiviti perencatan NS2B-NS3pro. 
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VIRTUAL SCREENING AND IN VITRO ASSAY OF POTENTIAL 

INHIBITORS AGAINST DENGUE-2 NS2B-NS3 PROTEASE 

Abstract 

Despite the current global burden, there has been no definite cure for dengue.  

Although efforts on vaccine development are ongoing, the strategy faces challenges 

of constant immunization, where by incomplete protection against all four serotypes 

may lead to patients at risk of progressing to dengue haemmorhagic fever (DHF) 

and dengue shock syndrome (DSS).  Considering these factors, antiviral therapy is 

still in significant need. However, the time consuming process of drug discovery 

and development is adding to this burden. NS2B-NS3 protease plays crucial role in 

the cleavage of polyprotein precursor - an important process for flavivirus 

replication, making it a suitable therapeutic target. This study employed computer-

aided approach, with the use of AutoDock Vina to virtually screen compounds from 

National Cancer Institute (NCI) Diversity Data Set as well as from in-house Natural 

Product Discovery System database (NADI) against the target protein, NS2B-NS3 

protease of dengue virus type 2 (DEN-2). Virtual screening results were analyzed to 

obtain information on interactions contributing to each binding affinity.  The in vitro 

assay was then carried out to determine inhibitory activities of forty NCI 

compounds and seven plant extracts towards DEN-2 NS2B-NS3 protease by using 

fluorogenic peptide substrate Boc-Gly- Arg-Arg-MCA. Two NCI compounds coded 

NSC127133 and NSC343256 inhibited protease at 5.73 μM and 30 μM, respectively. 

Americanin A, a neo- lignan compound isolated from the fruit of Morinda citrifolia 

showed inhibitory activity with the IC50 of 167μM. It is postulated in this study, that 

the allosteric site of NS2B-NS3 could play a role in the inhibitory activity of the 

NS2B-NS3pro. . 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Statement of the problem 

 

The mosquito-borne dengue virus, is an emerging pathogen, belonging to the  

Flaviviridae family and  Flavivirus genus, continues to be a constant threat to 

children and adults worldwide (Tomlinson et al., 2009). Dengue has been ranked as 

the most critical form of mosquito-borne viral disease,  as reported by the World 

Health Organization in 2012 (World Health Organization, 2012). Dengue virus 

serotypes (DEN-1, DEN-2, DEN-3, and DEN-4) have been identified to be the main 

causative agents triggering dengue fever, dengue hemorrhagic fever (DHF) and 

dengue shock syndrome (DSS). WHO’s statistics also estimated that 50 to 100 

million infections occur annually in 100 countries a lready endemic to dengue, with 

the spreading of the disease to the previously unaffected areas  (World Health 

Organization, 2012).  As of December 2015,  it was reported that Malaysia is 

experiencing  67.6% and 16.3 % increase in dengue cases compared to number of 

cases reported in year 2013 and 2014 respectively (Western Pacific Regional Office, 

2013, 2015). A number of factors including massive urbanization, overpopulation, 

inconsistent Aedes aegyptii eradication programme, poor living conditions, and 

mutating strains (Edelman, 2007), poor waste management and lack of basic 

infrastructure (interruptive water supply which prompts public to collect and store 

water at their homes) have caused dengue epidemic  to be a major challenge to tackle. 

(World Health Organization, 2002). 
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Despite current global burden, there has been no definite cure for dengue  

(Lam, 2013).  Although efforts on vaccine development are ongoing, the strategy 

faces challenges of constant immunization, where by incomplete protection against 

all four serotypes may lead to patients at risk of progressing to DHF and DSS (Noble 

et al., 2010).  Considering these factors, the importance of antiviral therapy is still in 

significant need (Chawla et al., 2014). Targeted  antiviral approach to  dengue has a 

more promising approach, by exploiting  viral machineries critical to the viral 

replication before onset of the disease itself (Noble et al., 2010).  The general idea is 

to discover an inhibitor which is able to bind to any part of this viral machinery to 

halt further development.  The search for inhibitor could be performed through 

multiple methods;-  enzyme based screening, viral replication based screening, 

structure based rational design, virtual screening,  and fragment-based screening 

(Noble et al., 2010). There have been notable efforts from Malaysian researchers in 

the search for dengue NS2B-NS3 inhibitors with similar approaches (Heh et al., 2013; 

Kiat et al., 2007).  

1.3 Dengue 

 

1.3.1 Overview 

 

Dengue is the most prevalent arthropod-borne virus causing more human 

morbidity and mortality compared to other arthropod-borne viruses today (Alen & 

Schols, 2011). The virus which remains to be major public concern in the tropical 

region depends on vectors namely Aedes aegypti and Aedes albopictus to infect 

living organisms including humans and non-humans (Gubler, 1998). Four 

antigenically distinct serotypes of the virus have been determined; - DEN-1, DEN-2, 

DEN-3 and DEN-4; with DEN-2 and DEN-3 being the most prevalent serotypes 
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(Panhuis et al., 2010; Raheel et al., 1943). It has been shown that infection with one 

dengue serotype does not provide complete immunization to other serotypes (Gubler, 

1998), and hence this provides the complicated challenge of producing a cure against 

all four serotypes.  

Infections by dengue virus can be asymptomatic for most cases or may 

trigger a benign syndrome, dengue fever (DF) and more severe syndromes such as 

dengue hemorrhagic fever (DHS) and dengue Shock Syndrome (DSS) (Chawla et al., 

2014; Libraty et al., 2002). The classic DF is characterized by self- limited dengue 

fever which is accompanied by non specific symptoms such as rashes, headache, 

nausea/vomiting, malaise, myalgia, retro-orbital pain, and arthrolgia, with the last 

three symptoms are also displayed in DHF/DSS conditions (Kalayanarooj, 2011). 

Other signs of DHF/DSS include systemic capillary leakage, thrombocytopaenia and 

hypovolaemic shock which may progress to death with improper or absence of 

treatment  (Martina et al., 2009).  

The exact mechanism of DHF/DSS remains unclear, although secondary 

infection with different serotype is believed to be the main factor (Thisyakorn et al., 

2014). The prevalence of clinical manifestation of dengue is age-specific, with 

infants at greater risk being affected severely by DHF/DSS followed by children and 

adults (Hammond et al., 2005). 

1.3.2 History of Dengue  

 

Dengue disease occurrences increased dramatically following the ending of 

World War II and the urbanization that followed after (Sun et al., 2013). However, 

evidences suggested much earlier existence of interaction between dengue viruses 

and humans in the third century. A Chinese medical encyclopedia from Jin Dynasty 
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(265–420 AD) records a condition called “water poison” linked to flying insects, 

which is the first record of possible dengue case. Other records having similar 

descriptions were made during the 7th and 10th Century [Tang Dynasty (CE 610) 

and Northern Sung Dynasty (CE 992), respectively]. Clinical symptoms described in 

those reports including rash, fever, myalgia, and hemorrhagic manifestations 

(Weaver et al., 2013) . 

Few centuries later, which coincide with traders travelling through sea, 

conditions mimicking dengue, were reported in other places like, French West Indies 

(1635), and Panama (1699) (Weaver & Vasilakis, 2013). A century later, the disease 

reached pandemic level by spreading to Batavia (present day Jakarta), Cairo, 

Philadelphia, and Cadiz and Seville, Spain. Shipping vessels allowed breeding and 

transportation of humans from one place to another, thus allowing for slow but 

progressive development of dengue viruses globally (Gubler et al., 2002), along with 

causing endemic intervals of 10-40 years (Murray et al., 2013).  

Beginning of World War 2 brought significant changes in the way DENV 

spreads, so much that it called for scientific studies on the disease, its etiologic 

agents and development of diagnostic tests (Weaver & Vasilakis, 2013).  The ending 

of World War 2 leads to uncontrolled urbanization and improper sewage 

management which contributed to Aedes aegyptii mosquitoes active breeding and 

spread of hyperendemicity within Southeast Asia (Anker & Schaaf, 2000). Early 80’s 

in America saw an increased DENV activity due to abandonment of Aedes aegyptii 

eradication programme. In Africa, dengue prevalence was recorded happening in 19 th 

century (Weaver et al., 2013), and was not detected thereafter until the year 1964 due 

to poor surveillance system (Causey et al., 1970).  
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1.3.3 Epidemiology of Dengue 

 

Epidemiology of a disease is the study of the distribution and factors 

triggering a particular health issue and applying the knowledge on disease control 

strategies. Today, 40% of world’s population (about 2.5 million people) in 100 

countries around Asia, Americas, the Caribbean and Africa are at high risk of 

developing dengue (Hanafusa et al., 2008). The World Health Organization (WHO) 

estimated 50 to 100 million infections occur annually, with 500,000 cases of dengue 

hemorrhagic fever and 25, 000 deaths (Bentsi-enchill et al., 2013; Chokephaibulkit et 

al., 2013). In Australia, case fatality rate (%) has remained nil as reported within the 

year 2007 to 2011, with the lowest number of dengue cases as compared to 

Cambodia, Lao People’s Democratic Republic, Malaysia, Philippines, Singapore and 

Vietnam within the same period. Among these 8 countries, Philippines recorded 

highest level of death cases (921 cases) with 187, 031 dengue cases in the year 2012 

alone (Arima, Chiew, & Matsui, 2015). 

For the year 2014 and 2015,  Malaysia recorded 108,698 and 120,836 

reported dengue cases respectively (Ghani, 2016). All four DENV serotypes were 

prevalent variably, at a given dengue endemic period in Malaysia. For example, in 

the year 2004, DEN-1 accounted to 73.4 % of the reported dengue cases and 58.6 % 

in 2005. DEN-2 was the predominant serotype in the year 2006 and 2007, at 36.4 % 

and 53.0 % respectively. The least common serotype which gives rise to more or less 

than 5 % of dengue virus isolated was DEN-4 (Mia et al., 2013; Mohd-Zaki et al., 

2014). Recent report suggests serotype shifts from DEN-3 and DEN-4 to DEN-2 has 

caused surge in dengue outbreaks in the year 2013 (Ng et al., 2015).  
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Figure 1.1: Countries at risk for dengue for the year 2013. Source: [(World Health 
Organization, 2014)  http://www.who.int/ith/en/)]  

 

By majority, dengue infections are caused by vector b ites and in rare cases 

could be caused by transplant of organs and blood of infected donors 

(“Epidemiology,” 2015). Seasonal increase of dengue cases occur at areas of tropics 

and subtropics, where heavy rainfall promotes optimal breeding sites for mosquitoes. 

Poor waste management and unreliable water supplies which prompt civilian to 

store water in containers further facilitated mosquito breeding (Monath, 1994).  

Coincidences of high density mosquito populations with high number of people not 

immune to one of the four serotypes (DEN-1, DEN-2, DEN-3 and DEN-4) 

contribute to dengue endemics at a particular region. Dengue cases remained 

restricted until middle of 20th century before becoming a global threat (Murray et al., 

2013).  

http://www.who.int/ith/en/
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1.3.4 Morphology and Life Cycle of Dengue Virus 

1.3.4.1 Overview 

 

A mature dengue virus is roughly spherical in shape at a diameter of about 

500 Å (Zhang et al., 2003). The family of Flaviviridae consists of three genera 

including flavivirus, pestivirus and hepaciviruses, with dengue belonging to genus 

flavivirus. Other viruses belonging to genus flavivirus are West Nile virus (WNV), 

yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), Murray Valley 

encephalitis virus (MVEV), Kadam Virus (KADV), and Ngoye virus (NGOV) to 

name but a few (Bollati et al., 2010; Mukhopadhyay et al., 2005)  

 

 

 

 

 

 

 
 

Figure 1.2: Cross-section of diagram of a flavivirus virion. Three proteins          

(E, M and C) make up the virus's membrane. E-protein assumes a herring-bone 
arrangement as depicted in the diagram on the right. Source: (Swiss Institute of 

Bioinformatics, SIB [http://www.expasy.org/viralzone]) 
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1.3.4.2 Virus Genomic RNA 
 

The virus genome is composed of a single strand, of an approximate 11 kb of 

positive sense ribonucleic acid (RNA) molecule. The RNA genome is a single open 

reading frame encoding 3,391 amino acid residues which make up for the three 

structural proteins (C, prM, and E) and non-structural proteins (NS1, NS2A, NS2B, 

NS3, NS4A, NS4B, and NS5) (Zuo et al., 2009).  

Figure 1.3: Schematic representation of flavivirus genome organization and 
polyprotein processing. Source: (Sampath et al., 2009) 

 

1.3.4.3 Structural Proteins 

 

The three structural proteins ; capsid (C), envelope (E) and membrane (M) 

along with lipid bilayer encloses the interior genomic RNA of the flavivirus (Modis 

et al., 2003). A mature virus particle is enveloped by 180 envelope (E) glycoprotein 

molecules attached to an equal number of lipid membrane (M) protein layer (Lok et 

al., 2012). The E protein crystal structure reveals three domains; the structurally 

central N-terminal domain I, dimerization domain II, and C-terminal, 

immunoglobulin- like domain III (Pokidysheva et al., 2006; Zhang et al., 2003). Both 
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E and M proteins are associated to the host-derived lipid bilayer. Interior of the lipid 

bilayer is the nucleocapsid core consisting of capsid (C) proteins that encompasses 

the flavivirus RNA genome (Jones et al., 2003). It is suggested that the nucleocapsid 

core bears a lower density as compared to that located at the outer glycoprotein shell, 

which further suggest that the structure of nucleocapsid core is poorly ordered or has 

a variable orientation in relative to the glycoprotein shell (Kuhn et al., 2002). Each 

component of the structural proteins in the flavivirus is critical for propagation. The 

E protein, which is considered as class II fusion protein, mediates viral attachment 

via cellular receptors and fusion with the endosomal membrane, thus enabling virus 

entry (Crill et al., 2001). The creation of nucleocapsid following the association of 

genomic RNA and capsid proteins is not clearly understood. However, it is shown 

that in the absence of capsid protein, virus like particles (VLPs) which are produced 

lack the RNA, rendering them non- infectious. Thus, nucleocapsid core, in some way 

is critical to the propagation of infectious flaviviral particles, while suggesting early 

interaction of the C proteins with the genome RNA, during the viral assembly 

process (Jones et al., 2003).  

The membrane (M) protein is a product of a polyprotein which was first 

cleaved into precursor membrane (prM) and E proteins. Immature virus bears the 

prM linked to E proteins while in a neutral pH environment within the endoplasmic 

reticulum. During maturation, within the trans Golgi network, the precursor (pr) 

would dissociate from the membrane (M), along with dimerisation of E proteins 

(Zhou et al., 2014) The pr portion of the prM, helps masks the E from premature 

fusion while it is going through the acidic trans Golgi network (Stadler et al., 1997). 

Removal of the pr is done by furin cleavage activity; an event that directs 
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rearrangement of the E proteins and induces virus infectious process (Zhang et al., 

2004). 

1.3.4.4 Non Structural Proteins 
 

The polyprotein precursor can be processed either co-translationally or post-

translationally, mediated by host signalase located within the cellular endoplasmic 

reticulum membranes or by virus encoded proteases (Zhang et al., 1992).  Apart from 

structural proteins, the single polyprotein is also processed into seven non-structural 

proteins known as ; NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Chambers et 

al., 1990) . 

The NS1 is a glycoprotein with a mass of 43-48 kDa, which is expressed 

intracellularly and has been shown to play a role in the flaviviral RNA replication 

(Amorim et al., 2014; Flamand et al., 1999; Mackenzie et al., 1996; Rice et al., 1997). 

The carboxyl (C) - terminal region of the envelope glycoprotein encodes a 

hydrophobic signal sequence that prompts the translocation of NS1 into the 

endoplasmic reticulum, where it then dimerizes rapidly (Falgout et al., 1989). The 

NSI protein would then proceed to cell surface where it becomes membrane 

associated (Amorim et al., 2014; Jacobs et al., 2000).  

Through immunofluorescence and cryo- immuno electron microscopy studies, 

it was revealed that NS1 colocalize with the dsRNA and other components of the 

replication complexes (Mackenzie et al., 1996; Westaway et al., 1997). This 

observation supports the claim of NS1 protein as a cofactor in viral replication 

(Khromykh et al., 2000). 

Several hypotheses noted the importance of NS1 protein in causing 

autoimmune processes and disruption of circulatory system, due to cross reactive 
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antibodies. This event leads to decrease of platelet count, endothelial cell apoptosis, 

complement activation and then host cell damage  (Chen et al., 2009; Falconar et al., 

2011; Kurosu et al., 2007; Lin et al., 2002; Martina et al., 2009). 

Following NS1 is the flaviviral NS2 protein which is made up of NS2A and 

NS2B. NS2A is a 22-kDa hydrophobic protein (Xie et al., 2013) and is made up of 

224 amino acids  from the cleavage of NS1-NS2A and NS2A-NS2B. Its N and C 

termini produced within the ER catalyzed by host signalases and within the 

cytoplasm by viral proteases, respectively. The internal cleavage by NS2B-NS3 

serine protease generates a truncated form of NSA, known as, NS2α (Kümmerer et 

al., 2002). The NS2A also co-localizes with replication complexes, suggesting its 

role in viral RNA synthesis  (Mackenzie et al., 1998). This process is still not well 

understood by researchers.  

The flaviviral NS2B complexes with NS3 (Cahour et al., 1992; Chambers et 

al., 1991). The NS2B-NS3 has been given much attention as a suitable drug target for 

the past few decades. The NS2B domain, is of approximately 14kDa (Chambers et 

al., 1991), bearing a central conserved hydrophilic domain which is flanked by two 

hydrophobic domains at the N-terminus and one hydrophobic domain at the C 

terminus (Clum et al., 1997; Yusof et al., 2000).  

It was discovered by Clum  that the central hydrophilic domain of NS2B 

consisting of 40 amino acids was the most optimal and sufficient for the activation of 

NS3 protease (Clum et al., 1997; Noble & Shi, 2012).  Even though hydrophobic 

domains of NS2B are dispensable for protease activity, it was indicated by NS2B 

hydrophobic domains deletion analysis that these domains play a role in 
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cotranslational membrane insertion of the full NS2B protein, in order for NS3pro 

activation (Clum et al., 1997). 

NS3 is a multi- functional protein (69 kDa), which is also as crucial in 

polyprotein processing and RNA replication.  In its N terminus domain, the NS3 

bears a trypsin- like serine protease domain (180 amino acid residues), of which its 

activity is contributed by non-covalent interaction with the 40 amino acid hydrophilic 

domain of the membrane-bound NS2B. The C terminal of the NS3 is made up of 

nucleotides and RNA binding motifs with RNA helicase, 5-nucleoside triphosphatase 

(NTPase), and RNA 5-triphosphatase (RTPase) activities (Li et al., 2005; Luo et al., 

2008; Xu et al., 2005; Yusof et al., 2000).  

NS2B–NS3 has been shown  to cleave at the cleavage junctions between 

NS2A/2B, NS2B-NS3, NS3/NS4A, NS4A/NS4B, and NS4B/NS5, in addition to 

producing C termini of mature Capsid (Arias et al., 1993; Chambers et al., 1990; 

Falgout et al., 1989; Preugschat et al., 1990; Wengler et al., 1991; Zhang et al., 

1992b).  

It was only of recent years that research studies have been focused on the 

actual role of NS4A protein in viral replication. In a paper published in 1998 by 

MacKenzie and others, it was revealed through  observation on cells infected by 

flavivirus named Kunjin virus (KUNV),  that NS4A colocalizes within the vesicular 

packets (VP), suggesting its role in replication by targeting or anchoring within 

replication complex (RC). However, detailed information to understand this process 

was lacking during that period (Mackenzie et al., 1998). Apart from this, it was 

indicated that viral replication also owes to the interaction between NS1 and NS4A 

(Lindenbach et al., 1999)  
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NS4A is a 16 kDa hydrophobic protein, with its initial residues (residues 1 to 

49) function as the  cofactor for NS3 helicase (Shiryaev et al., 2009). Meanwhile, the 

subsequent regions (residues 50 to 73, residues 76 to 89, and residues 101 to 127) 

possess hydrophobicity, are membrane associated and do not interact with NS3. Also 

present within the NS4 is a small loop that exposes NS4-2k cleavage site, along with 

the C-terminal segment known as 2k, which acts as signal sequence that would direct 

translocation of NS4B towards the ER lumen (Miller et al., 2007; Shiryaev et al., 

2009). NS4A in association with the other viral and host proteins triggers membrane 

rearrangements needed during viral replication (McLean et al., 2011; Roosendaal et 

al., 2006).  

The NS4A has also been recently proven as a stronger determinant in viral 

replication by inducing autophagy, thereby protecting host cell death – a requirement 

for successful infection process. However, the mechanism involved in the regulation 

of autophagy by NS4A protein is still yet to be determined (McLean et al., 2011) 

NS5, is the largest flaviviral protein (100 kDa) , multifunctional and bearing 

well conserved domain(Bollati et al., 2010). At its N terminus, the NS5 bears the S-

adenosyl-L-methionine-dependent methyltransferases, whilst at its C terminus places 

the RNA-dependent RNA  polymerase (RdRp) domain functioning in mRNA 

capping – a process vital for viral replaication (Botting et al., 2012; Egloff et al., 

2002). 
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1.3.4.5 Life Cycle of Flavivirus 

 

Flavivirus depends on mosquitoes as the primary vectors in transmission 

(Lindenbach et al., 2007). Many studies have been done to understand the  

interaction between flavivirus and mosquitoes. Mutagenesis study has proposed few 

residues within the hinge region of the DENV which are critical in its infection 

process with the vector.  In another study, it was found that the loop motif between F 

and G beta strands (FG loop) within the domain 11 of E protein is a determinant in 

the binding with mosquito cells while the binding of the virus to mammalian cells is 

suspected to be  independent of this FG loop (Hung et al.,  2004). However, in a later 

study, it was revealed that the FG loop is as important in infection with mammalian 

cells as well (Erb et al., 2010).  As an infected mosquito bites a human host, the virus 

is orally transmitted and enters the cell via receptor mediated endocytosis (Stiasny et 

al., 2006). A change in environmental pH within the cell encourages the release of 

genomic RNA in the cell’s cytoplasm (Clyde et al., 2006). Following this, the RNA 

is translated into polyprotein precursor which would be cleaved in to its structural (C, 

E, prM) and non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) proteins 

(Henchal et al., 1990). Virions are assembled and pass through the ER and merge 

with its cleaved structural proteins (prM and E) to mature and bud off from the cell 

via exocytosis. Sometimes, immature viral particles that are lacking nucleocapsid 

could escape as well as normal by products during viral assembly (Mukhopadhyay et 

al., 2005)  
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Figure 1.4: Illustration of flavivirus replication pathway at different pH conditions.   
Source : (Pierson et al., 2012) 

 

Virus Entry to Cell 

A number of human host cells including the macrophages, monocytes, 

Langerhans cell and dendritic cells are target for DENV infection. DENV has been 

proposed to attach to host cells through the commonly expressed glycosaminoglycan 

heparan sulfate (Chen et al., 1997; Crance et al.,, 2002), and Dendritic Cell-Specific 

Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) for immature 

dendritic cells (Tassaneetrithep et al., 2003).  The virus then enters via receptor-

mediated endocytosis and proceeds to endosomes. Acidic pH condition in the 

endosome causes structural change of E protein in which the homodimeric form of E 

proteins start to dissociate and its monomer rearranges in a way that  promotes the 

fusion of viral membrane with the endosomal membrane (Zaitseva et al., 2010). 
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Translation and Polyprotein processing 

The RNA molecule which has been released is then translated into a single 

polyprotein within the ER-derived membranes (Clyde et al., 2006).  Proteases 

derived from host and virus aid the processing of the single polyprotein into ten 

proteins inclusive of structural and non structural proteins (Perera et al., 2008). Host 

derived enzymes known as peptidases are responsible for the cleaving of structural 

proteins while virus-derived serine protease aids in cleavage between non-structural 

proteins (Lindenbach et al., 2007).  

RNA Replication  

With the release of NS5 protein, the viral RNA is transcribed from 3’ end 

resulting in minus strand RNA (Henchal et al, 1990; Lindenbach et al., 2007). This 

minus strand RNA is transcribed back to plus strands RNA, resulting in transient 

intermediate dsRNA. The dsRNA is separated to allow NS5 polymerase to bind and 

initiate RNA synthesis (Lescar et al., 2008). The separation or unwinding of 

intermediate dsRNA is believed to be triggered by RNA helicase activity of NS3 

protein (Sampath et al., 2006). The NS5 associates with promoter region located 

within 5’ end of genome, there by initiating RNA synthesis at 3’ end through long 

range RNA-RNA interactions (Filomatori et al., 2006). 

Viral assembly and Release 

The synthesized viral RNA translocates to cytoplasm and thereafter 

assembled with other virus particles within rough ER lumen (Uchil et al., 2003). 

Prior to assembly, viral RNA is encapsulated with C protein (Perera et al., 2008) .  

This is followed by E and prM proteins arrangement around nucleocapsid, forming 

an immature virus particle (Mackenzie et al., 2001). This particle then exits from the 
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rough ER lumen and enters the Golgi, where the virus particles mature. Virus 

maturation is performed by furin which cleaves prM to M along with structural re-

arrangements of E protein. The mature virus particles then exits the host cell by 

exocytosis (Mukhopadhyay et al., 2005). 

1.4 NS2B-NS3 protease and its active site 

 

NS2B-NS3 protease is a key virus-encoded domain crucial in processing 

polyprotein precursor, evidently stressing the role of NS2B-NS3 protease in the viral 

replication. Hence, it is a reliable and promising therapeutic target in drug discovery 

efforts (Jang et al., 2015). Active site of NS2B-NS3 lies within the NS3 protease 

domain (Salaemae et al., 2010). In similarity with other flaviviral systems, three 

residues (His51, Asp75 and Ser135) forming the catalytic triad have been proven to 

be crucial in conferring protease activity of the serine protease, of which when 

removed in in vitro experimental studies, diminished the functionality of the enzyme 

(Falgout et al., 1998). Noble and his team have reported the event of NS2B  forming 

a β hairpin structure which folds around the NS3 protease, leading to the formation 

of active, closed conformation (Noble et al., 2012).  The hydrophilic domain of 

NS2B (residues 49-95) is said to be fused to NS3 protease via a Gly4-Ser4-Gly4 

linker, leading to active protease (Leung et al., 2001).    Some of the residues 

residing within the C-terminus of NS2B region were implicated by mutagenesis 

study to contribute to proteolytic activity which includes L74, I76 and I78 

(Niyomrattanakit, et. al., 2004). 
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Li and team have demonstrated that all the four serotypes of dengue proteases 

share similar substrate specificities, by incorporating tetrapeptide substrate, benzoyl-

norleucine (P4)-lysine (P3)-arginine (P2)-arginine (P1)-ACMC (Bz-Nle-Lys-Arg-

Arg-ACMC). It was concluded that at P1 and P2 positions, dibasic residues were 

preferred while at P3 and P4 positions, basic or aliphatic residues were preferred. 

The substrate binding pockets in NS3 protease is lined by highly conserved residues 

which spans within the S1 to S4 region (Li et al., 2005) . 

Mutagenesis studies revealed role of other residues apart from the catalytic 

triad being crucial in the protease activity. GLY151 was suggested to aid in 

stabilizing the tetrahedral position formed at Ser135 along with that of the E2-F2 

strands in the protease fold (Salaemae et al., 2010). ASN152 is located at the S2 

subsite and it forms hydrogen bonding with the side chain of the P2. GLY133 is 

found to be an important part of NS3 sequences, which determines ideal 

conformation for substrate binding within the oxyanion hole. TYR150, on the other 

Figure 1.5: Ribbon representation of NS2B-NS3pro.(Noble et al., 2012) 
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hand, is said to stabilize placement of the P1 via pi-cation interaction along with 

stabilizing E2 strand of the C-terminal β-barrel in NS3 protease. Mutation at SER163 

too inactivates the enzyme (Chappell et al., 2005), and is proposed to line with 

GLY153 forming bulky entry at the binding site, and was also suggested to stabilize 

substrate binding via a hydrogen bond with P1 arginine (Salaemae, et. al., 2010). 

Proteases have been aimed as therapeutic target, and such effort has produced 

success stories in search for HIV-1 protease inhibitors. Hence, it is believed that 

aiming dengue protease to inhibit DENV replication can be considered as a valid 

therapeutic target (Salvesen et al., 2010). 

1.5 Computer-aided drug discovery 

 

 The whole process of drug discovery and development is often synonymed 

with searching for a needle in a haystack. It takes as long as 17 years and cost nearly 

800 million US dollars from lead identification to clinical trials (Cerqueira et al., 

2015). Given the limited amount of drugs reaching clinical trials compared to a huge 

amount at the initial stages, the resources spent on the whole drug discovery cycle is 

monumental.  Prior to lead optimization, a myriad of stages supersede  which 

includes chemical synthesis, extractions, compound isolations and in vitro screenings 

to identify hits against a target protein. Hits identification alone consumes so much to 

time, money and human capitals.  

Early 1980s saw an interest in computer-aided drug discovery (CADD) as 

exposed by a cover article of Fortune magazine titled “The Next Industrial 

Revolution: Designing drugs by computer at Merck” (Drie, 2007).  It was also 

mentioned by Green from GlaxoSmithKline, “The future is bright. The future is 

virtual”; implying the prominence and growing importance of computational tools in 
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R&D of pharmaceutical industries. (Kapetanovic, 2008). Post genomic period 

witnessed abundance of information of small molecules and protein crystal structures, 

which enables a wide application of CADD. This caused an inevitable integration of 

CADD as part of drug discovery pipeline. (Jorgensen et al., 2004)  

 In silico filters such as those function to eliminate redundant compounds 

(poor absorption, distribution, metabolism, excretion and toxic ity, ADMET) are 

available that aids focusing on the more promising drug targets (Tan et al., 2006).  

Rational design of drugs that could bind to a target protein is also another application 

within CADD; an approach which significantly saves more time.  

1.5.1 Virtual screening of ligand libraries 

 

 The objective of receptor-based virtual screening is to search for ligands from 

libraries added with prediction of respective binding affinities and conformation 

against the protein of interest (Lyne, 2002). A number of programs which can 

execute such calculations include DOCK (Ewing et al., 2001), FlexX (Rarey et al., 

1996), GOLD (Jones et al., 1997) and AutoDock (Morris et al., 2009; Trott et al., 

2011). This study focuses on usage of AutoDock for virtual screening, since it has 

been established as a reliable tool since 2010 for docking predictions with an added 

advantage of being a free source program.    

1.5.2 AutoDock  

 

 AutoDock program is suite software developed by Morris and team to 

facilitate prediction of binding modes between macromolecules and drug-like ligands, 

by employing semi-empirical free energy force field. This technique of 

computational calculation allows for the prediction of free binding energies along 
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with binding constants for the docked ligand (Morris et al., 1998). The model which 

was applied in the calculation of free binding energies is as below; 

                                                          

The first four pairwise calculations relate to dispersion/repulsion, hydrogen 

bonding, electrostatics and deviation from original conformation, torsional entropy 

and desolvation respectively (Morris et al., 1998). AutoDock uses grid-based method, 

in which rapid evaluation of binding energies of trial conformations are calculated 

and stored in a grid file to be used as a look up table by AutoDock during docking 

simulation.  AutoDockTools (ADT) was created as part of graphical user interface, 

which enables user to prepare coordinate files, perform experimental design and 

perform data analysis (Morris et al., 2012). 

1.5.3 AutoDock Vina 

 

AutoDock Vina was introduced as the new software for molecular docking 

and virtual screening by The Scripps Research Institute. Its speed is of two orders 

magnitude in comparison to AutoDock 4, by utilizing multithreading in multi-core 

machines. Vina is also compatible with AutoDock tools, and utilizes similar input 

file formats as required by AutoDock 4. However, users would not need to perform 

grid map calculations, as Vina performs this task along with the clustering and 

ranking of results in a way not visible to the users (Trott & Olson, 2011) .  

It is believed that Vina is able to comprehend more complicated ligands 

(large ligands, ligands having larger number of rotatable bonds) in comparison to 

AutoDock 4 (Chang et al., 2010). In regard to this, this study makes use of Vina to 

perform molecular docking and virtual screening 


