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SINTESIS, PENCIRIAN DAN SIFAT KEFOTOPENDARCAHAYAAN 

POLIESTER YANG MENGANDUNGI BENZILIDENA BERANGKAI 

SILANG FOTO DAN POTENSI APLIKASINYA SEBAGAI KEMOSENSOR 

 

 

ABSTRAK 

 

Tesis ini merangkumi tujuh siri homolog poliester baru yang mengandungi 

kumpulan benzilidena dan bisbenzilidena. Poliester yang disintesiskan mempunyai 

keterlarutan dalam pelbagai jenis pelarut organik yang meningkatkan potensinya 

dalam kajian aplikasi. Struktur molekul monomer dan polyester yang disintesiskan 

telah disahkan dengan menggunakan teknik spektroskopi seperti FT-IR dan FT-NMR 

(1D dan 2D NMR). Analisis TGA dan DSC menunjukkan bahawa semakin pendek 

rantai fleksibel, semakin tinggi kestabilan haba mengikut turutan m= 

10>12>14>16>18 yang mana m ialah panjang rantai. Selain itu, kestabilan haba 

poliester bergantung kepada jenis kumpulan seperti fluorescein, fluorene dan triazol 

pada tulang belakang dan rantai sisi. Ia juga dipengaruhi oleh jenis kumpulan 

tertukarganti pada rantai sisi seperti -OCH3 dan -Cl. Poliester yang mengandungi 

gelang heterosiklik triazol (PB dan PD) menunjukkan kestabilan haba yang lebih 

tinggi berbanding dengan analog yang tidak ada gelang heterosiklik triazol (PA and 

PC). Poliester dengan kumpulan metoksi pada rantai sisi mempunyai kestabilan haba 

yang lebih tinggi berbanding dengan -Cl dan poliester tanpa kumpulan pengganti. 

Peratusan kehabluran yang didapati daripada kajian WAXD telah menunjukkan 

bahawa poliester dengan peratusan kehabluran yang tinggi mempunyai kestabilan 

haba yang lebih tinggi. Yang mengunikkan, semua poliester yang disintesiskan 
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adalah aktif terhadap peningkatan pancaran teraruh agregasi (AIEE). Poliester, PFX 

yang mengandungi fluorescein dan mempunyai ketegaran yang tinggi menunjukkan 

AIEE yang paling tinggi berbanding dengan PEX yang mengandungi fluorene. Ini 

diikuti dengan poliester yang mengandungi atau tanpa gelang heterosiklik triazol 

dalam turutan PD> PB> PC> PA. Poliester yang disintesiskan menjalani tindak 

balas berangkai silang foto  dengan penyinaran UV dan peningkatan dalam keamatan 

kefotopendarcahayaan telah diperhatikan. Hal ini mungkin disebabkan oleh interaksi 

susunan π-π yang berkesan yang disebabkan oleh pendimeran foto yang membentuk 

gelang siklobutana yang menyebabkan rangkaian polimerik lebih tegar dan akan 

menambahkan lagi agregasi. Imej TEM menunjukkan bahawa agregasi molekul 

poliester berlaku apabila didedahkan kepada cahaya UV untuk membentuk misel 

seperti yang diperhatikan dalam kajian AIEE. Selepas tindak balas berangkai silang 

foto, SEM telah menunjukkan bahawa poliester tersebut mempunyai tekstur yang 

kasar seperti gentian dan banyak lowong pada permukaannya berbanding dengan 

tekstur poliester asal yang mempunyai lapisan permukaan yang licin. Aplikasi 

kemosensor poliester juga dijalankan dengan menggunakan pelbagai jenis ion logam 

berat. Poliester yang disintesiskan menunjukkan kepekaan dan kepilihan terhadap 

suatu ion logam yang spesifik dengan sifat pendarflour ‘hidup’. Sebagai contohnya, 

PB3 dan PD3 adalah terpilih terhadap ion Pb
2+

, PA3 adalah terpilih terhadap ion 

Cd
2+

, PC3 adalah terpilih terhadap ion Cu
2+

, dan PEH dan PFH adalah terpilih 

terhadap ion Ni
2+

. 
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SYNTHESIS, CHARACTERIZATION AND PHOTOLUMINESCENCE 

PROPERTIES OF PHOTOCROSSLINKABLE BENZYLIDENE-

CONTAINING POLYESTERS AND THEIR POTENTIAL APPLICATION 

AS CHEMOSENSOR 

 

 

ABSTRACT 

 

This dissertation comprised of seven homologous series of new polyesters 

containing benzylidene and bisbenzylidene moieties. The synthesized polyesters 

were found to be soluble in various organic solvents which would enhance their 

potential in application studies. The molecular structures of the synthesized 

monomers and polyesters were confirmed via spectroscopic techniques such as FT-

IR and FT-NMR (1D and 2D NMR). TGA and DSC analyses showed that polyesters 

with shorter flexible chain length were thermally more stable in the order of m= 

10>12>14>16>18, where m is the chain length. Furthermore, the thermal stability of 

the polyesters was also found to depend on the types of moiety, namely fluorescein, 

fluorene and triazole on the backbone as well as the side chain. It was also affected 

by the types of substituents, like -OCH3 and -Cl on the side chain. Polyesters 

containing triazole hetereocyclic rings (PB and PD) were found to be thermally more 

stable than those without which are PA and PC. Polyesters with -OCH3 substituent 

on the side chain had a higher thermal stability than those with -Cl and unsubstituted 

polyesters. The percentage of crystallinity obtained from WAXD study showed that 

polyesters with higher percentage of cystallinity had greater thermal stability. 

Uniquely, all the synthesized polyesters were aggregation-induced emission 
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enhancement (AIEE) active. Polyesters with greater rigidity like PFX which 

contained fluorescein moieties showed greatest AIEE effect than that of PEX which 

contained fluorine moieties. This was followed by polyesters with and without 

triazole hetereocyclic rings in the order of PD> PB> PC> PA. The synthesized 

polyesters underwent photocrosslinking upon UV irradiation and an enhancement in 

their photoluminescence intensity was observed. This could be due to the effective π-

π stacking interactions when photodimerization occurred that formed the cyclobutane 

ring thus resulting in a more rigid polymeric network which would further induced 

aggregation. The TEM images showed that aggregation of the polyesters molecules 

occurred after exposure to UV light to form micelles, which was similar to that 

observed in the AIEE study. The SEM showed that after photocrosslinking, the 

polyesters displayed a fiber-like, rough texture with more voids as compared to that 

of the virgin polymers that had smooth surface layer. The potential of the polyesters 

as chemosensors was investigated using various heavy metal ions. The synthesized 

polyesters illustrated sensitivity and selectivity towards specific metal ions with ‘turn 

on’ fluorescence behaviour. For instance, PB3 and PD3 were selective towards Pb
2+

 

ions. PA3 was selective towards Cd
2+

 ions, PC3 was selective towards Cu
2+

 ions and 

PEH and PFH were selective towards Ni
2+

 ions.  
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1.0 INTRODUCTION 

1.1 Polymers 

Polymers, also known as macromolecules are built up from numerous smaller 

molecules called monomers which are linked together via covalent bonding through 

a chemical reaction called polymerization [Sperling L. H., 2006]. In the past, most of 

the studies were focussed on natural polymers. In the early years (before 1800), the 

first polymers discovered and used were from natural products such as cotton, starch, 

wool and proteins, while Hevea brasiliensis (natural rubber) was used by the early 

South American civilizations (Aztecs) for waterproofing fabrics and making elastic 

articles. After years of work in Yonkers, New York, in 1907, the early twentieth 

century, Leo Baekerland announced the first synthetic polymer, Bakelite, followed 

by Nylon 6,6 in 1928. To date, more and more polymers were synthesized in 

accordance to the advancement of technologies [Charles E. & Carraher Jr., 2013]. 

The concept of covalently bonded macromolecular structures was first proposed by 

Hermann Staudinger in 1920. After that, more polymers were synthesized and 

classified as homopolymers and copolymers. Homopolymers are made up of 

identical monomer units which can be obtained via radical reactions that take place 

on the alkene double bond of a single monomer. Copolymers are made up of two or 

more different monomer units which can be obtained through polycondensation 

reaction [Wade L. G. Jr., 2006].  

 

1.1.2 Polymerization process 

There are two methods of polymerization, namely additional polymerization 

and condensation polymerization. In fact, addition polymers are sometimes called 

chain-growth polymers due to the rapid addition of one molecule at a time at the end 

http://en.wikipedia.org/wiki/Hermann_Staudinger
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of the chain of a growing polymer chain. This type of polymer truly depends on the 

monomer and the initiator used wherein the reactive intermediates may be free 

radicals, carbocations or carbanions [Wade L. G. Jr., 2006].  

The free radical polymerization usually involved an alkene with a radical 

initiator, for example a peroxide radical such as benzoyl peroxide in the presence of 

heat and/or high pressure. The mechanism involved three significant steps which 

were initiation, propagation and termination as shown in Figure 1.1 [Smith J. G., 

2011]. 

 

Figure 1.1 Mechanism of free radical polymerization of styrene [Smith J. G., 2011] 

 

As for the cationic and anionic polymerization, their mechanisms are similar 

to that of the free radical process with the involvement of different intermediates of 

carbocation or carbanion. A cationic polymerization is initiated by a strong acidic 

catalyst like boron trifluoride, BF3 in the presence of traces of water in methanol as a 
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co-catalyst while an anionic polymerization is initiated by a strong nucleophile like 

organolitium reagent or Grignard reagent. A cationic polymerization occurs in 

alkenes containing alkyl or electron donating groups, whereas an anionic 

polymerization occurs in alkenes containing electron withdrawing groups. 

Monotonously, both follow a three-step mechanism of initiation, propagation and 

termination as shown in Figures 1.2 and 1.3, respectively [Smith J. G., 2011]. 

 

Figure 1.2 Mechanism of a cationic polymerization of CH2=CHZ [Smith J. G., 2011] 

 

Figure 1.3 Mechanism of an anionic polymerization of CH2=CHA [Smith J. G., 2011] 

 

Condensation polymers which are also known as step-growth polymers are 

actually formed by the reaction between two difunctional monomers, that result in 
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the formation of a new bond in a separate step. There are in fact two common types 

of step-growth process, in which the first would involve two types of monomers, A-

A and B-B to give –(A-A-B-B)n– polymers while the second type would be the 

polymerization with its own monomer, also known as self–condensation of one type 

of monomer, A-B to give –(A-B)n– polymers. Thus, it could be clearly seen that in 

each of these cases, functional group of A reacts exclusively with functional group of 

B and vice versa which results in the formation of a new covalent bond generally by 

polar reactions such as nucleophilic acyl substitution. There are several common 

types of condensation polymers, for instance, polyesters, polyamides, polyurethanes 

and polycarbonates as depicted in Figure 1.4 [Brown W. H. & Foote C. S., 2002]. 
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Figure 1.4 Formation of polyamide, polyester, polyurethane and polycarbonate 

[Brown  W. H. & Foote C. S., 2002] 

 

1.1.3    Polyesters and Poly(azomethine)esters 

 Polyesters are synthesized by bifunctional monomers through step-growth 

polymerization to obtain the ester functional groups in the backbone. Such a 

polymerization reaction is also known as a polycondensation reaction (along with 

polyureas, polyamides and others) due to the outcome of producing small by product 

like water [Selvi R. S. et al, 2011]. The synthesis of polyesters was pioneered by 

Carothers and co-workers in 1930 but the synthesized polyesters were found to have 

low melting points and poor hydrolytic stability [Pang K. et al, 2006]. His research 

work involved straight chain polymerization of compounds like A-B ω-hydroxy-

acids, lactones as well as esterification of A-A linear diols with B-B terminal 

aliphatic dicarboxylic acids [Carothers W. H., 1929]. In 1946, Whinfield and 

Dickson discovered and patented poly(ethylene terephthalate) (PET) having high 

melting temperature and good hydrolytic stability. The partial aromatic organic 

moiety was necessary to be incorporated the compound structure in order to increase 

its melting point, Tm above 250°C [Whinfield J. R., 1946; Whinfield J. R. & Dickson 

J. T., 1946].  

Polyesters especially PET were then manufactured by ICI (UK, 1949) as 

industrial products, followed by Du Pont (USA, 1953) that used the trademark Mylar 

for the production of films [Edlund U. et al, 2003; Pang K. et al, 2006]. Years later, 

various aromatic polyesters such as poly(butylene terephthalate) (PBT) have been 

studied and produced commercially for more than 50 years [Pang K. et al, 2006]. In 

fact, the pure aromatic polyesters are not only well known for their naturally forming 
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film and fibre but also for their biodegradable [Zhang L. L. et al, 1995] and 

biomedical properties [Guo B. L. et al, 2013]. Thus, their applications in the field of 

both medical and non medical are highly acceptable [Vasanthi B. J. & Ravikumar L., 

2007]. The broad spectra of both the aliphatic and aromatic polyesters in various 

application fields have been dependent on and well relevance to their structural 

designs and properties [Shenoy M. A. et al, 2005]. Therefore, it is of current interest 

towards the inclusion of various linking groups in the polyesters, either in the 

backbones or in their side chains [Kausar A. & Hussain S. T., 2013] of the polymer 

network. 

The attempt of incorporating an azomethine linkage in a polyester backbone 

would lead to a new class of polyester called poly(azomethine)esters bearing both 

ester and azomethine functional groups on the polymer backbone. There are in fact 

two classes of poly(azomethine)esters. The first class was obtained from the reaction 

of two types of bifunctional monomers, for example, dicarboxylic acid and dialcohol 

monomers with the azomethine moiety in one of the monomers while the second 

class was obtained from the reaction of only one type of monomers consisting of 

both alcohol and acid functional groups on the terminal chain with the azomethine 

group on the backbone (HOOC-R-C=N-R-OH). These could be clearly seen in the 

example of an individual work reported by Bhuvaneshwari et al in 2015 for the first 

class of poly(azomethine)esters while the second class of poly(azomethine)esters was 

studied by Ravikumar et al in 2009. The detailed schematic works are as shown in 

Figure 1.5 and Figure 1.6, respectively.  
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Figure 1.5 Poly(azomethine)esters formed from diacid and diol monomers 

[Bhuvaneshwari B. et al, 2015] 

 

 

Figure 1.6 Poly(azomethine)esters synthesized from monomers consisting of both 

alcohol and acid functional groups on the terminal chain [Ravikumar L. et al, 2009] 

 

In recent years, poly(azomethine)esters were studied owing to their 

noteworthy ability in overcoming the insolubility problem due to strong linearity of 

the polyazomethines chains. As according to the first synthesized polyazomethines 
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which was an insoluble and infusible polymer due to its strong chain-chain 

interaction whereby benzidine and dianisidine were treated with terephtaldehyde 

[Higuchi M. & Yamamoto K., 2002; Kaya I. & Culhaoglu S., 2008]. This 

shortcoming minimizes the feasibility of processing the polymers which later led to 

the approach of having ether or ester linkages in the polymeric compounds would 

help to impart chain flexibility, thus enhances solubility at the same time lowering 

the glass transition temperature [Marin L. et al, 2006; Suh S. C. & Shim S. C. et al, 

2000]. In fact, the presence of ester groups does not only induce the flexibility, but 

also the charge carrier movement along the chain in the polymeric systems [Vasanthi 

B. J. & Ravikumar L., 2013; Balaji R. & Nanjundan S., 2010].  

It is of great interest to investigate the various interesting and peculiar 

properties of polyesters in the presence of azomethine groups in their backbones. The 

azomethine linkages provide an extended spatial π-electron system that will increase 

the conductivity of the polymers [Kausar A. & Hussain S. T., 2013]. As reported by 

several researchers, these polymers belong to a class of high performance polymers 

well known for their excellent thermal stability [Kaya I. et al, 2011], ability to form 

chelation with metal complexes [Ravikumar L. et al, 2009], good environmental 

resistant and mechanical properties [Kimura K. et al, 2003], as conductive polymers 

[Kausar A. & Hussain S. T., 2013] and electron transporting layers (ETLs) or hole 

transporting layers (HTLs) [Fischer W. et al, 1996]. Moreover, this type of 

thermostable polymers is an interesting candidate in several potential applications in 

photonics and electronics, [Zaltariov M. F. et al, 2014] and as optoelectronics 

materials [Iwan A. et al, 2012] besides being a powerful alternative to 

nanofabrication and nanomanipulation for the development of nanotechnology as a 
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new perspective in material science [Kausar A. & Hussain S. T., 2013; Marin L. et al, 

2009]. 

 

1.1.4 Photoluminescent polymers 

The research studies on photoluminescent polymers have gathered great 

scientific attention due to their engrossing properties and applications in various 

fields of material and life sciences. Generally, there is an enormous demand for 

fluorescent materials in recent years. The latest research progress on 

photoluminescence polymers is on the development of new architecture. There are 

two approaches to prepare the photoluminescent polymers. The first approach 

involves polymerization of monomer containing a fluorescent chromophore with 

some other common monomers via chemical bonding. For instance, using the 

fluorescent compounds as initiator as well as chain transfer agents. The second 

approach involves chemical modification of commercially available polymers which 

consists of reactive groups like fluorescent dyes [Wang K. C. et al, 2002; Gao H. et 

al, 2004; Yuan J. et al, 2010]. In fact, most of the literatures of this research focus on 

the synthesis of polymers which incorporated rare earth metals such as work reported 

by Liu et al in 2009 on fluorescent 1,10-phenanthroline-based polymer complexes 

with Europium (Eu). Research on the luminescent rare earth metal complexes have 

attracted considerable attention in the past decades as they could be potentially used 

in organic electroluminescent (EL) devices and have high internal quantum 

efficiency. Besides, rare earth metal-incorporated materials can be used as optical 

microcavity emitters owing to their inherent extremely sharp emission bands. 

However, these types of rare earth metal containing materials have toxic effects on 

human health and the environment in addition to their high cost [Pagano G. et al, 

2015]. Hence, conjugated polymers and non-conjugated polymers are of current 
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interest. An example of conjugated polymers is photoluminescence 

polybenzobisoxazoles (Figure 1.7), a polymer based on fluorene and benzoxazole 

which was reported by Xu and co- worker in 2010. Whilst, recently, Zhu and co-

workers (2014) had worked out a non-conjugated photoluminescence polymer based 

on polyethyleneimine as shown in Figure 1.8.  

 

 

Figure 1.7 Synthesis of conjugated photoluminescence polybenzobisoxazoles [Xu X. 

et al, 2010] 

 

Figure 1.8 A non-conjugated photoluminescence polymer based on 

polyethyleneimine [Zhu S. et al, 2014] 

 

Photoluminescence polymers have illustrated their importance in various 

emerging fields and photonics properties, especially as smart polymer machines, 

fluorescent chemosensors, fluorescent probes, in fluorescent imaging, drug delivery 

carrier, optoelectronics and etcetera. Polymeric compounds with fluorescence 
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properties have been ascertained as a convenient technology as they are easily 

formed into films that can be fabricated onto optical fiber waveguides in sensor 

studies [Yuan J. et al, 2010]. 

 Thus the presence of the chromophore in the polymer is one of the utmost 

key factors towards the formation of photoluminescence polymers. Examples of 

chromophores are benzylidene and bis(benzylidene) moieties, 1,2,3-triazole moiety, 

fluorene as well as fluorescein moieties.  

Benzylidenes or commonly known as chalcones are a group of yellow 

pigments of substituted benzalacetophenone derivatives with the presence of reactive 

keto vinylenic group [Iwan A. et al, 2012]. This moiety is a simple structure 

consisting of a α, β-unsaturated carbonyl group sandwiched between two aromatic 

rings and able to contribute to the various conformations, depending on the most 

suitable ring arrangement. The benzylidene moiety can exist as either E- or Z-isomer 

but in common case the chalcone will be isolated as the E-isomer as it is more stable 

thermodynamically as shown in Figure 1.9 [Borse S. L. et al, 2011]. While 

bisbenzylidene is a stilbenoid class of organic molecule but with an addition of one 

olefinic group as compared to the benzylidene moiety. Similarly, this moiety can also 

exist in various conformations with three isomeric structures: EE, EZ and ZZ. 

However, the EE-isomer has the most suitable and stable ring arrangement as shown 

in Figure 1.10 [Murali M. & Samui A. B., 2010]. 

 

Figure 1.9 E and Z isomeric structures of benzylidene [Borse S. L. et al, 2011] 
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Figure 1.10 EE, EZ, and ZZ isomeric structures of bisbenzylidene cycloalkanone 

[Murali M. & Samui A. B., 2010] 

 

Benzylidenes or chalcones are used as precursors of many naturally occurring 

pigments such as flavonoids and flavones [Borse S. L. et al, 2011]. In fact, these 

moieties have a unique template with diverse applications due to the presence of keto 

vinylenic group and their potential applications were reported as antioxidant, anti-

angiogenic, analgesic, antimutagenic and anticancer agents besides possessing 

bactericidal, antifungal and insecticidal activity [Rehab A., 2003; Rehab A. & 

Salahuddin M., 2009]. Furthermore, bisbenzylidene or benzylidene moieties are a 

type of photoactive groups among other groups like cinnamoyl, coumaroyl, cyclic 

carbonate and stilbene derivatives which have been intensively explored for their 

photosensitive applications [Rami Reddy A. V. et al, 1996; Choi  D. H. et al, 2001a]. 

The bisbenzylidene-containing polyesters would give the polyesters an outstanding 

photosensitive property which enables them to undergo photopolymerization reaction. 

This type of polymers has garnered remarkable interest among fellow researchers 

worldwide owing to their high processable properties such as good thermal stability, 

solubility, photosensitivity and as excellent adhesion [Rehab A., 2003; Rehab A. & 

Salahuddin N., 2009]. The photosensitive polymers are capable of changing their 
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chemical reactions through the induction of ultraviolet irradiation in obtaining new 

physical properties. There are several possible chemical reactions that may occur 

upon UV irradiation, such as crosslinking and chain scission [Horie K. et al, 2000]. 

Veritably, the presence of photosensitive moieties bearing the π electron density in 

the photoactive chromophores enables them to crosslink upon UV irradiation at 

ambient temperature, thus forming a highly crosslinked compound. Such polymers of 

which their structures could be changed by the action of just the exposure to UV light 

are valuable in the preparation of energy exchange materials, photocurable coatings 

and optical memory devices. Besides that, benzylidene and bis(benzylidene) would 

also afford photoluminescence properties in addition to giving photocrosslinkable 

ability to the polymers [Decker C. & Thi Viet T. N., 2001; Jayalatha D., 2009].  

 1,2,3-Triazole chromophore has been studied due to its crucial fluorescent 

properties besides being able to enhance the thermal stability of a material 

[Balamurugan R. & Kannan P., 2010; Li H. K. et al, 2011]. According to the hitherto 

reported work, the five membered [1,2,3]-triazole ring is formed via ‘Click reaction’ 

from the copper catalyzed [3 + 2] dipolar cycloaddition reaction between azides and 

terminal alkynes [Ozen C. & Tuzun N. S., 2012]. These triazole derivatives have 

received considerable attention owing to their ability to mimic peptide bonds, thus 

endowing them to be chemical materials in drug discovery as they showed their 

potential as anti-HIV [Alvarez R. et al, 1994], anti-bacterial [Genin M. J. et al, 2000], 

anti-histamine [Buckle D. R. & Rockell C. J. M., 1982] and anti-tumor [Pearson W. 

H. et al, 1990] agents. Along with that, they are also attractive materials in organic 

chemistry with interesting properties, for instance, they are chemically stable (inert to 

severe hydrolytic, oxidizing as well as reducing conditions at high temperature), have 

a good hydrogen-bond-accepting ability and a strong dipole moment [Srividhya D. et 
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al, 2009]. Hence the incorporation of triazole rings into polyesters will give 

fluorescent polymers with enhanced thermal stability.  

 Fluorene and its derivatives have attracted much attention owing to their wide 

energy gap as well as high luminescent efficiency [Liaw D. J. et al, 2009]. Fluorene 

incorporated polymers with relatively large band gaps were first developed as 

potential blue-light emitting materials in which the blue emission could be attained 

from the confinement of the conjugation length. Besides that, the fluorene polymers 

are also known as conjugated polymers that could emit a whole range of visible light 

[Lee J. et al, 2005]. Hence, the addition of fluorene moiety to the polyesters is 

expected to induce greater photoluminescence property.  

Fluorescein dye was selected as one of the monomers in polyesterification 

due to the presence of two hydroxyl groups in its structure which could easily result 

in the formation of the ester linkages with the acid chloride groups. Furthermore, this 

dye is potent in inducing greater emission intensity with its high fluorescence 

quantum efficiency [Uthirakumar P. et al, 2005]. Moreover, fluorescein containing 

materials are promising candidates for nonlinear optics as inorganic glass filled with 

fluorescein illustrated third order nonlinear optical. In fact, making the fluorescent 

dye an integral part of a polymer is one of the extensive steps in the designation of 

fluorescent materials [Fomine S. et al, 1995]. 

 

1.1.5      Photocrosslinkable polymers 

Photosensitive polymers have gained remarkable interests in current 

scientific research ever since they acquired significant importance in various 

industrial applications such as optical waveguide materials, liquid crystal display, 

photolithography, photoresist [Gayathri K. et al, 2009, Wen P. et al, 2011; Kumar G. 
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et al, 2013], energy exchange materials [Kim T. D. et al, 2002], cathode ray tubes, 

integrated circuits, compact discs and etcetera [Rehab A., 1998]. Furthermore, they 

have also been employed in applications, for example, as second harmonic 

generation materials in non-linear optics materials [Kang J. H. et al, 2002], as 

photorefractive polymers [Huang R. et al, 2010], holographic recording materials, 

fluorescent probes for sensing of metal ions, biological macromolecules and 

microenvironment in micelles [Rehab A., 1999; Murali M. & Samui A. B., 2010] as 

well as in medicinal prospects [Ferreira P. et al, 2011]. 

In order for the polymers to possess photocrosslinking ability, the 

photosensitive groups or moieties should be able to undergo changes upon light 

irradiation. Past studies have been conducted in order to determine the irreversible 

transformation of the photosensitive polymers into a photocrosslinked network 

during the induction of light. The photocrosslinked polymers were first discovered 

when the pitch was photocrosslinked for some decorative purposes during the ancient 

days [Gersheim F., 1996]. In 1935, Louis Minsk of Eastman Kodak synthesized the 

first synthetic photopolymer from the dimerization of cinnamic acid [Reiser A., 1989; 

Kaniappan K. et al, 2014]. Thereafter, huge varieties of photocrosslinkable polymers 

were developed whereby photodimerization reaction was relied on inducing 

intermolecular cyclization between two reactive species [Ravve A., 2006]. 

Photocrosslinkable moieties can be in various functional groups like cinnamoyl, 

furan, stillbene, azides and azo groups.  

However, this study will focus on polymers containing chalcone moiety as 

the pendant chalcone groups of polymers were found to behave similarly to pendant 

cinnamate groups. This class of polymers was initially synthesized by Unruh and co-

workers of Eastman Kodak Company in 1960 involving acetylation of polystyrene to 
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obtain poly(p-vinyl acetophenone) which then underwent condensation reaction with 

benzaldehyde in the presence of an acid catalyst. The benzaldehyde with electron 

donating substituents in the para- position was observed to be more sensitive to light 

through investigation by ultraviolet spectroscopy. In fact, polymerization of 

photocrosslinkable polymers could be obtained via side chain polymerization as well 

as main chain polymerization. In 1971, side chain polymerization via cationic 

polymerization was demonstrated by vinyl monomers using BF3-ethyl etherate 

catalyst to yield photosensitive poly[4'-(β-vinylethoxy)chalcone] and poly[4'-(β-

vinyloxyethoxy) chalcone] [Kato M. et al, 1971]. Later, Watanabe et al (1986) 

synthesized photocrosslinkable polymer of poly(vinyl alcohol) with 4’-substituted-4-

caboxychalcone in the presence of  2,4,6-trinitrochlorobenzene as a condensing agent 

in homogeneous dimethyl formamide solution. The crosslinking ability was then 

explained by the biradical formation (dimerization) of the olefinic group of the 

chalcone functionality.  

Another method of side chain polymerization involved an initiator such as 

benzoyl peroxide in methyl ethyl ketone consisting of acrylate and methacrylate 

monomers containing the photodimerizable α, β-unsaturated ketone moiety as shown 

in Figure 1.11 [Rami Reddy A. V. et al, 1996]. However, these polymers were 

observed to be insoluble even in the absence of a photosensitizer.  

 

Figure 1.11 Synthesis of polymethacrylate using benzoyl peroxide at 70 
o
C [Rami 

Reddy A. V. et al, 1996] 
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In 1998, radical polymerization of vinyl–chalcone monomers in anhydrous 

toluene and tetrahydrofuran in the presence of N,N'-azo-isobutyronitrile (AIBN) as 

initiator was introduced by the work of Rehab in obtaining homo and comethacrylate 

chalcone polymers as shown in Figure 1.12. 

 

Figure 1.12 Synthesis of homo and comethacrylate chalcone polymers [Rehab A., 

1998] 

 

A few years later, in 2001, a modified polymer, poly(4-methacyloyl 

oxyphenyl-3'–methylstryl ketone) (MPMSK) with pendant chalcone moiety (Figure 

1.13) was synthesized using ethyl methyl ketone solution and benzoyl peroxide as 

initiator. This polymer had very good thermal stability due to the presence of short 

side chains and rigid pendant chalcone units which could be potentially used for 

negative photoresists [Balaji R. & Nanjundan S., 2001].  

 

Figure 1.13 Synthesis of poly(4-methacyloyloxyphenyl-3'–methylstryl ketone) 

(MPMSK) with pendant chalcone moiety [Balaji R. & Nanjundan S., 2001] 
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In the aspect of main chain polymerization, photocrosslinkable polyesters 

were constructed via polycondensation reaction. According to the work reported by 

Kim and co-workers in 2002, step-reaction polymerization involving cinnamoyl 

group between the diol and diacid monomers and the photocrosslinking properties 

were documented (Figure 1.14). The high photocrosslinking behavior of this class of 

polymers ascertains its potential as photoresist as well as in photo-alignment 

applications of liquid crystals. 

 

Figure 1.14 Synthesis of aromatic polyester with a cinnamoyl moiety [Kim T. D. et 

al, 2002] 

 

The phase transfer catalyzed polycondensation method was used for 

synthesis of copolyester chalcone derivatives which was reported by Selvi and co-

workers that involved the monomers of 1,3-bis(4-hydroxy-3-methoxyphenyl) 

propenone (BHMPP) and 1-(3, 5-dihydroxyphenyl)-3-(4-methoxyphenyl) propenone 

(DHPMPP) with aliphatic acid chlorides using tetra-n-butyl ammonium bromide as 

PTC catalyst as shown in Figure 1.15. These copolyesters were used in biological 

assays (anticancer properties) [Selvi R. S. et al, 2011]. 
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Figure 1.15 Synthesis of polyester using tetra-n-butyl ammonium bromide as PTC 

catalyst [Selvi R. S. et al, 2011] 

As shown in Figure 1.16, Zhao and Wu have synthesized photocrosslinkable 

copolyesters based on ferulic acid and 9-hydroxy-9-fluorene-carboxylic acid by 

esterification-polycondensation method with acetic anhydride as the condensation 

reagent in the presence of magnesium acetate. They revealed that the 

photocrosslinked copolyesters depicted improved thermo-stability.  

 

Figure 1.16 Synthesis of fluorene-based polyesters [Zhao Q. & Wu W., 2009] 
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1.1.6 Aggregation-induced emission enhancement (AIEE) 

Fluorophores displaying aggregation-induced emission enhancement (AIEE) 

and aggregation-induced emission (AIE) have attained a powerful platform for the 

development of chemical and biological sensors. The concept of aggregation-induced 

emission (AIE) and aggregation-induced emission enhancement (AIEE) were first 

proposed by Ben Zhong Tang and his co-workers in 2001. It has been well known 

that most organic fluorescent materials give very strong fluorescence in dilute 

solution, but emission intensities decrease dramatically with increasing 

concentrations towards the formation of aggregates and this phenomenon is known 

as aggregation-caused quenching (ACQ). Literally, ACQ fluorophores have 

significantly confined the high-tech application of conventional fluorophores as 

compounds for practical applications that are usually used in the aggregated state. 

The phenomenon observed in AIEE was the exact opposite of aggregation-caused 

quenching (ACQ) effect whereby the fluorophore is weakly fluorescent in solution, 

but exhibited intense fluorescence in aggregation [Song P. et al, 2011]. Investigation 

shown that the AIE polymers adopt a non planar conformation leading to a restriction 

of intramolecular rotation (RIR) (Figure 1.17) which inhibits the face-to-face packing 

structure that will further minimize the likelihood of formation of the excimer. 

Nevertheless, it is amazing that an outwardly minor variation in the structure will 

elicit a great difference in the photophysical property from showing ACQ to AIE 

effect as illustrated in Figure 1.18. The incorporation of additional α-dimethyl group 

in 1,4-distyrylbenzene causes steric hindrance that will affect its molecular geometry, 

packed structure and molecular interaction which then gives it a complete reversion 

of planar to non planar conformation [Hong Y. et al, 2011].  

 


