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Abstract: G-Quadruplex (G-4) structures are formed when G-rich DNA sequences fold 

into intra- or intermolecular four-stranded structures in the presence of metal ions.  

G-4-hemin complexes are often effective peroxidase-mimicking DNAzymes that are 

applied in many detection systems. This work reports the application of a G-rich 

daunomycin-specific aptamer for the development of an antibody-antigen detection  

assay. We investigated the ability of the daunomycin aptamer to efficiently catalyze the  

hemin-dependent peroxidase activity independent of daunomycin. A reporter probe 

consisting of biotinylated antigen and daunomycin aptamer coupled to streptavidin gold 

nanoparticles was successfully used to generate a colorimetric readout. In conclusion, the 

daunomycin aptamer can function as a robust alternative DNAzyme for the development of 

colorimetric assays. 
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1. Introduction 

Aptamers have been applied for various applications, including affinity purification [1], drug 

discovery [2], high-throughput screening [3], therapeutics [4,5] and diagnostics [6]. Aptamers are 

selected via an in vitro process called Systematic Evolution of Ligands by Exponential Enrichment 

(SELEX), an iterative process of selection/isolation and amplification from a large combinatorial 

library of oligonucleotides [7]. Daunomycin is an anthracycline antibiotic commonly used as a cancer 

chemotherapeutic agent [8]. Daunomycin is known to prefer G-C-rich DNA by intercalation with the 

pyridine and pyrimidine nucleobases [9]. The daunomycin aptamer was predicted to form a G-4 which 

is likely the basis of its binding conformation [10]. Previous structural analysis of the hemin  

G-4 structure shows that the hemin is positioned at the planar ends of the G-4 [11–13]. A recent study 

on the crystal structure of the G-4 complex with daunomycin shows that the interaction between 

daunomycin to the G-4 occurs by van der Waals interaction with a substantial - stacking effect. It 

shows that 5'-guanine adopts an unusual syn glycosyl linkage instead and no ligand-quadruplex groove 

insertion interaction exists [12]. Both structures show that each hemin and daunomycin is stacked in a 

similar fashion, allowing these molecules to be sandwiched together between the G-4 planes. 

Nucleic acid chains with repetitive G-rich motifs can fold into a G-quadruplex through hydrogen 

bonds. It is stabilized by the presence of cations and interacts with hemin (an iron containing porphyrin) 

forming a G-quadruplex-hemin complex mimicking the horseradish peroxidase enzymatic activities. 

Alternatively, a specific nucleic acid sequence may develop a defined structure that can react as a 

catalyst called DNAzyme. As DNAzymes gain momentum in applications of various fields, many 

attempts have been made to utilize the application of known DNAzymes [14] to detect mainly nucleic 

acids and metal ions. Detection of proteins by DNAzymes is mostly combined with an antigen-specific 

aptamer but rarely with an antibody [15]. Many immunosensor designs are also based on DNAzymes 

conjugated onto solid phases like magnetic nanoparticles (MNPs) or gold nanoparticles (AuNPs) [16]. 

Many have reported DNAzymes as the reporter system replacing the natural enzymes used in 

conventional immunoassays [17,18]. Conventional ELISA methods require enzymes like horseradish 

peroxidase to be conjugated to an antibody or antigen [19]. For many DNAzyme applications whereby 

biotinylated oligonucleotides are easily synthesized, the highly specific streptavidin-biotin interaction 

can be used to substitute the conjugation process. 

Here, we apply the generation of an antigen-DNAzyme based probe for detection. The probe takes 

advantage of the specificity that biotinylated antigen and biotinylated oligos have towards multivalent 

streptavidin on nanoparticles for the generation of an antigen-DNAzyme complex. The use of 

streptavidin nanoparticles in the proposed reporter system allows for one-pot synthesis of the reporter 

system for rapid assays (Figure 1). This reporter system allows for the application to direct and 

competitive assays which can be beneficial for the detection of small haptens such as hormones or 

drug molecules. Therefore the proposed probe can function as an alternative reporter system for 

general immunoassay applications. 
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Figure 1. Schematic diagram of STV-AuNPs and Ag-Ab/DNAzyme conjugation as probe 

(A) for immunoassay system (B). 

 

2. Experimental Section 

2.1. Materials 

Daunorubicin hydrochloride (daunomycin) and hemin were purchased from Sigma Aldrich  

(St. Louis, MO, USA) and subsequently dissolved to 5 mM in dimethyl sulfoxide (Merck, Darmstadt, 

Germany) as stock solution. The streptavidin-gold nanoparticles (STV-AuNP) at 40 nm diameter,  

7.15 × 10
10

 nanoparticles/mL was bought from Sigma Aldrich. ABTS was prepared by dissolving  

10 µL of 100% H2O2 in sodium citrate buffer (Merck). 96-well plate for absorbance reading was 

purchased from Corning (Corning, NY, USA). 

2.2. Oligonucleotides 

The G-rich oligonucleotides sequences, control hemin G4 oligonucleotide d(G3AATTCGAGCT 

CG2TACCTG3TAG3CG3TTG3AAA) and daunomycin G4 oligonucleotide d(G3AATTCGAGCT 

CG2TACCATCTGTGTAAG4TAAG4TG5TG3TACGTCTAG) were synthesized by Integrated DNA 

Technologies (Coralville, IA, USA). All oligonucleotides were synthesized with the addition of biotin 

at the 5'-end. The oligonucleotides stock solutions (10 µM) were prepared in Millipore Milli-Q water 

and kept at −20 °C. 

2.3. Preparation of G-Quadruplex Complexes 

To form the secondary G-quadruplex structure, 10 µL of 10 µM aptamers were heated at 88 °C for 

10 min to dissociate intermolecular interactions and slowly cooled to room temperature (RT) for  

1 h. 10 µL of 2× HEPES buffer (50 mM HEPES, 40 mM KCl, 400 mM NaCl, 0.1% Triton-X, 2% 

DMSO, pH 7.2) was added together and incubated for 1 h to form G-quadruplex structures [20]. Next, 

5 µL hemin (5 mM) was added to the reaction mixture and incubated at RT for 1 h giving way to the 

complexation of hemin with the G-quadruplex. 
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2.4. UV-Visible Scanning Analysis of DNAzyme 

G-quadruplex complexes after addition of 100 µL ABTS were left to react for 10 min and further 

diluted to 2 mL volume mix with 0.5 X HEPES buffer for spectral analysis. The scanning was done 

using a NIR 3600 UV-Visible spectrophotometer (Shimadzu, Kyoto, Japan, 300–700 nm). 

2.5. Absorbance Analysis of DNAzyme 

Two hundred µL of ABTS-H2O2 solution was added into the samples and photometric analysis  

was performed at the absorbance wavelength of 405 nm. A Multiskan spectrophotometer (Thermo  

Fisher Scientific, Waltham, MA, USA) was used for the photometric endpoint measurements of the  

ABTS-H2O2 reaction. 

2.6. Expression of Biotinylated Green Fluorescent Protein (eGFP) and scFv Antibody 

Single chain fragment variable (scFv) antibody against GFP (clone G11) was cloned and expressed 

in BL21 E. coli with C-terminus histidine tag (His6–Tag). Biotinylated green fluorescent protein  

(Bio-eGFP) clone containing the Avi-tag was cloned and expressed in BL21 E. coli containing a helper 

plasmid expressing biotin ligase. 500 mL of 2YT media was supplemented with 100 µg/mL ampicillin, 

34 µg/mL chloramphenicol and 0.2% glucose. The cells were grown at 37 °C, at 200 rpm to an OD600 

of 0.8 and induced with 1 mM IPTG and further incubated at 30 °C until overnight. The bacteria cells 

were pelleted through centrifugation followed by sonication and further purified with Ni-NTA column. 

Both purified protein fractions were run on 12% SDS-PAGE gel. The biotinylated eGFP was 

additionally assayed with the streptavidin-HRP to confirm successful biotinylation using ELISA. 

2.7. Generation of STV-AuNPs-antigen (Ag)–DNAzyme Probe 

Thirty µL of STV-AuNPs solution (6 µg/mL STV conjugated) was mixed with bio-eGFP and  

bio-daunomycin aptamer (bio-DQ) with the ratio of 1:100 by stirring, allowing two different 

biotinylated molecules to bind STV-AuNPs [21]. All the unbound molecules were washed away with 

PBS containing 0.1% Tween-20 and the complex was separated by a magnet. Three hundred µL PTM 

(2% skimmed milk in PBS) solution was added to block excess reactivity of STV-AuNPs for 1 h. The 

gold complex was washed again and the DNAzyme was formed with a 10 fold higher amount of 

cations (100 µL of 2× HEPES buffer) and hemin (50 mM). The final probe was diluted to 1 mL of 

0.5× HEPES buffer and kept at 4 °C until use. 

2.8. Antigen-DNAzyme Probe Immunoassay System 

Microtiter plates were coated with 20 µg anti-eGFP (scFv G11) in PBS buffer (pH 7.4) for 3 h at 

room temperature and blocked with PTM solution for 1 h. Then, plates were incubated with the  

200 µL of the probe for 1h. Wells were washed three times with PBS containing 0.01% Tween-20. 

Finally, the wells were developed with ABTS solution (200 µL/well) for 30 min at 37 °C with  

mild shaking. 
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3. Results and Discussion 

3.1. Characterization of the Hemin and Daunomycin Quadruplexes 

We first investigated if the daunomycin apatamer was able to bind to hemin similarly to the hemin 

aptamer. It is known that the complexation of hemin to a G-quadruplex structure will lead to a shift in 

the UV absorption spectra. The complexation of both oligonucleotides to hemin was carried out under 

UV absorption spectroscopy without the presence of ABTS solution. From the UV-vis absorption 

spectra (Supplementary Figure 1), Hemin G-Quadruplex and daunomycin G-quadruplex spectra 

showed a shift with respect to the hemin peak. The peak for hemin is found at 393 nm. Successful 

complexation of aptamers with hemin will cause the maximum peak to shift to 396 nm. The shift was 

visible for both aptamers suggesting that both hemin and daunomycin aptamers are able to bind to 

hemin in a quadruplex. As both quadruplexes contains Na
+
/K

+
 ions, they are able to bind to hemin 

either by peripheral stacking or intercalation between the G-quadruplexes. Therefore the daunomycin 

aptamer is able to bind hemin in a quadruplex conformation similar to the hemin aptamer even in 

absence of the cognate ligand. The characteristic of the daunomycin aptamer is unique as the aptamer 

was proven to be very robust and independent of the presence of specific ions over a wide pH range. 

This characteristic is useful as many protein-protein interactions may require varying buffers which 

may not contain the ions commonly required by the conventional hemin aptamer to form quadruplex 

structures [10]. 

3.2. Determination of Peroxidase like Activity by Daunomycin Aptamer 

The peroxidase activity was measured on the foundation of ABTS
2−

 oxidation in the presence of 

H2O2 to produce a coloured radical anion for readout [22,23]. The initial UV spectroscopy analysis of 

the ligands’ (hemin and daunomycin) reactions with ABTS/H2O2 showed no peaks at 405 nm. The 

peak at 350 nm corresponds to the background from the non-reacted ABTS development buffer 

(Supplementary Figure 2). This indicates that both substances independently do not exhibit any 

catalytic activity or redox activity to promote ABTS reactions. This shows that independently, hemin 

and daunomycin are not involved in the heterolytic mechanisms of the peroxide. 

Two different G-4-containing molecules, the conventional G-4-hemin aptamer as a positive control 

and daunomycin-specific aptamer were compared. Both G-4 molecules have G-rich stretches with 

sequence variations. The conditions for complexation were investigated using the control hemin G-4 

aptamer to establish the best conditions for G-4 structure formation (Supplementary Figure 2). Similar 

conditions were used to form the daunomycin G-4 aptamer-hemin complex. The daunomycin G-4 

aptamer-hemin complex was able to elicit an oxidative response with ABTS. A peak at 405 nm was 

observed after the reaction for both aptamers. Our results showed that the signal was slightly lower for 

daunomycin G-4-aptamer than the control-G-4. The daunomycin G-4-aptamer was able to oxidize the 

ABTS reaction in the presence of hemin even in the absence of its cognate ligand (Supplementary 

Figure 2). This shows that the daunomycin aptamer is able to form the G-4 structure to elicit the 

oxidative reaction independently of daunomycin. Thus in contrast to other quadruplex-forming 

aptamers, the daunomycin aptamer can function as a highly active DNAzyme independently of its 

cognate ligand. 



Sensors 2014, 14 351 

 

 

3.3. Synthesis and Optimization of STV-AuNPs, Bio-DQ and Bio-eGFP as Probe 

We sought to develop a reporter probe with the daunomycin aptamer to replace the horseradish 

peroxidase (HRP) commonly used in most immunoassays. We determined the stability of the  

bio-DQ quadruplex formation on the STV-AuNPs as a colorimetric sensor for the interaction of  

antigen-antibody binding. The ratio of bio-eGFP to bio-DQ was optimized to provide the best signal 

readout (Figure 2). The optimal ratio of bio-eGFP to bio-DQ was found to be 1:100 in order to give 

high colorimetric signal that is 200 µg bio-GFP to 30 µM bio-DQ. 30 µM is the optimum aptamer 

concentration needed to compete with the antigen with least hindrance due to excess DNA strands. 

Thus, a decrease in absorbance is witnessed as the amount of DNA increases due to the binding 

kinetics of both molecules (bio-DQ and bio-GFP) during the mixing process. 

Figure 2. Analysis of antigen-DNAzyme probe based assay. (A) pre-ABTS reaction;  

(B) post-ABTS reaction; (C) absorbance reading of DNAzyme probes. 200 µg of  

bio-eGFP was added for each tube with the variations of 30, 40 and 50 µM of bio-DQ 

added to tubes 1–3, respectively. Two hundred µL ABTS solution added for each reaction 

and readout was taken at 405 nm. Absorbance readouts were represented in bar chart after 

30 min ABTS reaction. 

   

3.4. Principle of the DNAzyme Probe Immunoassay 

In our probe-based immunoassay, the sensitivity is dependent on both the peroxidase activity of the 

bio-DQ as the signal generator and the affinity of the antigen-antibody physical interaction. For a 

direct assay, an antibody assay was carried out to show the high affinity binding of the antigen and 

wells coated with antibody. The absorbance value was used to determine successful capture of proteins 

by the antibodies. The assay was developed using a scFv that selectively binds the eGFP protein. 

Negative controls using an anti-ubiquitin scFv and blocking agent controls were analyzed to determine 

the specificity of the probe to bind the antibody and generate a positive readout. The probe can be used 

in either a direct or competitive manner for the development of an immunoassay. 
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For the direct assay, the probe was able to bind specifically when the target antigen was present 

with a clear distinction to the non-specific protein and background (Figure 3). The readout was 

proportional to the amount of coated antibody. The specificity of the assay is seen when a different 

antibody (anti-ubiquitin) was coated to the well. The absorbance readout is similar to the background 

readout. To determine the reproducibility of the direct assay between the probes towards the scFv 

antibody (anti-eGFP), three different assays were carried out in which 20 µg scFv antibody (anti-eGFP 

and anti-ubiquitin) and blocking agent were coated on three separate wells in parallel. Based on the  

bar chart, the assay is reproducible as the antigen-DNAzyme probe strategy could be used for  

antigen-antibody detection. The current direct assay uses 20 μg of antibody for detection of the probe 

antigen. The detection limit of the direct assay can be correlated to two aspects, the amount of 

antibody coated and the amount of antigen present. If sufficient amount of antibody is present but the 

amount of target antigen is low, this will result in a low readout. The same is expected when high 

amounts of antigen are present but low amounts of antibodies are available. In addition, the limit of 

detection for the direct assay would be dependent on the antibody affinities. 

Figure 3. Absorbance analysis of the probe based direct assay for antibody antigen 

reaction. Reaction time was 30 min with ABTS (1 µg/mL) and H2O2 (2.2 mM). Bar chart 

expressed as the average of three independent measurements (n = 3). 

 

The probe was also applied in a competitive assay where free antigen and the probe antigen 

compete for the coated antibody. From the experimental data we could see that the limit of detection 

(LOD) of the probe is around 31.3 µg of free eGFP (Figure 4). In the competitive setup, the signal 

readout is inversely proportional to the amount of free antigen available. We could see the reduction of 

signal when 62.5 µg of free eGFP was introduced to compete with the probe for binding while 125 µg 

of free eGFP was sufficient to reach a plateau. At concentrations lower than 15.7 µg of eGFP, the 

signal was close to that of no free eGFP concentration. This is due to the maximum antibody binding 

sites are occupied by the circulating probe. Therefore with the current set up, a maximum amount of 

competing antigen that is detectable is 62.5 µg. From the graph we can see a linear relationship  

(R
2
 = 0.9757) between the absorbance readout and concentration of free antigen before it reaches the 

detection limit. The readout will plateau upon reaching the detection limit hence disrupting the linear 

correlation of absorbance with the antigen concentration. However, the limit of detection can be 
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improved by introducing less competing probe into the assay. In this manner the dynamic range for 

signal reduction can be increased for competition assays. 

Figure 4. Competitive assay between the probe and the free eGFP against the antibody 

(scFv format). Linear relationship between the absorbance readout and the concentration of 

free eGFP (n = 3) where each data point represents an average of three absorbance readouts 

(each error bar indicates the standard errors). 

 

4. Conclusions 

A simple and rapid direct immuno-based assay was developed using a one pot synthesis of the 

daunomycin aptamer with the DNAzyme as a reporter system. The use of the biotin and streptavidin 

interaction allows the antigen-DNAzyme probe system to be applied in a modular form to act as a 

universal reporter system for immunoassays. The pre-assay generation of the probe eliminates the 

multiple steps needed in typical ELISA system to introduce secondary antibodies. The design of the 

probe allows flexibility for both direct and competitive immunoassay applications. The ability of the 

daunomycin aptamer to form quadruplex structures in a range of conditions even in absence of K
+
 ions 

is a major advantage for the use in antibody-antigen assays as antibodies and protein-protein 

interactions may require other buffers. Thus DQ is our choice as it is found to be just slightly less 

active than HQ. We found that the probe-based system performs better in a direct assay format in 

comparison to a competitive assay. Nevertheless, we expect that with smaller molecules (haptens) the 

competitive assay can be more sensitive. In conclusion, the antigen-DNAzyme probe system allows a 

rapid one-step incubation system as an alternative to conventional immunoassay systems. 
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