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i and Ĉk is the kth cluster in XPt
i . 73

Table 3.2 Description of the artificial and real-life data sets. 85

Table 3.3 Parameter settings used in MOPSOSA algorithm, where m is
the number of objects in a dataset. 88

Table 3.4 F-measure value (FM) and the number of clusters for different
datasets obtained by MOPSOSA compared with those acquired
by GenClustMOO, GenClustPESA2, MOCK, and VGAPS
algorithms. 91

Table 3.5 Averages and standard deviations for the F-measure values on
the different datasets obtained from the MOPSOSA,
GenClustMOO, GenClustPESA2, MOCK, VGAPS, K-means,
and SL algorithms. 97

Table 4.1 The generated W , R1, and R2, with probabilities w = 0.95,
r1 = 0.85, r2 = 0.75, respectively, and Rand is a random
number between 0 and 1 102

Table 4.2 Parameter used in the MOPSOSA algorithm to obtain the best
values for w, r1, and r2. 104

viii



Table 4.3 Proper number of clusters, BVF, and appropriate range of w
obtained from MOPSOSA for 19 datasets, where r1 = 0.90 and
r2 = 0.90. 111

Table 4.4 Proper number of clusters, BVF, and appropriate range of r1
obtained from MOPSOSA of 19 datasets, where w = 0.95 and
r2 = 0.90. 116

Table 4.5 Proper number of clusters, BVF, and appropriate range of r2
obtained from MOPSOSA of 19 datasets, where w = 0.95 and
r1 = 0.9. 121

Table 5.1 Profits of 15 items and 4 objective functions. The profit of ith

item and tth objective function is denoted by pit , i = 1, . . . ,15,
t = 1,2,3,4. 135

Table 5.2 Weight of 15 items and 4 constraints. The weight of ith item
and jth constraint is denoted by wi j, i = 1, . . . ,15, j = 1,2,3,4. 135

Table 5.3 The number of iterations (NI) spent to construct the Pareto
solutions obtained from several constant temperature T =10,
20, 50, 100, 1,000. 136

Table 5.4 The number of iterations (NI) spent to construct the Pareto
solutions obtained from exponential cooling schedule with
several α = 0.90,0.95, and 0.99, number of transitions 10, 100,
1,000 and 10,000, and T0 = 1,000. 136

Table 5.5 The number of iterations (NI) spent to construct the Pareto
solutions obtained from linear cooling schedule and several
initial temperatures T0 =10, 50, 100, 1,000 and 10,000, final
temperature TN = 1, and N = 100,000. 137

Table 5.6 The number of iterations (NI) spent to construct the Pareto
solutions obtained from logarithmic cooling schedule and
several initial temperatures T0 =50, 100, 1,000 and 10,000. 137

Table 5.7 Profits of the 15 items and 3 objective functions. pit is profit of
the ith item and tth objective function, i = 1, . . . ,15, t = 1,2,3. 139

Table 5.8 Weight of the 15 items and 3 constraints. wi j are the weight of
the ith item and jth constraint, i = 1, . . . ,15, j = 1,2,3. 139

Table 5.9 The eight solutions for the MOMDKP problem. "0" means that
the item is not selected, "1" means that the item is selected, and
ft = ∑15

i=1 pit is the objective function t, t = 1,2,3. 142

Table 5.10 Parameters of the multi-objective inventory system 148

Table 5.11 Probability distribution of demand size D. 149

ix



Table 5.12 The policies (s,S) of the inventory system and the values of the
objective functions of the 15 solutions that belong to the pruned
Pareto solutions set 151

x



LIST OF FIGURES

Page

Figure 1.1 Flowchart of the research process 9

Figure 2.1 Dominance relation and PF of the minimization system of two
objective functions f1 and f2. 17

Figure 2.1(a) Dominance relationship between solution A and other solutions. 17

Figure 2.1(b) White circles represent non-dominant solutions of the Pareto
front set. 17

Figure 2.2 An example for clustering 9 objects into 3 clusters. 19

Figure 2.3 Intra and inter-cluster distance. 20

Figure 2.4 Example of symmetrical point 22

Figure 2.5 The lune of two points x and y. 23

Figure 2.6 Set of points and their RNG. 24

Figure 2.6(a) Points of the first set. 24

Figure 2.6(b) RNG of the first set. 24

Figure 2.6(c) Points of the second set. 24

Figure 2.6(d) RNG of the second set. 24

Figure 2.6(e) Points of the third set. 24

Figure 2.6(f) RNG of the third set. 24

Figure 2.7 Flowchart of K-means algorithm. 27

Figure 2.8 Example of a dataset with 15 points grouped into three clusters
using the K-means algorithm. Here, the symbol • refer to the
points before clustering, × is the cluster centers, • is the point
in cluster C1, H is the point in cluster C2, and � is the point in
cluster C3. 31

Figure 2.8(a) The points of the dataset. 31

Figure 2.8(b) Initial cluster center. 31

Figure 2.8(c) Clustered dataset in the first iteration. 31

xi



Figure 2.8(d) Updated cluster centers in the first iteration. 31

Figure 2.8(e) Clustered dataset in the second iteration. 31

Figure 2.8(f) Updated cluster centers in the second iteration. 31

Figure 2.9 Types of linkage method. 33

Figure 2.9(a) Single linkage method. 33

Figure 2.9(b) Complete linkage method. 33

Figure 2.9(c) Avearge linkage method. 33

Figure 2.10 Dendrogram of single method. 34

Figure 2.11 Dendrogram of complete method. 34

Figure 2.12 Dendrogram of average method. 35

Figure 2.13 Influences on the motion of particle i at iteration t +1 38

Figure 2.14 Hill-climbing moves to escape from local solutions 48

Figure 2.15 Flowchart of SA algorithm (Chibante, 2010) 50

Figure 2.16 Flowchart of MOSA algorithm. 57

Figure 3.1 Diagram of mechanism of MOPSOSA algorithm. 63

Figure 3.2 An example to encoding a clustering solution into particle
position X t

i . 64

Figure 3.3 Flowchart for the proposed MOPSOSA algorithm. 65

Figure 3.4 Flowchart for initializing particles swarm in MOPSOSA
algorithm. 68

Figure 3.5 Example of renumbering an clustering solution XPt
i . 74

Figure 3.5(a) Graph for clustering X t
i . 74

Figure 3.5(b) Graph for clustering XPt
i before applying re-numbering process. 74

Figure 3.5(c) Matching clusters of two X t
i and XPt

i . 74

Figure 3.5(d) Graph for clustering XPt
i after applying re-numbering process. 74

Figure 3.6 Example of generating new velocity and position of particle i at
iteration t. 76

Figure 3.6(a) X t
i 76

xii



Figure 3.6(b) XPt
i 76

Figure 3.6(c) XGt
i 76

Figure 3.6(d) X t+1
i 76

Figure 3.6(e) Calculations to generate new velocity and position. 76

Figure 3.7 An example of an empty cluster in a solution X t
i and the

implementation of the position validation process. 77

Figure 3.8 Flowchart of MOSA technique applied in MOPSOSA. 79

Figure 3.9 Graphs of 14 artificial datasets. 86

Figure 3.9(a) Sph_5_2. 86

Figure 3.9(b) Sph_4_3. 86

Figure 3.9(c) Sph_6_2. 86

Figure 3.9(d) Sph_10_2. 86

Figure 3.9(e) Sph_9_2. 86

Figure 3.9(f) Pat1. 86

Figure 3.9(g) Pat2. 86

Figure 3.9(h) Long1. 86

Figure 3.9(i) Sizes5. 86

Figure 3.9(j) Spiral. 86

Figure 3.9(k) Square1. 86

Figure 3.9(l) Square4. 86

Figure 3.9(m) Twenty. 86

Figure 3.9(n) Fourty. 86

Figure 3.10 Histogram of F-measure value of final clustering solution for 19
datasets obtained by MOPSOSA, GenClustMOO,
GenClustPESA2, MOCK, VGAPS, K-means, and SL. 90

Figure 3.11 Graphs for artificial datasets after applying the MOPSOSA
algorithm. 98

Figure 3.11(a) Sph_5_2. 98

xiii



Figure 3.11(b) Sph_4_3. 98

Figure 3.11(c) Sph_6_2. 98

Figure 3.11(d) Sph_10_2. 98

Figure 3.11(e) Sph_9_2. 98

Figure 3.11(f) Pat1. 98

Figure 3.11(g) Pat2. 98

Figure 3.11(h) Long1. 98

Figure 3.11(i) Sizes5. 98

Figure 3.11(j) Spiral. 98

Figure 3.11(k) Square1. 98

Figure 3.11(l) Square4. 98

Figure 3.11(m) Twenty. 98

Figure 3.11(n) Fourty. 98

Figure 4.1 Effect of w on the F-measure criterion of 14 artificial datasets,
where r1 = 0.90, r2 = 0.90, and the 100 values for w, are
0.01,0.02, . . . ,0.99,1. 107

Figure 4.1(a) Sph_5_2. 107

Figure 4.1(b) Sph_4_3. 107

Figure 4.1(c) Sph_6_2. 107

Figure 4.1(d) Sph_10_2. 107

Figure 4.1(e) Sph_9_2. 107

Figure 4.1(f) Pat1. 107

Figure 4.1(g) Pat2. 107

Figure 4.1(h) Long1. 107

Figure 4.1(i) Sizes5. 107

Figure 4.1(j) Spiral. 107

Figure 4.1(k) Square1. 107

xiv



Figure 4.1(l) Square4. 107

Figure 4.1(m) Twenty. 107

Figure 4.1(n) Fourty. 107

Figure 4.2 Effect of w on the F-measure criterion of 5 real life datasets,
where r1 = 0.90, r2 = 0.90, and the 100 values for w, are
0.01,0.02, . . . ,0.99,1. 108

Figure 4.2(a) Iris. 108

Figure 4.2(b) Cancer. 108

Figure 4.2(c) Newthyroid. 108

Figure 4.2(d) Liver Disorder. 108

Figure 4.2(e) Glass. 108

Figure 4.3 Best w intervals for 14 artificial datasets. The red region
represents the best w interval that achieves BVF. 109

Figure 4.4 Best w interval for the 5 real-life datasets. The red region
represents the best w interval that achieves BVF. 110

Figure 4.5 Effect of r1 on the F-measure criterion of 14 artificial datasets,
where w = 0.95, r2 = 0.90, and the 100 values for r1, are
0.01,0.02, . . . ,0.99,1. 112

Figure 4.5(a) Sph_5_2. 112

Figure 4.5(b) Sph_4_3. 112

Figure 4.5(c) Sph_6_2. 112

Figure 4.5(d) Sph_10_2. 112

Figure 4.5(e) Sph_9_2. 112

Figure 4.5(f) Pat1. 112

Figure 4.5(g) Pat2. 112

Figure 4.5(h) Long1. 112

Figure 4.5(i) Sizes5. 112

Figure 4.5(j) Spiral. 112

Figure 4.5(k) Square1. 112

xv



Figure 4.5(l) Square4. 112

Figure 4.5(m) Twenty. 112

Figure 4.5(n) Fourty. 112

Figure 4.6 Effect of r1 on the F-measure criterion of 5 real life datasets,
where w = 0.95, r2 = 0.90, and the 100 values for r1, are
0.01,0.02, . . . ,0.99,1. 113

Figure 4.6(a) Iris. 113

Figure 4.6(b) Cancer. 113

Figure 4.6(c) Newthyroid. 113

Figure 4.6(d) Liver Disorder. 113

Figure 4.6(e) Glass. 113

Figure 4.7 Best r1 intervals for 14 artificial datasets. The red region
represents the best r1 interval that achieves BVF. 114

Figure 4.8 Best r1 interval for 5 real-life datasets. The red region
represents the best r1 interval that achieves BVF. 115

Figure 4.9 Effect of r2 on the F-measure criterion of 14 artificial datasets,
where w = 0.95, r1 = 0.9, and the 100 values for r2, are
0.01,0.02, . . . ,0.99,1. 117

Figure 4.9(a) Sph_5_2. 117

Figure 4.9(b) Sph_4_3. 117

Figure 4.9(c) Sph_6_2. 117

Figure 4.9(d) Sph_10_2. 117

Figure 4.9(e) Sph_9_2. 117

Figure 4.9(f) Pat1. 117

Figure 4.9(g) Pat2. 117

Figure 4.9(h) Long1. 117

Figure 4.9(i) Sizes5. 117

Figure 4.9(j) Spiral. 117

Figure 4.9(k) Square1. 117

xvi



Figure 4.9(l) Square4. 117

Figure 4.9(m) Twenty. 117

Figure 4.9(n) Fourty. 117

Figure 4.10 Effect of r2 on the F-measure criterion of 5 real life datasets,
where w = 0.95, r1 = 0.9, and the 100 values for r2, are
0.01,0.02, . . . ,0.99,1. 118

Figure 4.10(a) Iris. 118

Figure 4.10(b) Cancer. 118

Figure 4.10(c) Newthyroid. 118

Figure 4.10(d) Liver Disorder. 118

Figure 4.10(e) Glass. 118

Figure 4.11 Best r2 interval for 14 artificial datasets. The red region
represents the best r2 interval that achieves BVF. 119

Figure 4.12 Best r2 interval for 5 real life datasets. The red region
represents the best r2 interval that achieves BVF. 120

Figure 5.1 Example of the proposed procedure. 126

Figure 5.1(a) Two objective functions f1 and f2 for 250 solutions in the
feasible solutions set. Θ. 126

Figure 5.1(b) Pareto set PS obtained using the MOSA algorithm. 126

Figure 5.1(c) Clustering PS into five clusters using the MOPSOSA algorithm,
where ⊕ is the cluster centers. 126

Figure 5.1(d) Pruned Pareto set that contains the nearest non-dominant
solutions to the cluster centers. 126

Figure 5.2 Example for 3 knapsacks and 15 items. 141

Figure 5.2(a) Non-dominant solutions by the MOSA algorithm. 141

Figure 5.2(b) Clustering non-dominant solutions by the MOPSOSA
algorithm into 8 clusters. 141

Figure 5.2(c) The pruned Pareto solutions set. 141

Figure 5.3 The inventory policy (s,S) 147

Figure 5.4 Result of a multi-objective inventory system. 150

xvii



Figure 5.4(a) Non-dominant solutions by the MOSA algorithm. 150

Figure 5.4(b) Clustering non-dominant solutions by the MOPSOSA
algorithm into 15 clusters. 150

Figure 5.4(c) The pruned Pareto solutions set. 150

xviii



LIST OF ABBREVIATIONS

AMOSA Archived Multi-Objective Simulated Annealing

Conn-index Connectivity-Based Cluster Validity Index

CPSO or CPSOI Combinatorial Particle Swarm Optimization I

CPSOII Combinatorial Particle Swarm Optimization II

DB-index Davies Bouldin Cluster Validity Index

FM F-measure

GenClustMOO General Clustering Simulated Annealing Based on Multi-

Objective Optimization

GenClustPESA2 General Clustering Pareto Envelope-based Selection Algo-

rithm

KCPSO K-means with Combinatorial Particle Swarm Optimization

KP 0/1 Knapsack Problem

MDKP 0/1 Multi-Dimension Knapsack Problem

MOCK Multi-Objective Clustering with Automatic K Determination

MOKP 0/1 Multi-Objective Knapsack Problem

MOMDKP 0/1 Multi-Objective Multi-Dimension Knapsack Problem

MOO Multi-Objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization

MOPSOSA Multi-Objective Particle Swarm Optimization and Simulated

Annealing

MOSA Multi-Objective Simulated Annealing

PSA Pareto Simulated Annealing

PSO Particle Swarm Optimization

xix



RNG Relative Neighborhood Graph

SA Simulated Annealing

SACLUS Simulated Annealing Clustering

SAKM Simulated Annealing with K-means

SF Sharing Fitness

SL Single Linkage

Sym-index Symmetry-Based Cluster Validity Index

VGAPS Variable String Length Genetic Algorithm Based on Point

Symmetry Distance

xx



LIST OF SYMBOLS

P Dataset

pi The ith object in a dataset P

m The number on objects in a dataset

pi j The jth feature of ith object

C Clustering solution

Ci The ith cluster in the clustering solution C

SN Stirling number of the second kind

ci The center of cluster i

k The number of clusters

f Objective function, fitness function, or validity index function

Θ The feasible solutions set or search space

F Vector of objective functions or validity indices

fi The ith validity index in F

S The number of objective functions or validity index functions

gi The ith inequality constraint in an optimization problem

hi The ith equation constraint in an optimization problem

ninq The number of inequality constraint

neq The number of equation constraint

ξx The random variable depend on a solution x

ξ i
x The ith sample of a random variable ξx

E(x) Estimate of x

f̄ Estimate an objective function f

PS The Pareto optimal set

xxi



PF The Pareto front set

Si Measure of intra-cluster distance of cluster i

d(a,b) Euclidean distance between a and b

ni The number of objects in cluster i

ci The center of cluster i

pi
j The jth object in cluster i

DB Davies-Boulding index value

Ri Ratio of intra-cluster distance and inter-cluster distance

dps Point symmetric distance

p∗ The symmetry point of p

knear The number of nearest neighbor points to p∗

dsym(p,c) The symmetric measure of p with respect to cluster c

p∗i, j The jth point nearest neighbor of the point p∗i

Sym Symmetric index value

lun(x,y) The set contains points located within the region of intersection

of two circles centered at x and y with radius d(x,y)

dshort(x,y) Short distance between x and y

npath The number of all paths between two points

edi
j The jth edge in the ith path

nedi The number of edges the ith path

w(ed) The edge weight of the edge ed

medi The mediod of ith cluster

Conn Connectivity index value

SLdis The distance between the two closest points of two clusters

xxii



CLdis The distance between the two farthest points of two clusters

ALdis The average of the distance between all pairs of points of two

clusters

DM The dissimilarity matrix

n The number of particles

xpt
i The best previous position of the ith particle during iteration 1

to t

xgt The best position among all the particles in the swarm during

iteration 1 to t

xt
i The position of the ith particle at iteration t

vt
i The velocity for particle i at iteration t

w The initial weight

rt
1,r

t
2 Random number in [0,1]

vmin Minimum velocity

vmax Maximum velocity

kt
i The best number of clusters for particle i at iteration t

kmin Minimum number of cluster

kmax Maximum number of cluster

kt
i,pbest The best number of cluster of particle i during iteration 1 to t

kt
gbest The best number of cluster of all particles during iteration 1 to t

N(x) The set of neighbors of x

R(x, x́) The probability of selecting x́ from N(x)

T0 The initial temperature

Tmin The final temperature

xxiii



g(Tt , t) Decrement rate

Tt Temperature at iteration t

Lt Increasing sequence of positive integer

Vt(x) The number of times that algorithm visited solution x in first t

iterations

x∗t The estimate optimal solution after t iterations

iter The number of iterations

∆doma,b The acceptance probability of a new solution b where a is the

current solution

HL The maximum size of the archive

SL The maximum size to which the archive may be filled before

clustering is used to reduce its size to HL

k̂ The number of subcluster

ai The ith solution in the archive

c̄i
j The center of the jth sub-cluster of the ith cluster

X t
i The vector with m components that represent the position of the

particle i at iteration t

X t
i j The position component that represent the cluster number of the

jth object in the ith particle

V t
i The vector with m components that represent the velocity of the

particle i at iteration t

V t
i j The velocity component that represent the motion of the jth ob-

ject in the ith particle

xxiv



XPt
i The vector with m components that represent the best previous

position of the particle i at iteration t

XPt
i j The jth component of the XPt

i at iteration t

XGt
i The vector with m components that represent the leader position

of the particle i at iteration t

XGt
i j The jth component of the XGt

i at iteration t

Xnewi The candidate clustering solution of the particle i

V newi The candidate velocity of the particle i

XMOSA
i The clustering solution of the particle i obtained from MOSA

V MOSA
i The velocity of the particle i obtained from MOSA

SR The size of the repository

CRt The set of the current solutions in the repository at iteration t

NDXPt The set of no-dominated solution from all XPt
i , i = 1, . . . ,n

CRNDXPt The set of no-dominated solution from two sets CRt and NDXPt

Xi The ith solution in CRNDXPt

f shar (Xi) The fitness sharing for Xi

nci The niche count for Xi

sharing j
i The measure of similarity between Xi and X j

σshare The distance to keep solution a way from each other

Sim(C j,Ĉk) The similarity function between two cluster C j and Ĉk, which

known as Jaccard coefficient

W,R1 and R2 The vectors of m component with value 0 or 1

w,r1 and r2 The probability to generate W,R1 and R2 respectively
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MS(T,C) The Minkowski score between actual solution T and selected

solution C

P(T,C) The precision, which is the ratio of the points in cluster C that

exist in class T

R(T,C) The recall, which is the ratio of the points in class T that exist

in cluster T

F(T,C) F-measure that provides the value of similarity between T and

C

kT and kC The number of clusters in T and C respectively

BV F The best values of F-measure

MV F The maximum value of F-measure

OC Ordering cost

ST Setup cost

KI The number of items that are ordered

lt The lead time required to reach the order from the supply to the

company

(s,S) The policy to re-inventory level to amount S if the level drops

below the number s

L Inventory level

L(t) Inventory level at time t

D The size of items that demand

β The cost one item

pro j Probability to demand j items

MS The maximum size of items that allowed to demand
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HC Holding cost

SC Shortage cost

AHC The average holding cost per month

ASC The average shortage cost per month

AOC The average ordering cost per month

L̄+ The average number of items exist in the inventory per month

L+(t) The number of items exist in the inventory at time t

L̄− The average number of items in the backlog per month

L−(t) The number of items in the backlog at time t

M The number of months

n The number of items

pi The profit of item i

wi The weight of item i

c The capacity of knapsack

N The set of items

ω The binary solution

ωi The binary value of item i

d The number of constraints in NDKP

wi j The weight of item i in constraint j

pi j The profit of item i in objective function j

c j The capacity of constraint j

NNDS The number of non-dominant solution

NI The number of iteration to obtain all non-dominant solution
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ALGORITMA KELOMPOK MULTI OBJEKTIF AUTOMATIK

MENGGUNAKAN PENGOPTIMUMAN PARTIKEL SEKAWAN HIBRID

DENGAN SIMULASI PENYEPUHLINDAPAN

ABSTRAK

Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set

data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelom-

pok yang bermakna. Pengelompokan digunakan sebagai teknik penyelesaian di dalam

pelbagai bidang dengan membahagikan dan mengstruktur semula data yang besar dan

kompleks supaya menjadi lebih bererti justru mengubahnya kepada maklumat yang

berguna. Di dalam tesis ini, satu teknik automatik baru berdasarkan pengoptimum-

an kawanan zarah pelbagai objektif dan penyepuhlindapan bersimulasi (MOPSOSA)

diperkenalkan. Algoritma yang dicadangkan mampu menjalankan pengelompokan

automatik yang tepat untuk pembahagian dataset ke dalam bilangan kelompok yang

sesuai. MOPSOSA menggabungkan ciri-ciri kaedah K-means, pengoptimuman ka-

wanan zarah pelbagai objektif, penyepuhlindapan bersimulasi pelbagai objektif, dan

teknik berkongsi kecergasan. Tiga indeks kesahihan kelompok telah dioptimumkan

serentak untuk mewujudkan bilangan kelompak yang sesuai dan pengelompokan yang

tepat untuk sesuatu set data. Indeks kesahihan kelompok pertama adalah berdasark-

an jarak Euclid, indeks kesahihan kelompok kedua adalah berdasarkan kepada jarak

titik simetri, dan indeks kesahihan kelompok terakhir adalah berdasarkan jarak pen-

dek. Tiga algoritma pengelompokan objektif tunggal dan tiga algoritma pengelom-

pokan automatik pelbagai objektif telah dibandingkan dengan algoritma MOPSOSA

dalam menyelesaikan masalah pengelompokan dengan menentukan bilangan kelom-

xxviii



pok yang sebenar dan pengelompokan optimum. Ujikaji pengiraan telah dijalankan

untuk mengkaji empat belas set data buatan dan lima set data sebenar. Hasil ujikaji pe-

ngiraan menunjukkan bahawa algoritma MOPSOSA yang dicadangkan memperolehi

ketepatan pengelompokan yang lebih baik berbanding dengan algoritma lain. Selain

itu, kecekapan algoritma MOPSOSA dikaji berdasarkan perubahan dalam kebarang-

kalain parameter halaju zarah. Sembilan belas set data buatan dan sebenar digunakan

untuk menggambarkan kesan parameter halaju ke atas kecekapan algoritma MOPSO-

SA. Keputusan menunjukkan bahawa kecekapan algoritma MOPSOSA boleh diting-

katkan dengan meninggikan nilai parameter kebarangkalian halaju. Keadaan ini benar

hingga ke suatu nilai tertentu, yang selepas itu kesan positif meninggikan parameter

kebarangkalian halaju akan sebaliknya menjadi kesan negatif. Akibatnya, nilai sesu-

ai parameter kebarangkalian halaju dapat ditentukan. Tambahan pula, satu prosedur

untuk menyelesaikan masalah pengoptimuman pelbagai objektif dengan menjumlahk-

an kedua-dua algoritma tersebut, iaitu penyepuhlindapan bersimulasi pelbagai objektif

(MOSA) dan MOPSOSA dicadangkan. Prosedur ini digunakan untuk menyelesaikan

dua masalah pengoptimuman pelbagai objektif yang praktikal, iaitu masalah sistem

inventori pelbagai objektif dan beg galas 0/1 pelbagai objektif bermultidimensi. Su-

atu set penyelesaian yang kecil diperolehi dengan menggunakan MOSA+MOPSOSA

dan sebaliknya bukan sebilangan besar penyelesaian dalam set Pareto yang dengan itu,

membolehkan pembuat keputusan memilih penyelesaian yang betul dengan mudah.

Untuk meningkatkan prosedur ini, empat jadual penyejukan yang berbeza, iaitu, te-

tap, eksponen, linear dan logaritma dibincangkan dan dibandingkan antara satu sama

lain dalam algoritma MOSA. Perbandingan keputusan menunjukkan bahawa jadual

penyejukan tetap adalah lebih baik daripada yang lain. Oleh itu, jadual penyejukan ini
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digunakan dalam prosedur yang dicadangkan.
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AUTOMATIC MULTI-OBJECTIVE CLUSTERING ALGORITHM USING

HYBRID PARTICLE SWARM OPTIMIZATION WITH SIMULATED

ANNEALING

ABSTRACT

Clustering is a data mining technique. In the field of unsupervised datasets,

the task of clustering is by grouping the dataset into meaningful clusters. Clustering is

used as a data solution technique in various fields to divide and restructure the large and

complex data to become more significant thus transform them into useful information.

In this thesis, a new automatic clustering algorithm based on multi-objective particle

swarm optimization and simulated annealing (MOPSOSA) was introduced. The pro-

posed algorithm is capable of automatic clustering, which is appropriate for partition-

ing datasets into a suitable number of clusters. MOPSOSA combines the features of K-

means method, multi-objective particle swarm optimization, multi-objective simulated

annealing, and sharing fitness technique. Three cluster validity indices were optimized

simultaneously to establish the suitable number of clusters and the appropriate cluster-

ing for a dataset. The first cluster validity index is based on Euclidean distance, the

second cluster validity index is based on point symmetry distance, and the last cluster

validity index is based on short distance. Three single-objective clustering algorithms

and three multi-objective automatic clustering algorithms have been compared with the

MOPSOSA algorithm in solving clustering problems by determining the actual num-

ber of clusters and optimal clustering. Computational experiments were conducted

to study fourteen artificial and five real-life datasets. Computational experimental re-

sult shows that the proposed MOPSOSA algorithm obtained better clustering accuracy
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compared with the other algorithms. Moreover, the efficiency of the MOPSOSA al-

gorithm is studied on the basis of the change in the probability velocity parameters of

particles. Nineteen artificial and real-life datasets are used to illustrate the effect of

velocity parameters on the efficiency of the MOPSOSA algorithm. The results show

that the efficiency of the MOPSOSA algorithm may be enhanced by raising the prob-

ability velocity parameters values. This is true up to a specific value, after which, the

positive effect of increasing the probability velocity parameters becomes a negative ef-

fect, instead. Consequently, the suitable values of probability velocity parameters have

been identified. Furthermore, a procedure for solving multi-objective optimization

problems by aggregating the two algorithms, that is the multi-objective simulated an-

nealing (MOSA) and MOPSOSA were proposed. This procedure is used to solve two

practical multi-objective optimization problems, namely, the multi-objective inventory

system and the 0/1 multi-objective multi-dimension knapsack problems. A small set

of solutions is obtained using MOSA+MOPSOSA instead of a large number of solu-

tions in the Pareto set, thereby allowing a decision maker to select a proper solution

easily. To improve this procedure, four different cooling schedules, namely, constant,

exponential, linear, and logarithmic, are discussed and compared with each other in

the MOSA algorithm. Comparison results show that the constant cooling schedule is

better than the others. Thus, this cooling schedule is used in the proposed procedure.
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CHAPTER 1

INTRODUCTION

The development of science and their applications in various fields have contributed to

an increase in the amount and diversity of data. The data that can be collected from

various fields have no benefit unless sound analysis is conducted to obtain valuable

information. Thus, such data have to be classified, summarized, and understood. Data

mining transforms a large collection of data into knowledge (Han et al., 2011). In this

thesis, the focus is on clustering, one of the important techniques in data mining.

1.1 Overview on Clustering

Clustering (Kaufman and Rousseeuw, 2009) is a data mining technique in the field

of unsupervised datasets; this technique is used to explore and understand large col-

lections of data. In clustering unsupervised datasets, the structural characteristics of

data are unknown and unlabeled. Given a dataset P of m objects, the task in clustering

process is grouping the dataset into k meaningful groups called clusters.

The clustering has widespread applications in many fields such as the following:

• Gene expression data: Clustering is an effective technique to discover clusters

of similar objects in gene expression data so that biologists can identify poten-

tially meaningful connections among those objects (Eisen et al., 1998; Hughes

et al., 2000; Yeung et al., 2003).

• Marketing: In market research, clustering has been used to divide the mar-
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ket into homogeneous clusters of customers with similar behavior, and to use

the resulting information in developing targeted marketing (Christopher, 1969;

Saunders, 1980; Kuo et al., 2002).

• Image segmentation: Image segmentation is the task of subdividing an image

into different regions of certain properties and extracting the desired parts. Clus-

tering is used to detect borders of regions in an image (Coleman and Andrews,

1979; Cai et al., 2007; Wang and Pan, 2014).

1.2 Concepts of Clustering

This section, presents certain concepts and notations that are frequently used in the

literature on clustering.

• Object (pattern, sample, data point, observation, item, or individual): Ob-

ject p is a single datum in dataset P= {p1, p2, . . . , pm}, where m is the number of

objects in the dataset. The ith object pi = {pi1, pi2, . . . , pid} consists of a vector

of d−dimension (Gan et al., 2007).

• Feature (attribute or variable): Feature pi j is the jth individual scalar compo-

nent of the object i (Gan et al., 2007).

• Cluster (or group): A cluster is a collection of data objects with features that

are similar to one another, and dissimilar features to objects in other clusters.

(Jain and Dubes, 1988).

• Validity index (or cluster validity): Validity index is a measure that is used to
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evaluate the results of clustering (Gan et al., 2007).

• Distance and similarity measure: Distance and similarity are used to quantita-

tively describe the similarity or dissimilarity between two objects, objects with

clusters, or two clusters (Jain and Dubes, 1988).

1.3 Problem Statement

The clustering of dataset that contains objects is the distribution of these objects into

proper number of clusters that contain objects having the same features.

1.3.1 Clustering Problem

The clustering problem can be defined as follows (Masoud et al., 2013): Consider a

dataset P = {p1, p2, . . . , pm} with m objects. The clustering of dataset P is the distri-

bution of objects that exist in P into k clusters C = {C1,C2, . . . ,Ck}, where C is called

a clustering solution, and Ci is the ith cluster in C, such that the following properties

are satisfied:

•
k∪

i=1

Ci = P, (1.1)

• Ci
∩

C j = ϕ , i ̸= j, i = 1, . . . ,k, j = 1, . . . ,k, (1.2)

• Ci ̸= ϕ , i = 1, . . . ,k. (1.3)

Stirling numbers of the second kind SN(m,k) (Pak, 2005) are used to calculate the

number of possible ways to divide a dataset of m objects into k non-empty clusters

(number of feasible solutions), where SN(m,k)= 1
k! ∑k

i=1(−1)k−i(k
i

)
(i)m. For example,
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let the number of objects m = 150, and the number of clusters k = 3, then there are

more than 6× 1070 different solutions. Although the cluster numbers of the previous

example are known, the number of solutions is large. Thus, the clustering problem can

be structured as a single or multi-objective optimization problem.

1.3.2 Single-Objective Function for the Clustering Problem

The clustering optimization problem can be formulated as the following single-objective

function:

minimize
C∈Θ

f (C)

subject to C satisfies the constraints (1.1, 1.2, and 1.3)

(1.4)

where f is the validity index function, Θ is the feasible solutions set that contains all

possible clustering solutions for the dataset P of m objects into k clusters and C =

{C1,C2, . . . ,Ck} is a vector of k clusters, k = 2,3, . . . ,m− 1. The optimal solution is

given by; C∗ ∈Θ such that f (C∗) = min{ f (C) |C ∈Θ}.

1.3.3 Multi-Objective Function for Clustering Problem

The single evaluation function is often ineligible to determine the appropriate clusters

for a dataset; thus, it provides an inferior solution (Suresh et al., 2009). Accordingly,

the clustering problem is structured as a multi-objective optimization problem where

different validity indices can be applied and evaluated simultaneously.

The multi-objective clustering problem for S different validity indices is defined as
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follows:

minimize
C∈Θ

F(C) = [ f1(C), f2(C), . . . , fS (C)]

subject to C satisfied the constraints (1.1, 1.2, and 1.3)

(1.5)

where F is a vector of S validity indices, and fi is the ith validity index in F . There

may be no solution that minimize all the fi(C) validity indices. Therefore, the aim

is to construct the Pareto optimal set. The Pareto set contains all solutions in which

cannot find any solution in the search space dominate them. This solution is called

non-dominant solution. Further information on the Pareto optimal set, is provided in

Section 2.2.2.

1.4 Research Motivation and Research Questions

The expansion of datasets has led to larger and more complex data with no structure,

significance, and substance. It is difficult to understand data with such situation. Clus-

tering is used as a data solution technique in various fields to divide and restructure

the data to become more significative and to transform them into useful information.

Currently, clustering is a difficult problem. This is due to the appropriate number of

clusters is unknown, the large number of potential solutions, and the dataset being un-

supervised. To solve this problem, the number of clusters that fits a dataset must be

determined, and the objects for these clusters must be assigned appropriately. There-

fore, dealing with various shapes and sizes of datasets without providing the proper

clustering or knowing the cluster number is a challenge.

The main motivation for this work is to improve the effectiveness of clustering a dataset

with different sizes, shapes, dimensions, overlapping, convex and non-convex datasets,
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as well as unknown numbers of clusters. Clustering the dataset, can provide insights

into these datasets and an improved understanding of their characteristics.

The present study focuses the following main questions:

1. How to conduct proper clustering with high accuracy for dataset with various

shapes, sizes, and dimensions as well as for overlapping dataset?

2. How to detect the suitable number of clusters for any dataset?

3. How to solve the clustering problem in fast convergence and prevent stagnation

in local solutions?

4. How to help decision makers in choosing a suitable solution from among a large

number of overlapping solutions in the Pareto set?

1.5 Research Objectives

Several automatic clustering algorithms that have been proposed in previous studies

can be used to solve the clustering problems and are highly important in many ap-

plications. Although the clustering of a dataset is the main objective of the present

study, it is insufficient. Achieving the target to detect the appropriate number of clus-

ters and proper partition of various datasets in these clusters with high accuracy is the

most important target. The primary objectives of this study can be summarized by the

following:

• To develop a new automatic clustering algorithm based on multi-objective opti-
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mization, namely, hybrid multi-objective particle swarm optimization with sim-

ulated annealing (MOPSOSA).

• To determine the efficiency of the new automatic clustering algorithm based on

the changes in the velocity parameters of particle swarm optimization.

• To determine the efficiency of the multi-objective simulated annealing (MOSA)

based on the types of cooling schedules.

• To compare the performance of the proposed algorithm with the performances

of six clustering techniques.

• To minimize/optimize the number of solutions in the Pareto set by clustering the

Pareto set into clusters containing similar feature solutions.

1.6 Research Contributions

Simulated Annealing (SA) requires more computational time than does particle swarm

optimization (PSO) (Shieh et al., 2011). The former requires low variations of temper-

ature parameters to obtain a global solution (Mitra et al., 1985). Some of the particles

may become stagnant and remain unchanged, especially when the objective functions

of the best personal position and the best global position are similar (Shieh et al.,

2011). Thus, the particle cannot jump out, which in turn causes convergence toward

the local solution and the loss of its ability to search for the optimal Pareto set. This

phenomenon is a disadvantage compared with SA, which can jump away from a local

solution.
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The main approach that has led to the accuracy of the proposed MOPSOSA algorithm

in solving the clustering problem is merging the advantages of fast calculation and

convergence in PSO with the ability to evade local solutions in SA. This merge is

achieved by developing combinatorial PSO to a multi-objective particle swarm opti-

mization (MOPSO) to simultaneously address three different cluster validity indices.

Additionally, This study has successfully delivered the effect of the velocity parameters

that controls the movement of particles in the efficiency of the MOPSOSA algorithm.

In solving multi-objective optimization problems, choose a proper solution from among

a large number of Pareto solutions is a challenge for a decision maker. This study helps

decision makers in choosing a suitable solution from among a large number of overlap-

ping and complex Pareto solutions in two real life problems, namely, multi-objective

inventory system and 0/1 multi-objective multi-dimension knapsack problem.

1.7 Methodology

Several algorithms are proposed to optimize the clustering of a dataset based on single

or multi cluster validity indices. Some of these algorithms require the actual number

of clusters, and others estimate the suitable number of clusters. Many of the proposed

algorithms have been developed that used only one technique to solve the clustering

problem rather than merging more than one techniques. This thesis integrates four

techniques into the proposed algorithm to improve its performance and to obtain high

accuracy in solving the clustering problems. This approach involves a combination of

K-means, MOPSO, sharing fitness (SF), and MOSA techniques. The research frame-

work is illustrated in Figure 1.1.
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Figure 1.1: Flowchart of the research process

Initially, the K-means method is used to improve the selection of the initial n particle

position because of its significance in the overall performance of the search process.

The position that a particle signifies is a candidate solution to the optimization prob-

lem. Then the PSO technique uses the n initial particle position to search the Pareto

optimal solutions through the feasible solution set, where each particle seeks a better

position in the search space. A performance assessment of each particle is conducted

according to three different cluster validity indices simultaneously. The first validity

index is Davies-Bouldin index is called DB-index (Davies and Bouldin, 1979), which

is based on Euclidean distance; the second is symmetry-based cluster validity indices

called Sym-index (Bandyopadhyay and Saha, 2008), which is based on point symmetry

distance; and the last is a connectivity-based cluster validity index called Conn-index

(Saha and Bandyopadhyay, 2012), which is based on short distance. If no change oc-
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curs in a particle position or when the particle moves to a bad position, then MOSA

is used to improve the particle search. The proposed algorithm may generates a large

number of Pareto optimal solutions through a trade-off among the three different va-

lidity indices. Therefore, SF (Goldberg and Richardson, 1987) is used to maintain

diversity in the repository that contains Pareto optimal solutions.

The efficiency of the proposed algorithm under various parameters are studied by ap-

plying the algorithm on 19 datasets. This step is followed by studying the efficiency

of the proposed algorithm through comparison with the performance of six clustering

algorithms, three automatic multi-objective clustering techniques, and three single-

objective clustering techniques.

Then, propose a procedure to solve two multi-objective optimization problems, namely,

multi-objective inventory system and 0/1 multi-objective multi dimension knapsack

problem by construct a small set of the solution instead of a large number of solutions

in the Pareto set, which assist decision-maker in choosing an appropriate solution. The

proposed procedure is divided into two main stages; the first stage is to obtain a Pareto

set, and the second stage is to prune Pareto set.

In this thesis, Matlab is used as programming language in the numerical examples and

was run using a computer model HP Envy desktop (Intel Core i7-4790, CPU 3.60 GHz,

16.0 GB, 2 TB, 64-bit OS Windows 8.1).

1.8 Thesis Organization

The thesis consists of six chapters that are organized as follows:
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Chapter 1 provides an overview of clustering and some basic concepts, followed by

the definition of the single and multi-objective clustering problems. The motivation,

objectives, and contributions of the study are also summarized. Additionally, the re-

search methodology is described.

Chapter 2 presents the important concepts related to this study. This chapter is divided

into four main parts. In the first part, a single objective optimization problem, multi-

objective optimization problem, the concept of non-dominant solution, and Pareto set

are presented. The second part explains the encoding scheme of the clustering solution.

In the third part, a number of cluster validity indices are described. The fourth part

explains the ideas for certain clustering techniques, namely, K-means, single-linkage,

clustering by PSO, and clustering by SA.

Chapter 3 presents in details the proposed automatic clustering multi-objective al-

gorithm that used to solve the clustering problem. Then, 19 datasets are used in the

experiment to measure the clustering quality. This chapter also compares the proposed

algorithm with three automatic multi-objective clustering techniques and three single-

objective clustering techniques.

Chapter 4 discusses the efficiency of the new proposed algorithm based on the change

in the three important probability velocity parameters that control the movement of

particles.

Chapter 5 presents the procedure to solve two important multi-objective optimiza-

tion problems, namely, multi-objective inventory system and multi-objective multi-

dimension 0/1 knapsack problems. This procedure uses MOSA and the proposed al-
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gorithm. Additionally, the effects of several types of cooling schedules on the MOSA

algorithm are discussed and compared.

Chapter 6 summarizes the conclusions, and contributions of this study as well as

presents suggestions for further research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

To solve the clustering problem, we consider the detecting solutions, whose validity

indices show the highest accuracies. Furthermore, as the number of clusters may not

be known, finding the best solution to the clustering problem becomes more difficult.

These solutions are defined as the optimal solutions set, which consists of the non-

dominant solutions in the feasible solutions set (search space). These non-dominant

solutions are simultaneously obtained from the search space, based on the minimized

multi validity index functions. In general, the number of feasible solutions in the search

space for clustering problem is huge.

In this chapter, single-objective optimization problem, multi-objective optimization

problem, the concept of non-dominant solution, and the Pareto set are discussed. Var-

ious algorithms to solve clustering problems are discussed. These include K-means,

single-linkage, clustering by PSO, MOPSO, SA, and MOSA algorithms. Some of

these algorithms are based on multi validity indices, but most rely exclusively on one

validity index. Furthermore, for some of these algorithms, the number of clusters must

be known. The performances of all these algorithms are also affected depending on

the size and shape dataset.

The clustering technique seeks to distribute a dataset into clusters of similar features.

Evaluating the goodness of clustering solutions resulting from the clustering algo-

rithms is important. Therefore, in this chapter, we present three important validity
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indices with corresponding different distances, namely, DB-index, Sym-index, and

Conn-index.

2.2 Optimization Problem

At the heart of any decision, a deterministic or stochastic optimization problem can be

found. Furthermore, the optimization problem deals with maximizing or minimizing

single or multi-objective functions. Usually, the number of feasible solutions in the

search space is very large, and the aim is to detect one or more optimal solutions for

these objective functions.

2.2.1 Single-Objective Optimization Problem

The single-objective optimization problem revolves around choosing a solution from

a search space to optimize a certain targeted objective. Without loss of generality, the

general single-objective optimization problem can be represented mathematically as

the following minimization problem:

min
x∈Θ

f (x)

subject to gi(x)≤ 0, i = 1,2, . . . ,ninq.

h j(x) = 0, j = 1,2, . . . ,neq.

(2.1)

where Θ is the search space that contains all potential solution candidates or the feasi-

ble solutions. In this thesis, we consider the search space contains a huge finite solu-

tions that is defined as follows: {x |gi(x)≤ 0 and h j(x) = 0,∀ i = 1,2, . . . ,ninq and j =

1,2, . . . ,neq}, where x is a solution, gi(x) is the ith inequality constraint, h j(x) is the jth

equality constraint, ninq and neq are the number of inequality and equality constraints,
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respectively, and f is the objective function or the expected objective function of a

complex deterministic or stochastic system, respectively. In a stochastic optimization

problem, due to the stochastic nature of f , the optimization problem 2.1 is expressed

as follows:

min
x∈Θ

f (x)≡ E[SP(x,ξx)] (2.2)

where the sample performance SP is a deterministic function of x and ξx, in which

ξx is a random variable depending on the x. A stochastic optimization technique is

used for solving the optimization problem 2.2, where the objective function values are

estimated using simulation (i.e. random generation of samples of stochastic process

ξ 1
x ,ξ 2

x , . . . ,ξ t
x of the random variable ξx). E[SP(x,ξx)] is estimated by sampling, to

obtain the best estimated solution over Θ. This is expressed as follows:

E[SP(x,ξx)]≈
1
t

t

∑
i=1

SP(x,ξ i
x)≡ f̄ (x) (2.3)

where f̄ (x) is the estimated performance of f (x), ξ i
x represents the ith sample random-

ness of solution x, and t is the number of replications (i.e., the number of simulation

runs).

2.2.2 Multi-Objective Optimization Problem

Many real-life problems are considered Multi-Objective Optimization problems (MOO),

which contain several objectives that must be optimized simultaneously. Without loss

15



of generality, the minimization of MOO can be expressed as follows:

min
x∈Θ

F(x) = ( f1(x), f2(x), . . . , fS (x))

subject to gi(x)≤ 0, i = 1,2, . . . ,ninq.

h j(x) = 0, j = 1,2, . . . ,neq.

(2.4)

where fk(x) is the kth objective function, and F(x) is a vector of S objective functions.

Many algorithms have been proposed to solve MOO by detecting a set of non-dominant

solutions called the Pareto optimal set (PS), which is defined in Definition 2.2.2. The

non-dominant concept, Pareto set and Pareto front set (PF), are defined in the follow-

ing definitions.

Definition 2.2.1 (Pareto Dominance) Consider x and x̂ as two solutions in the feasi-

ble solutions set Θ. The solution x is said to be dominated by the solution x̂ if and only

if fi(x̂) ≤ fi(x), ∀ i = 1, . . . ,S and fi(x̂) < fi(x) for at least one i, and denoted by

x̂≺ x. Otherwise, x is said to be non-dominated by x̂, and denoted by x̂ ⊀ x.

Definition 2.2.2 (Pareto Optimal Set) PS is a set that includes all non-dominated so-

lutions in the feasible solutions set Θ. PS is defined as follows:

PS = { x ∈Θ | x̂ ⊀ x , ∀ x̂ ∈Θ } . (2.5)

Definition 2.2.3 (Pareto Front Set) For a given PS for MOO, PF of the objective

functions F(x) = ( f1(x), f2(x), . . . , fS (x)) is defined as follows:

PF = { F(x) | x ∈ PS } . (2.6)
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Figure 2.1a explains the dominance relationship between solutions of minimized sys-

tem of two objective functions f1 and f2. Suppose the reference solution is solution A.

There are three different regions of dominance relations related to solution A. Solution

A dominates all the solutions located in blue region, because the solution is better in

both two objectives f1 and f2. On the other hand, all solutions located in the green re-

gion dominate solution A. The solutions that are located in the red regions, are neither

dominant nor being dominated by solution A. Figure 2.1b shows the PF that contains

the non-dominated solutions represented by white circles; as can be seen, no solution

in the feasible solutions set dominates them.

 

 

 

(a) Dominance relationship between solution A
and other solutions.

 

 

 

feasible region 

Pareto front 

(b) White circles represent non-dominant solu-
tions of the Pareto front set.

Figure 2.1: Dominance relation and PF of the minimization system of two objective
functions f1 and f2.

Fonseca and Fleming (1995) are the first to use the idea of Pareto optimality, to solve

MOO by detecting the non-dominated solutions. To enrich the theory in this field.

Ulungu et al. (1995), for example, proposed the multi-objective simulated annealing

algorithm to solve multi-objective combinatorial optimization problems by finding the
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Pareto set of solutions. Zitzler and Thiele (1999) proposed the strength Pareto evolu-

tionary algorithm, which, starts as an empty set called an archive. In each iteration,

all non-dominated sets in the population are copied within the archive set and then up-

dated to remove any dominated individual or duplicate. Lee et al. (2004) attempted

to solve MOO problem by incorporating the concept of Pareto optimality into the

ranking and selection scheme; they proposed the multi-objective optimal computing

budget allocation technique to identify all non-dominated designs by allocating simu-

lation replications to the designs. Alrefaei and Diabat (2009) proposed two algorithms,

which are based on the idea of simulated annealing with constant temperature to solve

MOO problems.

2.3 Integer Encoding Scheme

A number of encoding schemes of clustering solutions have been proposed in the liter-

ature. For example, Hruschka et al. (2009) categorized the encoding schemes into three

types: binary, integer and real. The clustering solution in the integer encoding scheme

is an integer vector of m labels. The ith component represents the cluster number of

the object i that has a value between 1 and k, where k is the number of clusters. In

fact, there are k! different forms of vector that represent the same solution. Figure 2.2

shows example of 3! redundant solutions that represent the same clustering solution for

clustering 9 objects into 3 clusters, namely, [111332222], [111223333], [222113333],

[222331111], [333112222], and [333221111]. Such a case can be addressed using the

re-numbering procedure (Falkenauer (1998)).
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Figure 2.2: An example for clustering 9 objects into 3 clusters.

2.4 The Cluster Validation

In this section, a number of cluster validity indices proposed in the literature are dis-

cussed to validate the clustering solutions related to automatic clustering. The validity

index study is essential in order to detect the appropriate clustering and proper num-

ber of clusters for a dataset. One of the important cluster validity indices is DB-index

(Davies and Bouldin, 1979), which has been adopted by Bandyopadhyay and Maulik

(2001), Bandyopadhyay and Maulik (2002), Lai (2005), Liu et al. (2011), and Masoud

et al. (2013) to measure the validity clustering. The Sym-index (Bandyopadhyay and

Saha, 2008) that was developed to be able to determine any kind of symmetric cluster

from dataset. Bandyopadhyay and Saha (2008) proposed the Sym-index, which utilizes

the point symmetry distance developed by Bandyopadhyay and Pal (2007). The Sym-

index inspired by the I-index that proposed by Maulik and Bandyopadhyay (2002).

Instead of the Euclidean distance and the point symmetry distance, a new measure of

connectivity called Conn-index has recently been incorporated in the definitions of the

seven cluster validity indices, (Saha and Bandyopadhyay (2012)). The validity indices,

namely, DB-index, Sym-index and Conn-index, are further described below.
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