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Abstract

A Crank-Nicolson finite difference method is presented to solve the time fractional two-dimensional sub-diffusion
equation in the case where the Griinwald-Letnikov definition is used for the time-fractional derivative. The stability
and convergence of the proposed Crank-Nicolson scheme are also analyzed. Finally, numerical examples are pre-
sented to test that the numerical scheme is accurate and feasible.

Keywords: Griinwald-Letnikov fractional derivative, 2D fractional sub-diffusion equation, Crank-Nicolson difference approxima-
tion, Stability, Convergence.

1 Introduction

Fractional calculus is essentially arbitrary order differentiation and integration. Comprehensive studies on frac-
tional calculus and its applications can be found in [1-4]. Certain phenomena and processes can best be described by
the fractional diffusion equation having fractional order derivatives in time or space or space-time [5]. Most papers
on the numerical solution of the time fractional sub-diffusion equation have utilized the Caputo definition for the
time fractional derivative [6, 7, 8, 9]. There have not been many studies that utilize the Griinwald-Letnikov defini-
tion. The limited studies that have used the Griinwald-Letnikov (or related to Griinwald-Letnikov) definition include
[10, 11, 12,13, 14].

This paper discusses the use of a Crank-Nicolson scheme for solving the two-dimensional time fractional sub-diffusion
equation is constructed by applying the Griinwald-Letnikov definition instead of the Caputo definition for the time-
fractional derivative. If the initial condition is zero then the Griinwald-Letnikov definition and Caputo definition are
equivalent [15, 16]. It should be noted however that the Griinwald-Letnikov definition has the advantage of being less
complex and more easily applied.

This paper considers the following two dimensional time fractional sub-diffusion equation

9%u(x,y,1) 0%u(x,y,1) 9%u(x,y,1)
v N — < < .
1 o2 + 92 +  fOoy1), 0 < t T, (1.1)
subject to
“(X,Yao):fl(%)’); (12)
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u<07)’7t) :fZ(yvt)a M()@O,t) :f3<x7t)7
u(l,y,t) :f4(y’t)a ”(xvlat) :fS(xvt)v
0<x,y<L, 0Z¢t<T, (1.3)

where f1, 2, f3, f4 and f5 are known functions, and u is the unknown dependent variable.
The time fractional derivative of order (0 < ¢ < 1) of u can be defined by

L prdubys) 1 _ge 0<q<1

%u(x,y,t) ) T-a)Jo—"ar =)
e %7 o=1 (1.4)
and
2%u(x,y,1) ] d Joulxy.s )—)ds, 0<a<l
it vt A/, s
ata %a a=1 ( )

According to [9], (4) is known as the Caputo formula and (5) is known as the Riemann-Liouville formula. The
Griinwald-Letnikov time fractional derivative formula is defined by [15]

d%u(x,y,1) T 1 /’ du(x,y,s) 1

e " e @ o)

The Caputo fractional derivative and Griinwald-Letnikov fractional derivative are equivalent if u(x,y,0) = 0.
The Griinwald-Letnikov formula can also be written as [13]

ds. (1.6)

9%u(x,y.1) o\
T_hml/r Z“’k u(x,y,t —kt)+0(t),t >0, (1.7
where ¢/7 is an integer, w}ga) =1, w}ga) =(1- ‘”1 )w,g )1 and k=0,1,2,..1/71.

The right shifted Griinwald-Letnikov formula can be defined as

d%u(x,y,t) L8
—_— — — > . .
30 1/t kEZO o, u(x,y,t—(k—=1)1)+0(7),t >0 (1.8)

Lemma 1.1. The relation between Caputo and Reimann-Liouville fractional derivative is [16]:

u(x,y,0)

D! %u(x,y,t) = D}~ %u(x,y,t) + ()’

(1.9)

These two fractional derivatives are equivalent if and only if u(x,y,0) = 0. The proof is given by the Lemma 6.4.2 in
[18].

Lemma 1.2. In (1.8), the coefficients a),gm,(k =0,1,2,...), satisfy (see[13]):

1) o =10 = —a,0/” <0,k=1,2,...,

2) kzbw,@ = 0;Vn eN*,—kZ] ol® < 1.
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2 Crank-Nicolson method

For the discretization of the time fractional derivative we use specifically the right shifted Griinwald-Letnikov for-
mula defined by (8) and replace the second order spatial derivatives in equation (1) by central difference approxima-
tion. The space steps are taken as x; = i(Ax), in the x- direction with(i=0,1,...,M,— 1), Ax= & ~ and in the y-direction

withyj:j(Ax)(]—O,l7 M, —1), where Ay = M The time stepping is #; = kt,(k = 071, LN l),where’r:%.

Let u ; be the numerical approximation to u(x;,y ],tk) Neglecting the truncation error terms O(T 4 Ax? + Ay?), we
obtaln

k+l k s+1 k+1 k+1 k+1
+(D1 l]+zws lj _S(ui+1,j 2u +M1 1]+ul+1] 2” +M1 1/)+

+3

k1 Bl el
So(u iy =207 i g — 2 +uf )+ i

i,j+1 i,j—1 (210)

where S| = ( )2 ;S = (A})

The Crank-Nicolson finite difference scheme for the two-dimensional time fractional sub-diffusion equation (1.1)-
(1.3) utilizing the right shifted, with associated initial and boundary conditions, is as follows

k+1 k+1 k+1 k+1 k+1
751( li—lj+ut+lj) (1+251+252) + SZ( tj_+l+utj 1) Sl( t+l]+uz l,])f

(wf“)+251+2Sz)uﬁ,+sz(uﬁ,+l+u{ﬁj1 Zwk ufJ*“H“f“Z, @2.11)

where i = 1,2,. ~1,j=1,2,.,My—landk=0,1,2,...N—1
with
) = fi(xi,y)), (2.12)

M](ij = Lj,k), Mﬁ-{,o = f3(xi, 1),

wyy ;= fa(vjsti) Ui pr = f (i 1),
0<xy<L 0<t<T. 2.13)

3 Stability analysis of Crank-Nicolson method

We follow the approach in [14] for the analy51s of stablhty Suppose that U; ], is the approximate solution of (11)
and the error is defined as ‘P”]—Ukj j =0,1,2,.. -1;=0,1,2,...M,—-1k=0,1,2,...,N — 1. Due to
linearity, the error satisfies equation (11) and we have

=S A )+ (14281 +28) W T =S (Wi + i) = S1(Why + P 1j)

(a)f“)+251—|—252)‘1‘k + 8o (Wh i + W) Zwk ‘Pk IR ERED

The error and initial conditions are given by
k
P =), =¥, =0. (3.15)
By defining the following grid functions for k =0,1,2,...,N —1
¥ when x;_ <SXSX a0y 0 <YV,

‘Pk(x,y)z 0 when 0 <x< %orL—M<x<L (3.16)

0 when0 <y <= 0rL—§<y<L

ISPACS

International Scientific Publications and Consulting Services



Journal of Interpolation and Approximation in Scientific Computing 2017 No.2 (2017) 18-29
http://www.ispacs.com/journals/jiasc/2017/jiasc-00117/

then W*(x,y) can be expanded as a Fourier series:
lPk(xay) = i A«k(ll7[2)82\/jlﬂ<11x/l‘+12)’/14>’
Iy h=—oo
where

A« (11712 / / \Ilk .X' y) 2\/77'5 llx/L-l—Ily/L)dxdy

From the definition of /? norm and Parseval equality:

PO St = k2 S k 2
lefl2="Y Y Axaylei = Y [A".0)P
=1 = oo

Supposing that
k k ,/—1(01iAx+02iAy

where 6 = 27l /L, 6, = 27l /L and substituting (3.20) in (3.14),
l"(a _‘u) _leci-zl ws(a)lkfsﬂ
(I+u)

where, 1 = 4(Slsm (DAY + Sysin (GZAy)) >0,

lk_H _

b

Proposition 3.1. If A1 (k=0,1,2,...,N) satisfy (3.21), then |A*+1| < |A|.

Proof. The proof utilizes mathematical induction; take k = 0, in (3.21)

2'1 — (a_“)lo
(I+p) ’
andasO < a <1, u >0, then
AT < A0
Now, assuming that
A" <A m=1,2,...,k—1

andasO < a < 1and u > 0, from (3.21) and Lemma 1.2, we obtain

A4 (0 — ) + B [0 || AR+

A/k“rl
s (T+m) ’
(a— IJ)JFZHI‘(DS 1\ (40
< (e
:<(a—ﬂ) ( Z§+1(DS _a)>|10‘
1+u ’
_(a—p+(-a)y .o
=

MkJr]‘ < MO‘
This complete the proof of Proposition 3.1 by induction method.

By using Proposition 3.1 and (3.19), it can be seen that the solution of (2.11) satisfies
A 2] A0 [l2,

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

which means that the Crank-Nicolson difference scheme in (2.11) is unconditionally stable.
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4 Convergence analysis of Crank-Nicolson method

We follow the approach in [14] for analyzing the convergence. Let u(x;,y;, %) be the exact solution represented
by Taylor series. Then the truncation error of Crank-Nicolson method is

i1/
T /2= =Ta Zws u(Xi,yj te—s+1)—
(xz'+1,yj7lk+1)*Zu(xi,yj,tkﬂ)+M(xi71,yj7tk+1)+M(xi7yj,tk)*Zu(xi,y/',tk)+M(Xi717yj,lk)_
2(Ax)?

(X3, Y 1otk 1) = 20(Xi, k) H ;Y1 terr) w6y t) — 2u(xi, ) +ulxi yjon,t)
2(Ay)?

Fiyjsteey2),  (4.23)

withi=1,2,... M,—-1, j=1,2,... My—1, k=0,1,2,...,N—1.
From (1.1), we have

T2 %u(xiit,yinterr)  O2u(xi,yit+k-+1
+1/2 _ =T Za)s x,,yj,tk s+1) — (xiy Jolk+ ) (xi, J )_

7] atOC axz

(Xi+1 7ijtk+1) = 2u(xi,yjs tiert) Hulxion, js i) +u(xi, v te) — 2u(xi, yj,tc) +ulxio1,y),0)

2(Ax)?

Pulxiyjstir1)

0y?

u(Xi, Yjrtster 1) — 2u(Xi, it t) Fu(Xi, Y15t t) +u(xg, y i, k) — 2u(x;, vy, t0) 4 ulxi, yio1,t)
2(Ay)?
= 0(1+ (Ax)? + (Ay)?). (4.24)

Since i, j and k are finite, a positive constant C; exists, for all i, j and k, such that

IT,»f“,“/ I <Ci(n+ (A + (A)3), (4.25)
withi=1,2,...My—1,i=1,2,. —1,k=0,1,2,...N—1.
The error is deﬁned as
OF = u(xi,yj,te) —uf . (4.26)

From (4.23), we have

= S1(u(xip1,Y)tks1) Fulxio1,yjtig1)) + (L+281 +282)u(xi,yj, te1)—
So(u(xi,y i1, tket) Fulxi,yj—1,t1)) = S1(w(xip1,yj,0) +u(xi—1,¥),t%))

- ((Dl(a) +281 +282)ulxi,yj,tx) + S2((xi, v, te) +ulxi, yj-1,t%)) —
k1
Z(Os u(xi, yjst—si1) + T (X0 Y ter12). (4.27)

To obtain the error equation, subtract (4.27) from (2.11) to obtain

— SR+ O ) + (14281 +25) 08 = a9 L) + oK) =
Sl(¢i+1,j + ¢i71,j) - ((01( ) 125, +252)¢i],€j +52(¢i’fj+1 +¢i],{j71)_

L il
Y oMol 42T 2, (4.28)
=2
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with error boundary conditions
ok =9k =0, k=0,1,2,... N—1,
and the initial condition
0 =0, i=1,2,... M, j=12,. M,
Next, the following grid functions are defined for k =0,1,2,.... N —1
d)i'fj, when X s <X Sxﬁ%, Yjar <y< Yt
d)k(x,y): 0 when 0 <x < %WL—% <x<L,
0 when0<y< %orL—% <y<L,
and .
T, whenxl.f% <X =X A ity <Y < Vit
Tk(xy): Owhenogxg%orLf%SxSL,
0 when0<y< %orL—% <y<L,
i=12.M—-1,j=12,... M—1,k=0,1,2,...,N—1.
Here, the ¢*(x,y) and T%(x,y) can be expanded in Fourier series such as
)= Y &K b)Y T k012, N,
Iy ly=—oo
Thioy) = Y, k(1) )e?Y IR/ k0,12, N,
Iy, lp=—eo
where Lo
i) = [ [ 9 e 2 I gy (429)
0 Jo
k 1Lk k 2v/—1n(lyx/L+ly/L
W (1), 1) = Z/o /0 T*(x,y)e 2V =17 /LAby/D) gy, (4.30)
From the definition of /> norm and the Parseval equality:
My—1My—1 o
o1z = ) X AxaylerP= Y Ip*(h,)P, 431
i=1 j=1 I h=—o0
and
Mx_lM,V71 sl
ITME =Y Y Ayl = Y [%,0) (4.32)
=1 j=1 I h=—oo
Based on the above, suppose that
Ok = gkeV-1o1iA 02 jAY) (4.33)
Tk = kv =1(0) ix+0p jAY) (4.34)
respectively, where 61 = 21 o, = 272 Substituting (4.33) and (4.34) into (4.28), gives
k k1 (0) kst k+1/2
ghtl E(a—p) — X5 o™ gF T 4 rpktl ’ 4.35)

(1+n)

where U is as mentioned in section 3.
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Proposition 4.1. Let 1 (k=0,1,2,...,N) be the solution of (4.35), then there is a positive constant Cy such that
£ < Colkr D),

Proof. From ¢0 0 and (4.29), we have
EO=E%,L) =0. (4.36)

From (4.30) and (4.32), then there is a positive constant Cy, such that
P4 < G| W2 (1, 1)) (4.37)
Using mathematical induction, for k = 0, then from (4.35) and (4.36) , we obtain

L(Ta\PI/Z).

1_
g_H—u

Since pt > 0, from (4.37), we get
&' < 7|7 < G .

Now suppose that
|EM < Comt® W' 2| m=1,2,... k—1.

AsO<a<1,u>0,from (4.34), (4.36) and Lemma 1.2, we have

|5k+1| < ‘§k|(a7”) k+1 |ws ||ék S+1|+Ta|ll’k+1/2|

(1+p) ’
B k1 (@)
S[k(a B+ Y o |(k S+1)+1}C21a|\{;1/2|7
(1+p)
_ k+1
S[k(oc M)+ k(=X lws )+1}C21:"‘|‘P1/2\,
(1+u)
k(ot—p)+k(1—o)+1
:{ ( l’l') ( ) ]CQT‘X|‘P1/2‘,
(I+u)
< (k+1)Cr%| W2 (4.38)
This completes the proof of the proposition. O

Theorem 4.1. The proposed Crank-Nicolson difference scheme is 1> convergent and the order of convergence is
O(T+ (Ax)? + (4y)?).

Proof. From (4.24) and (4.32), we obtain
T < /MAx\/MyAYCy (T4 (Ax)? + (Ay)?) = LCy (T4 (Ax)? + (Ay)?). (4.39)
In view of Proposition 4.1, (4.31), (4.32) and (4.39)

19" )l < (k+ D)CT|I T2 < COakeL(T+ (Ax)* + (&)%),
as kt < T, thus

192 < CICTL(T + (Ax)* + (Ay)?),
where C = C1C,TL. O
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5 Numerical Experiments

Example 5.1. Consider the following equation [7]

%u(x,y,t)  *u(x,y,t)  %u(x,y,t) 22 2\ . )
e — e e 2t ) ,
dr® dx? 0y? (F(3 —a) + sin(x)sin(y)
O<a<l, 0<tr<T, (540
subject to the conditions
u(x,y,O) :u(ovyat) :M()C,OJ):O7 (541)
u(l,y,t) = t%sin(1)sin(y), u(x,1,t) = tsin(x)sin(l), 0 < ¢ < T. (5.42)
The exact solution of (5.40) is given by
u(x,y,1) = t2sin(x)sin(y), 0< x,y <1. (5.43)
The error is defined as follows
Eo=  max |u(x,yj,t)—u|. (5.44)

The proposed Crank-Nicolson scheme is applied to problem (5.40)-(5.42). Table 1 shows the errors E at T = 1.0 for
different values of space step size( Ax,Ay) and t. Note that the time step, 7T is defined by T = %

Table 1: The errors E. between the exact solution and the numerical solution of (TFSDE) at 7 = 1.0

T Ax = Ay Y=0.5 Y=0.6 Yy=0.7 Y=0.8 Yy=0.9
1/4 172 1.6373e-3  1.3083e-3 9.7032e-4  6.2414e4 27168 e-4
1/16 1/4 41098 e-4  3.0745e4 2.0061e-4  9.2696e-5  1.6877e-5
1/64 1/8 1.1152e-4  8.1593e-5 5.0626e-5 1.9344e-5 1.1412e-5

17128 1/10 4.8991e-5 3.4093e-5 1.8680e-5 3.0995e-6 1.2233¢e-6

Table 1 shows that, for various values of «, the errors decrease as we reduce the time and space step size T and
(Ax,Ay). This indicates the method is convergent.
Figures 1 and 2 shows the numerical solution of the equation (5.40) and compares it with exact solution at 7 = 1.0.

3 LI Xis
ey _ 054 Approximate Solution
' = Exact Solution
03 M Approximate Solution

Figure 2: at « =05, T = 1.0,y =0.125 and N =
Figure 1: at ¢ =0.5,7 =1.0,y=0.1 and N = 128. 64.

Clearly the numerical solution is in good agreement with the exact solution. These results seem to confirm the
theoretical analysis.
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Example 5.2. Consider the following equation [21]

%u(x,y,t)  *u(x,y,t) = 9*u(x,yt) |
DALD s Yy s Yy (2 72[+a) x+y
o1 a2 T 9y? +( 2+a) e,
O<a<l, 0<tr<T, (545
with conditions
u(x,y,0)=0, M(],y7l‘):el+ytl+a7

u(0,y,1) =t u(x,1,1) =,

u(x,0,1) =t'7% 0<x,y<1,0<t<T. (5.46)
The exact solution is

u(x,y,t) = 't (5.47)

Table 2: The errors E. between the exact solution and the numerical solution of (TFSDE) at T = 1.0

T Ax = Ay Y=0.5 Y=0.6 Yy=0.7 Y=0.8 Yy=0.9
1/4 172 4.0157e-3  23261e-3 1.8037e-5 6.2414e4 27168 e-4
1/16 1/4 2.0009e-3  1.4263e-3 7.5927e-4  5.5386e-5 9.8580e-4
1/64 1/8 6.1583 e-4  4.7313e-4 3.0411e4 1.0299e-4  1.4257e-4

1/128 1/10 2.8506e-4  2.1330e-4 1.2824e-5 2.6784e-5 9.7067 e-5

Example 5.3. Consider the following equation on (0,1)? x (0,1] [22]

%u(x,y,t)  %u(x,y,t) = *u(x,y,t) 2
e T oe T2 —a)
20%(1 — 6x+6x%) (y —y*)* = 2¢%(1 — 6y + 6y%) (x — x%)?,
O<a<l, 0<i<T, (548)

P (x—x") (y =) -

with conditions

u(x,y,0) =0,
u(0,y,1) =u(l,y,1) =0
u(x,0,1) =u(x,1,1) =0, 0<x,y<1,0<t<T. (549

The exact solution is

u(x,yt) =12 (x—x)*(y—»*)% (5.50)
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Table 3: The errors E.. between the exact solution and the numerical solution of (TFSDE) at T = 1.0

T Ax = Ay Y=0.5 v=0.6 y=0.7 Y=0.8 y=0.9
1/4 172 3.5866e-3  3.5419e-3 3.4934e-3 3.4413e-3  3.3860e-3
1/16 1/4 9.3188e-4  9.1046e-4 8.8557e-4 8.5714e-4  8.2513e-4
1/64 1/8 3.1952e-4  3.0149e-4 2.8018e-4  2.5551e-4 22748 e-4

1/128 1/10 24690e-4  2.2923e-4 2.0829e-4  1.8402e-4  1.5642e-4

Example 5.4. Consider the following equation on (0,1)* x (0,1] [22]

0%u(x,y,t) %u(x,y,t)  *u(x,y,t) 2atanh(\i/\1+1) 5 4 22 22
e T o2 T oy rosviTr | @) b
2In(141)(1 —6x46x*)(y —y*)> — 2In(1 +1)(1 — 6y + 6y*) (x — x*)?,
O<a<l, 0<i<T, (551)

with conditions

u(x,y,0) =0,
u(0,y,1) = u(1,y,1) =0
u(x,0,8) =u(x,1,1) =0, 0<x,y<1,0<r<T. (552

The exact solution is

u(x,y,t) =In(1+1)(x—x*)*(y—y*)*. (5.53)

Table 4: The errors E.. between the exact solution and the numerical solution of (TFSDE) at T = 1.0,N = 60

Ar=Ay  y=025 =05 y=0.75
1/4 54065¢4 5.4381ed 557384
1/6 2.1728e-4  22009e4 23178 e-4

1710 54219e-5 5.6854e-5 6.7629 e-5

The above numerical results show that the exact solution and the numerical solution are in good agreement. The result
displayed and discussed in this section seems to confirm the results of our theoretical analysis.

6 Conclusions

The Crank-Nicolson difference method for two-dimensional sub-diffusion equation of fractional order has been
described the Griinwald-Letnikov formula was used for time fractional derivative. The scheme was found to be
convergent with order (7 + (Ax)? + (Ay)?). Further it is unconditionally stable. The results of an application to certain
examples indicated that the scheme is feasible and accurate.
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