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Abstract A C1 convex surface data interpolation scheme is presented to preserve the shape of scat-

tered data arranged over a triangular grid. Bernstein–Bézier quartic function is used for interpola-
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of surface. The developed scheme is flexible and involves more relaxed constraints.
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1. Introduction

Shape preserving scattered data interpolation is always desir-
able in geometric modeling, visualization, engineering, sec-
tional drawing, designing pipe systems in chemical plants,

surgery, designing car bodies, ship hulls and airplane, geology,
meteorology, etc. In general, ordinary interpolating techniques
do not preserve the shapes of data. In this paper, we have
developed a method to preserve the shape of scattered data

when it is convex. Convexity is an important shape property
and its applications are in designing of telecommunication sys-
tem, nonlinear programming, engineering, optimization the-

ory, parameter estimation, approximation theory [1–3].
In recent years, a good amount of work has been published

on the shape preservation of univariate and bivariate convex

data. It is very hard to detail all these existing schemes. Some
of the noticeable contributions are reviewed here. Cai [4] pre-
sented a four-point ternary subdivision scheme for the convex-

ity preservation of curve data. The parameters were
constrained to preserve the convexity and the generated limit
curve was C2. Levin and Nadler [5] introduced a one parame-
ter family of C1 algebraic curves and discussed its properties.

The convexity-preserving scheme was developed using these
curves to create a convex curve from a convex polygon. The
method was further generalized to the convex-preserving C1

interpolation in R3 by algebraic surfaces. Pan and Wang [6]
proposed an automatic parametric convexity-preserving
scheme for curve data. A family of interpolating spline curves

with a shape parameter was introduced. The range of these
parameters was determined for the convexity preservation of
global and piecewise convex data points. Yong-juan and
Guo-jin [7] developed a new trigonometric polynomial curve

with a shape parameter for the convexity preservation of con-
vex curve data. The trigonometric polynomial curve was
obtained by the blending of parameterized polygon and trigo-

nometric polynomial splines. This construction resulted in the
automatic generation of trigonometric polynomial curves with
C2(G2) continuity. The range of the shape parameter was

determined for the convexity preservation of curve data. Floa-
ter [8] defined convexity and rational convexity preservation of
systems of functions and proved that total positivity and

rational convexity preservation are equivalent. Roulier [9]
introduced a data refinement scheme to preserve the shape of
convex data arranged over the rectangular grid. The refined
bivariate data could be interpolated by any standard surface

interpolation technique. Iqbal [10] modified the bivariate inter-
polation scheme [9] and developed more relaxed constraints.
Lai [11] derived some sufficient conditions on the B-net of a
multivariate Bernstein–Bézier polynomial to preserve the

shape of convex data. In [11], author also discussed the suffi-
cient conditions for the convexity of bivariate box spline sur-
faces. Lai [2] used bivariate C1 cubic splines to preserve the

shape of convex scattered data. In [2], convexity preserving
interpolation problem was set as quadratically constrained
quadratic programming problem. Quadratic programing prob-

lem was simplified to linearly constrained quadratic program-
ming problem. Piah et al. [3] constructed a bivariate C1

interpolant to preserve the shape of convex scattered data.

The surfaces are comprised of cubic Bézier triangular patches
and the sufficient conditions of convexity were derived as
lower bounds of Bézier points. In a triangular patch where
convexity is lost, the initial gradients at the data sites are mod-

ified so as to satisfy the sufficient conditions for convexity.
Renka [12] developed a Fortran 77 software package for con-
structing a C1 convex surface that interpolates arbitrarily dis-

tributed convex data. The set of nodal gradients were
modified to make a convex surface from the convex nodal val-
ues and gradients. Schumaker and Speleers [13] constructed

the sets of adequate linear conditions to ensure convexity of
a triangle by Bernstein–Bézier method.

The study of this paper has proposed a C1 convex scattered
data interpolation scheme using Bernstein–Bézier quartic func-

tion. The Bernstein–Bézier quartic function has three inner,
nine boundary and three vertex ordinates. The lower bounds
of the inner and boundary Bézier ordinates are determined

to preserve the convex shape of data. Since the Bernstein–
Bézier quartic function has five more control points(Bézier
ordinates) than cubic function [3], the convexity-preserving

Bernstein–Bézier quartic scheme of this paper more accurately
follows the convex shape of data as compared to [11]. In [2],
the sufficient conditions for the convexity preservation of scat-

tered data were in the form of system of inequalities with
Bézier ordinates as parameters. The convexity preserving
scheme of this papers has a unique lower bound for all the
Bézier ordinates; thus, it is simple in implementation as com-

pared to [11]. In [2], the convexity-preserving problem was
transformed to a quadratic programming problem; thus, it is
computationally expansive than the proposed convexity-pre-

serving Bernstein–Bézier quartic scheme. The authors in [11]
and [2] did not provide any numerical example of the devel-
oped convexity-preserving scheme.

The remainder of the paper is organized as follows: In Sec-
tion 2, the Bernstein–Bézier quartic function [14] is rewritten.
In Section 3, constraints are also derived on the Bézier
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ordinates to interpolate convex scattered data as C1 convex
surface. The developed scheme of this paper is demonstrated
graphically in Section 4. Finally Section 5 concludes the paper.

2. C1 Bernstein–Bézier quartic triangular patch [14]

Let T = DV1V2V3 be a non-degenerate triangle, then any

point V= (x, y) of the triangle T can be expressed w.r.t the
barycentric coordinates u, v and w as

V ¼ uV1 þ vV2 þ wV3; uþ vþ w ¼ 1 u; v;w � 0; ð1Þ

where any point Vi = (xi, yi), i = 1, 2, 3.

The Bernstein–Bézier quartic function P(u, v, w) over a tri-
angular patch is given by

Pðu; v;wÞ ¼ u4b400 þ v4b040 þ w4b004 þ 4u3vb310 þ 4uv3b130

þ 4u3wb301 þ 4uw3b103 þ 4v3wb031 þ 4vw3b013

þ 6u2v2b220 þ 6v2w2b022 þ 6u2w2b202

þ 12u2vwb211 þ 12uv2wb121 þ 12uvw2b112; ð2Þ

Here b400, b040 and b004 are the Bézier ordinates at the vertices.

b310, b130, b301, b103, b013, b031, b220, b022, b202, are the boundary
Bézier ordinates and b211, b121, b112 are the inner Bézier
ordinates.

The following values of the boundary Bézier ordinates b310,
b130, b301, b103, b013 and b031 are given by [15].

b310 ¼ b400 þ 1
4
ðx2 � x1ÞfxðV1Þ þ ðy2 � y1ÞfyðV1Þ
� �

;

b130 ¼ b040 � 1
4
ðx2 � x1ÞfxðV2Þ þ ðy2 � y1ÞfyðV2Þ
� �

;

b031 ¼ b040 þ 1
4
ðx3 � x2ÞfxðV2Þ þ ðy3 � y2ÞfyðV2Þ
� �

;

b013 ¼ b004 � 1
4
ðx3 � x2ÞfxðV3Þ þ ðy3 � y2ÞfyðV3Þ
� �

;

b103 ¼ b004 þ 1
4
ðx1 � x3ÞfxðV3Þ þ ðy1 � y3ÞfyðV3Þ
� �

;

b301 ¼ b400 � 1
4
ðx1 � x3ÞfxðV1Þ þ ðy1 � y3ÞfyðV1Þ
� �

:

9>>>>>>>>>=
>>>>>>>>>;

ð3Þ

The Bernstein–Bézier quartic function (2) is C1 at the verti-
ces of triangle for the values of Bézier ordinates given in the set
of Eq. (3).

3. Sufficient conditions for convexity of Bernstein–Bézier quartic

triangular patch

In this section, we have derived sufficient conditions on the
Bézier ordinates of each triangular patch to form a convex
surface.

Theorem 1. The Bernstein–Bézier quartic triangular patch

P(u, v, w), defined over the triangular domain, in (2), is convex
in the direction d ¼ k1V1 þ k2V2 þ k3V3, with k1 þ k2 þ k3 ¼ 0;
if the boundary Bézier ordinates b310, b130, b301, b103, b013, b031,

b220, b022, b202 and the inner Bézier ordinates and b211, b121, b112
satisfy the following constraint:

bi;j;k � �r0; whereði; j; kÞ
2 ð4; 0; 0Þ; ð0; 4; 0Þ; ð0; 0; 4Þf g; iþ jþ k ¼ 4:

Proof. Let {(xi, yi, Fi), i = 1, 2, 3} be the convex scattered data
defined over a triangle DV1V2V3. Lai [2] defined the convex
function in a certain direction d ¼ k1V1 þ k2V2 þ k3V3,

k1 þ k2 þ k3 ¼ 0 as
Definition 1. A function f is said to be strictly convex in a given

direction d if there exists a positive number e > 0 such that

D2
dfðx; yÞ � e;

where Ddf(x, y) denotes the directional derivative in the direc-

tion d.

The second order directional derivative D2
dPðu; v;wÞ, in the

direction d ¼ k1V1 þ k2V2 þ k3V3; k1 þ k2 þ k3 ¼ 0 is

D2
dPðu; v;wÞ ¼

@2P

@d2
¼ k2

1

@2P

@u2
þ 2k1k2

@2P

@u@v
þ 2k1k3

@2P

@u@w

þ k2
2

@2P

@v2
þ 2k2k3

@2P

@v@w
þ k2

3

@2P

@w2
: ð4Þ

Let b400 ¼ A; b040 ¼ B; b004 ¼ C; b310 ¼ b130 ¼ b301 ¼ b103

¼ b031 ¼ b013 ¼ b220 ¼ b202 ¼ b022 ¼ b211 ¼ b121

¼ b112 ¼ �r;where r � 0: ð5Þ

Putting values of Bézier ordinates from (5) in (2), (2)
reduces to

Pðu; v;wÞ ¼ u4Aþ v4Bþ w4C� 4u3vþ 4uv3 þ 4u3wþ 4uw3
�

þ4v3wþ 4vw3 þ 6u2v2 þ 6v2w2 þ 6u2w2 þ 12u2vw

þ12uv2wþ 12uvw2
�
r; ð6Þ

Using the relation (u+ v + w)4 = 1, (6) is rewritten as

Pðu; v;wÞ ¼ u4Aþ v4Bþ w4C� ð1� u4 � v4 � w4Þr: ð7Þ

Substituting the value of P(u, v, w) from (7) in (4), we have

D2
dPðu;v;wÞ¼

@2P

@d2

¼ 12 k2
1u

2ðAþ rÞþk2
2v

2ðBþ rÞþk2
3w

2ðCþ rÞ
� �

: ð8Þ

Take Qðu; v;wÞ ¼ D2
dPðu; v;wÞ. If r= 0 then Q(u, v, w) > 0

provided A> 0, B > 0 and C> 0. We are interested in find-
ing the minimum positive value of r for which Q is positive. At
the minimum value Q satisfies the following constraints:

@Q

@u
� @Q
@v
¼ 0 and

@Q

@u
� @Q
@w
¼ 0: ð9Þ

Substituting the value of Q(u, v, w) from (8) in (9) we obtain
the following relations:

1.
@Q
@u
¼ @Q
@v

k2
1uðAþ rÞ ¼ k2

2vðBþ rÞ ) u
v
¼ k2

2ðBþ rÞ
k2
1ðAþ rÞ

:

2.
@Q
@v
¼ @Q
@w
k2
2vðBþ rÞ ¼ k2

3wðCþ rÞ ) v

w
¼ k2

3ðCþ rÞ
k2
2ðBþ rÞ

:

These computations assert the following values of u, v and w

u ¼ 1

k2
1ðAþ rÞ

; v ¼ 1

k2
2ðBþ rÞ

;w ¼ 1

k2
3ðCþ rÞ

:

Moreover; uþ vþ w ¼ 1

k2
1ðAþ rÞ

þ 1

k2
2ðBþ rÞ

þ 1

k2
3ðCþ rÞ

:



Table 1 A convex scattered data set.

x �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �0.7500
y �1.0000 �0.7500 �0.2500 0 0.2500 0.5000 0.7500 1.0000 �0.7500
z 2.5000 2.0625 1.5625 1.5000 1.5625 1.7500 2.0625 2.5000 1.6250

x �0.7500 �0.7500 �0.7500 �0.7500 �0.5000 �0.5000 �0.5000 �0.5000 �0.2500
y �0.2500 0.2500 0.5000 1.0000 �1.0000 �0.7500 0 1.0000 �0.7500
z 1.1250 1.1250 1.3125 2.0625 1.7500 1.3125 0.7500 1.7500 1.1250

x �0.2500 �0.2500 �0.2500 �0.2500 �0.2500 0 0 0 0

y �0.2500 0.2500 0.5000 0.7500 1.0000 �1.0000 �0.5000 �0.2500 0

z 0.6250 0.6250 0.8125 1.1250 1.5625 1.5000 0.7500 0.5625 0.5000

x 0 0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000

y 0.7500 1.0000 �1.0000 �0.5000 �0.2500 0 0.7500 1.0000 �0.7500
z 1.0625 1.5000 1.5625 0.8125 0.6250 0.5625 1.1250 1.5625 1.3125

x 0.5000 0.5000 0.5000 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

y �0.5000 �0.2500 1.0000 �1.0000 0.7500 �0.5000 0 0.2500 1.0000

z 1.0000 0.8125 1.7500 2.0625 1.6250 1.3125 1.0625 1.1250 2.0625

x 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – –

y �1.0000 �0.7500 �0.5000 �0.2500 0 0.2500 1.0000 – –

z 2.5000 2.0625 1.7500 1.5625 1.5000 1.5625 2.5000 – –

Figure 1 Locations of the Bézier ordinates of the Bernstein–

Bezier quartic function defined over a triangle.

Figure 2 The adjacent triangles T1 = DV1V2V3 and

T2 = DV4V5V6.
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u ¼ u

uþ vþ w

¼ k�21 ðAþ rÞ�1

k�21 ðAþ rÞ�1 þ k�22 ðBþ rÞ�1 þ k�23 ðCþ rÞ�1
; ð10Þ

as u + v + w = 1.
Similarly,

v ¼ k�22 ðBþ rÞ�1

k�21 ðAþ rÞ�1 þ k�22 ðBþ rÞ�1 þ k�23 ðCþ rÞ�1
; ð11Þ

and w ¼ k�23 ðCþ rÞ�1

k�21 ðAþ rÞ�1 þ k�22 ðBþ rÞ�1 þ k�23 ðCþ rÞ�1
: ð12Þ

Substituting the values of u, v and w from (10)–(12) in (8),
(8) reduces to

Qðu; v;wÞ ¼ 12

k�21 ðAþ rÞ�1 þ k�22 ðBþ rÞ�1 þ k�23 ðCþ rÞ�1
:

ð13Þ

Hence, from (13) Q(u, v, w) = 0 if

12k2
1k

2
2k

2
3ðAþ rÞðBþ rÞðCþ rÞ

k2
2k

2
3ðBþ rÞðCþ rÞþk2

1k
2
3ðAþ rÞðCþ rÞþk2

1k
2
2ðAþ rÞðBþ rÞ

¼ 0;

or

ðAþ rÞðBþ rÞðCþ rÞ ¼ 0: ð14Þ

The roots of (14) are r = �A, r = �B and r = �C. Take
r0 = max(�A, �B, �C). h

Remark 1. The boundary Bézier ordinates defined in (3) may

or may not satisfy the lower bound proposed in Theorem 1. To
overcome this problem a parameter c is introduced in (3) as
follows:

b310 ¼ b400 þ
c
4
ðx2 � x1ÞfxðV1Þ þ ðy2 � y1ÞfyðV1Þ
� �

; b130

¼ b040 �
c
4
ðx2 � x1ÞfxðV2Þ þ ðy2 � y1ÞfyðV2Þ
� �

;

b031 ¼ b040 þ
c
4
ðx3 � x2ÞfxðV2Þ þ ðy3 � y2ÞfyðV2Þ
� �

;

b013 ¼ b004 �
c
4
ðx3 � x2ÞfxðV3Þ þ ðy3 � y2ÞfyðV3Þ
� �

;

b103 ¼ b004 þ
c
4
ðx1 � x3ÞfxðV3Þ þ ðy1 � y3ÞfyðV3Þ
� �

;

b301 ¼ b400 �
c
4
ðx1 � x3ÞfxðV1Þ þ ðy1 � y3ÞfyðV1Þ
� �

:
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For each of the Bézier ordinate(b310, b130, b301, b103, b013,
b031), we are interested to choose c e (0, 1) for which
bi,j,k P �r0 or bi;j;k ¼ bl00ðVÞ þ c

4
D � �r0, l = i + j + k. bl00

is the Bézier ordinate at the vertex V and D is the directional
derivative along the edge containing bi,j,k and bl00.

If more than one triangle is incident at vertex V, then c is
calculated for all such triangles. The least of values of c is

the most plausible choice of c.

bi;j;kjt ¼ bl00ðVÞ þ
ct
4
Dt P �r0; t ¼ 1; 2; 3; . . . ; s;

c ¼ min ct; t ¼ 1; 2; 3; . . . ; sf g:

Here s is the number of triangles incident at the vertex V.

3.1. C1 continuity condition for the Bernstein–Bézier quartic
triangular patch

Given two Bernstein–Bézier quartic triangular patches
P1(u, v, w) and P2(u, v, w), having vertices bi,j,k and ci,j,k defined
over the triangles T1 = DV1V2V3 and T2 = DV4V5V6 respec-

tively. The necessary and sufficient conditions for C1 continu-
ity of these Bernstein–Bézier triangular patches along the edge
V2V3 = V6V5 given by [16] are
Figure 3 Triangulation of the dom

Figure 4 Linear interpolation o
c103 ¼ ub130 þ vb040 þ wb031; ð15Þ

c112 ¼ ub121 þ vb031 þ wb022; ð16Þ

c121 ¼ ub112 þ vb031 þ wb022; ð17Þ

c130 ¼ ub103 þ vb013 þ wb004: ð18Þ

Due to the gradient based estimation of Bézier ordinates
b310, b130, b301, b103, b013 and b031, the Eqs. (15) and (18) are

automatically satisfied. The inner and boundary Bézier ordi-
nates b022, b121 and b112 are estimated from (16) and (17) pro-
vided they satisfy the lower bound bi;j;k P �r0 to ensure

convex surface through convex data. Similarly, the C1 continu-
ity is established along the remaining edges of the triangle.

4. Demonstration

In this Section, the convexity preserving scheme developed in
Section 3 is tested for the convex scattered data generated from

the convex function F(x, y) = x2 + y2 + 0.5, (x, y) e [�1, 1] ·
[�1, 1]. The generated convex scattered data set is given in
Table 1 (see Figs. 1 and 2).

In Fig. 3, the domain of the convex scattered data set of

Table 1 is triangulated by the Delaunay triangulation scheme.
ain for convex data of Table 1.

f the convex data of Table 1.



Figure 5 The Bernstein–Bézier quartic function.

Figure 6 The convex surface generated from the numerical scheme of [3].
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The linear interpolation of the data set of Table 1 is given by
Fig. 4. Finally, the convex data is interpolated by the convexity

preserving scheme developed in Section 3 with d = (1, 1) and
the interpolated convex surface is shown in Fig. 5.

The graphical results in Fig. 3–5 are obtained by the MAT-

LAB software. The CPU time for the implementation of above
mentioned developed convexity preserving scheme for the data
set of Table 1 is 4.213 s. Moreover, the proposed scheme of this

paper has CPU time less than [11] and [2] but greater than [3].
Fig. 6 is generated by the convexity-preserving scheme devel-

oped in [3]. The convexity-preserving Bernstein–Bézier quartic
scheme developed in Section 3 has 15 control points, while the

numerical scheme of [3] provides 10 control points. Thus the
Bernstein–Bézier quartic scheme has more chances of convex
shape preservation without the adjustment of derivatives.

5. Conclusion

In this study, lower bound (bi,j,k P �r0) of the boundary and

inner Bézier ordinates of Bernstein–Bézier quartic interpolant
is determined to ensure convex surface through convex scat-
tered data. The Bézier ordinates b310, b130, b301, b103, b013
and b031 are estimated by C1 continuity at the vertices. These
estimated values b310, b130, b301, b103, b013 and b031 may or
may satisfy the derived lower bound for convexity. As a rem-

edy, parameter is introduced in the definition of b310, b130, b301,
b103, b013, b031. The Bézier ordinates b220, b022, b202, b211, b121
and b112 are computed by guaranteeing C1 continuity along
the edges and convexity of surface (bi,j,k P �r0). The devel-

oped scheme of this paper involves more Bézier ordinates as
compared to [3], hence more flexible. The developed con-
straints of convexity preservation are more relaxed than [2,11].

In this paper shape-preserving scheme is developed for con-
vex scattered data. The authors are keen to develop shape-pre-
serving schemes for monotone and positive data in the

subsequent papers.
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